
ACMAC’s PrePrint Repository

Resonance Properties of Optical All-Dielectric Metamaterials Using
Two-Dimensional Multipole Expansion

Efthymios Kallos and Ioannis Chremmos and Vassilios Yannopapas

Original Citation:

Kallos, Efthymios and Chremmos, Ioannis and Yannopapas, Vassilios

(2012)

Resonance Properties of Optical All-Dielectric Metamaterials Using Two-Dimensional Multipole
Expansion.

Physical Review B, American Physical Society, 86 (245108).

ISSN 1098-0121

This version is available at: http://preprints.acmac.uoc.gr/158/
Available in ACMAC’s PrePrint Repository: December 2012

ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

http://preprints.acmac.uoc.gr/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ACMAC

https://core.ac.uk/display/10853802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preprints.acmac.uoc.gr/158/
http://preprints.acmac.uoc.gr/


Resonance Properties of Optical All-Dielectric Metamaterials Using Two-
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We examine the electromagnetic response of metamaterial unit elements consisting of dielectric rods 

embedded in a non-magnetic background medium. We establish a theoretical framework where the 

response is described through the electric and magnetic multipole moments that are simultaneously 

generated via the polarization currents that are excited upon the incidence of plane waves. The 

corresponding dipole and quadrupole polarizabilities are then calculated as a function of the Mie 

scattering coefficients, and their resonances are mapped for the case of dielectric cylindrical rods as a 

function of the geometry and the material parameters utilized. The results provide critical insight on the 

anisotropic response of two-dimensional rod-type metamaterials and can be used as a unified 

methodology in the calculation of exotic effective electromagnetic parameters involved in phenomena 

such as optical magnetism. 

 

PACS numbers: 42.25.Fx, 78.67.Pt, 78.67.Qa 

I. INTRODUCTION 

The scaling of metamaterials down to optical and visible frequencies is currently one of the most 

exciting efforts in the field of artificial materials,
1, 2

 allowing the realization of structures with exotic 

electromagnetic properties which are unachievable using conventional materials. Potential applications in 

this new frontier of science include subwavelength imaging,
3
 cloaking,

4-6
 biosensing,

7
 and solar power 

harvesting
8-10

. However, the miniaturization process towards this frequency regime has not been 

straightforward as the metamaterials designed for microwave frequencies cannot be simply scaled down 

to operate at optical frequencies without significant losses arising, especially when artificial magnetism is 

considered. One of the main causes of this situation is the fact that while negative permittivity can be 

readily available in the optical range using plasmonic materials,
11

 natural optical magnetism disappears at 

high frequencies
12

 and artificially generated conduction currents cannot extend beyond THz frequencies
13

. 

Furthermore, the inclusion of metallic components in optical metamaterials is usually associated with 

unwanted losses and saturation effects inherent to metals
14

. 



In order to overcome these issues, the idea of constructing periodic composite media only from 

non-metallic, dielectric components is being actively explored
15-17

. Similar to metallic metamaterials, the 

goal is to resonantly generate exotic permittivity and permeability properties in a tunable fashion over a 

certain frequency range. Unlike metallic metamaterials, the physical mechanism involved here is the 

resonant excitation of fields via the polarization currents of the bound electrons in the dielectric materials 

that flow under external illumination. Once these polarization currents are excited they can be considered 

as a source, giving rise to corresponding local fields, which in turn determine the macroscopic artificial 

electromagnetic properties of the material. Exotic effective permittivity and permeability values are 

expected around the frequency regions where the dielectric unit elements under illumination naturally 

resonate. For a given incident illumination, these regions depend on the shape, size, and permittivity of 

the dielectric resonator, as well as on the periodic pattern of the composite structure. 

This mechanism has been experimentally examined in the literature mostly at microwave 

frequencies (6 – 10 GHz), where left-handed structures have been fabricated
18-21

 using high-ε materials 

such as barium strontium titanate (BST, with relative permittivity ε~600). Negative permeability has also 

been demonstrated by Ginn et al. in the mid-infrared (43 THz) fabricating a square lattice of Tellurium 

(ε~25) cubes
22

, while Limberopoulos et al. fabricated an isotropic negative index metamaterial in the 

visible range (632 nm) using silicon carbide (ε~7) spheres embedded in a magnesium diboride (MgB2) 

plasmonic host
23

. In other numerical analyses aimed at left-handed behavior at optical frequencies, 

negative permeability is typically achieved using one type of dielectric spheres, while negative 

permittivity is simultaneously achieved using a second type of spheres,
24, 25

 coated spheres,
26

 and/or a 

plasmonic
27, 28

 or polaritonic
29

 material such as MgB2 or LiTaO3. 

In this paper, instead of focusing on isotropic dielectric metamaterials, we are interested in 

metamaterials consisting of dielectric rods which could have, as an example, square or circular cross 

sections. These structures extend much longer along one spatial dimension, and can be effectively treated 

as two dimensional. While the isotropy provided by several 3D metamaterials is desirable for certain 

applications, such 2D structures have inherently anisotropic properties which can be in principle tuned 

independently, thus realizing the primary purpose of metamaterials, which is to provide artificial 

electromagnetic properties along different directions in space. For example, many of the exciting devices 

envisioned through transformation optics require anisotropic material parameters,
30

 which are not easy to 

obtain using inherently isotropic structures such as spheres, especially in the optical regime. 

Research on rod-type dielectric metamaterials has also been investigated in the literature. O’Brien 

and Pendry in 2002 first suggested the possibility of generating negative permeability at 4 GHz using a 

square lattice of BST cylinders
31

. Peng et al. in 2007 then experimentally showed negative index behavior 

at 6.8 GHz using random arrays of square rods,
18

 which seems to be the only conclusive demonstration of 



left-handedness using dielectric rods at any frequency. A few theoretical designs aimed at harnessing 

magnetic resonances in dielectric rod metamaterials have emerged since, including concepts at GHz 

frequencies using BST
32, 33

 or ferrites,
34

 at 25 THz using silicon carbide
35

, and at visible frequencies 

assuming hybrid silver-semiconductor rods
36

. Most notably, Vynck et al. theoretically showed in 2009 

that the magnetic resonances could occur down to optical wavelengths (1.55 μm) using lattices of silicon 

(ε~12) rods,
37

 by expanding the fields into a series of multipole excitations. Other materials with high 

permittivity values in the visible range that could be utilized are Germanium, aluminum arsenide and 

aluminum antimonide. 

It was recently demonstrated experimentally by Evlyukhin et al. that silicon structures do indeed 

support such multipole resonances at visible frequencies, at least for the case of spherical nanoparticles
38

. 

This implies that, by controlling the multipole resonances in high-ε dielectric rods, effective medium 

metamaterials could be available in the very near future for the visible regime. The successful fabrication 

of polaritonic rod arrays for THz frequencies
39

 provides positive evidence in that direction as well. 

However, a universal theoretical modeling of such rod-type dielectric resonators is not available in the 

literature, especially when the multipole approach is considered. This is the goal of this paper. 

The idea behind the multipole expansion is the following: when an electromagnetic wave is 

incident upon a dielectric particle and therefore polarization currents are excited inside its volume, the 

currents and the particle can be replaced by multipoles of various orders (dipole, quadrupole, etc.) that act 

as equivalent point sources for the scattered fields (in the case of long rods, multipoles per unit length are 

considered). In this paper we establish a theoretical framework that explores this idea for non-magnetic 

rods, such as cylinders made from dielectric, plasmonic, or conductive materials. The great advantage of 

this multipole approach is that its results can be directly fed into effective medium models that predict the 

electromagnetic parameters of composite media
40, 41

, since such models typically utilize the electric and 

magnetic polarizabilities of the array unit elements.  

The multipole expansion in two dimensions is quite different and, in fact, more complicated 

compared to the usual three dimensional expansion readily available
42-44

, due to the anisotropic nature of 

the rod geometry. Our framework utilizes the 2D Green’s function, is valid for both polarizations and 

includes multipole excitations up to the electric quadrupole term. In addition to the field expressions 

everywhere in space, we also derive the electric and magnetic polarizabilities of 2D rods for all axes as a 

function of the Mie scattering coefficients. Furthermore, we also identify the locations of the 

polarizability resonances for the case of cylindrical rods as a function of the rod’s normalized radius, their 

permittivity, and the host material (which can be a plasmonic material). The resonant behavior under the 

quasistatic and static approximation is also examined. The results provide a fresh, rigorous framework in 

describing dielectric metamaterials, which is particularly useful when calculating their electromagnetic 



response. Note that for the sake of clarity we only examine resonances arising from single rods in this 

work; the effect of considering the rods in arrays will be explored in a subsequent publication. 

II. ELEMENTS OF 2D MULTIPOLE THEORY 

In this section we describe the main principles of multipole theory, and highlight the differences 

between the 2D and the 3D treatment. The 2D scenario assuming a cylindrical coordinate system implies 

that 0z    for all quantities involved. We start by assuming an electric current distribution  J r  in a 

region of space described through the position vector r  which acts as a source for the excited fields 

 E r and  H r  everywhere in space, described through the position vector r . See Figure 1 for a 

schematic of the system for the case of a dielectric cylindrical rod. In this case J  is the polarization 

current, which vanishes outside the cylinder. A harmonic time dependence j te   is assumed. 

 

 

Figure 1: Schematic setup of the dielectric rod system under examination. The cylinder has a radius cr  and 

relative permittivity c , embedded in a background medium with relative permittivity b . The system is 

illuminated by perpendicularly incident TE and TM plane waves, exciting polarization currents along the rod. 

r  spans the volume of the rod where the polarization source currents are nonzero, while r  denotes an 

observation point.  

 



In the multipole theory, the excited fields are expanded as a summation series of multipole moments, i.e. 

integrals of quantities that have the form nJ r , where n  is a positive integer. For example, the first 

moments (per unit length) that occur for 0,1n   are the electric dipole moment p , the magnetic dipole 

moment m , and the electric quadrupole moment Q , defined as 

 

 

 
1

2

S

S

S

j
p J r dS

m r J r dS

j
Q J r r J dS





 

   

       







, (1) 

where a b ab   is the dyadic product of two vectors. The integration takes place on the 2D surface 

where the current is non-zero. Then the generated fields can be approximately written as
45
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, (2) 

where , ,b b bk c Z  are the wavevector, speed of light, and wave impedance in the background medium, 

respectively, n̂
r


 


 ( n̂  is a cylindrical unit vector along the radial direction), and the dependence on r  

has been suppressed for brevity. :A B  defines the double-dot product of the dyadics A  and B . 

Expression (2) is valid for both 2D and 3D scenarios, with the difference that in 2D the scalar cylindrical 

Green’s function is utilized:    1

0
4

b

j
G H k r , where (1)

0H  is the Hankel function of the first kind and order 

zero. Note that these moments are derived by expanding the Green’s function  G r r  around r , and so 

higher order moments are ignored since in general they become increasingly weaker as long as 1bk r . 

The detailed procedure for obtaining this multipole field description is outlined in the Appendix. 

There are three main reasons why this type of description for the fields using multipole moments 

is advantageous, especially for metamaterials. First, the fields depend linearly on the moments without 

involving complicated integrals or geometric and material characteristics of the metamaterial unit element 

– all this information is replaced by the point-like definition of the moments, offering a useful layer of 

abstraction in the description. The moments can be assumed known, extracted either via analytical 

methods (for example for cylinders) or via numerical simulations. Second, many homogenization 

effective medium theories such as the Maxwell-Garnett
40

 or other nonlocal approaches
41

 directly utilize 

the dipole polarizabilities of the unit elements in their description as well. These are directly related to 

dipole moments and we would like our formalism to be consistent with these methodologies. Finally, 



there is a crucial physical link between the multipole moments and the well-known Mie scattering 

coefficients,
46

 at least for the case of cylindrical rods: multipole terms of a given order n  have 

approximately the same dependence on distance as the Mie coefficients do,  ~
n

cr r , 
cr  being the 

cylinder diameter
47

. Thus, from a physics perspective, we would expect to express the unknown multipole 

moments as a function of the Mie coefficients of a unit element. 

The main difference between the 2D and the 3D multipole expansion method lies in the 

description of the electric quadrupole moment defined in Eq. (1). Written explicitly, and since 0z   , 

we get 
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where the indices specify the vector component along a particular spatial direction. We observe that in 

this 2D case the longitudinal current along the z-direction, 
zJ , decouples from the transverse currents 

xJ  

and 
yJ . As a result only four nonzero electric quadrupole terms appear, while the other terms degenerate 

into magnetic dipole moments 
xm and 

ym . Thus, depending on what currents are excited, the behavior of 

the system is significantly different. If the unit element is excited by a TM wave ( ˆE z ), 
zJ  currents only 

will be generated and the electric quadrupole terms in Eq. (3) vanish. On the other hand, if the excitation 

is a TE wave ( ˆE z ), transverse currents will be excited and only the four pure quadrupole terms in Eq. 

(3) are nonzero. In this case, and since the current flows normal to the surface of the rod, the quadrupole 

moments are second-order moments of both the volume and the surface polarization charges that 

developed in the cylinder (see the Appendix for details). It should be noted that the degenerate magnetic 

dipole terms ,x ym m  that appear in the quadrupole matrix in Eq. (3) contribute to the fields (Eq. (2)) in 

addition to the pure magnetic dipole terms. 

Keeping these considerations in mind, after some algebraic manipulations Eq. (2) can be 

rewritten in cylindrical coordinates as follows for TM and TE waves everywhere in space: 
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. (4) 

Here the primes denote derivatives with respect to the argument 
bk r  when applied to the Green’s 

function, while 2 2cos sin2 sinnn xx xy yyQ Q Q Q     , 2 2sin sin 2 cosxx xy yyQ Q Q Q      , and 

 
1

cos2 sin 2
2

n xy yy xxQ Q Q Q     . Note that 
nnQ  and 

nQ   are also the components of the vector ˆQ n  

along the n̂  and ̂  directions, respectively. We also define that cos sinn x yp p p    and 

cos siny xp p p    , and similarly for ,nm m . Note that the quantities , , ,n np p m m   are the projections 

of the moments along the corresponding directions, and should not be confused with radial and azimuthal 

components since the dipoles ,p m  are located at the origin of the axes. 

Some physical insight can be gained for the above field expressions if they are written in their 

approximate forms for the far and near fields. In the far field ( 1bk r ), the total fields become 
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   being the far-field approximation of the Green’s function. The fields behave 

as typical TEM radiation fields in this case, satisfying ˆ
bH n E Z  . The factor of 2 that appears in 

front of the magnetic moment m  originates from the quadrupole moment degeneration in the TM case 

described earlier in this section. In the near field ( 1bk r ), the total fields become (retaining only the 

strongest terms) 
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There are two ways how Eqs. (4)-(6) can be utilized. One can start with an electric current 

distribution J , calculate the multipole moments using Eq. (1), and then evaluate the fields from Eqs. (4)-

(6). Alternatively, a single multipole moment can be considered as a source and be inserted directly into 

Eqs. (4)-(6) for the evaluation of the fields. For example, two parallel, z-oriented uniformly and opposite 

charged lines separated by a small distance are equivalent to an electric dipole moment per unit length, 

such as ˆ
xp xp . When plugged into Eq. (6), the static electric field of this system is correctly obtained. 

Figure 2 presents a graphical representation of the multipole fields excited for an incident 

monochromatic TM wave (with free space wavelength 
0 632nm  ) propagating along the x (horizontal) 

direction onto a dielectric silicon cylinder ( 18c  ) of radius 158cr nm embedded in free space. Figure 2 

shows the electric field amplitude in space for the two higher multipole orders (Figure 2 (a) & (b)), as 

predicted by Eq.(4), in addition to the total electric field for these two orders (Figure 2 (c)). This is a case 

where both dipole moments generate relatively strong fields. Note that the multipoles replace the cylinder, 

and act as point sources located at the center of the cylinder. As a visual aid, the outline of the cylinder is 

also drawn in the figure.  

In order to test the validity of our approach, we also compare the total fields as extracted from the 

dipole moments (Eq. (4) and Figure 2 (c)) to the total field outside the cylinder as predicted from the 

rigorous Mie scattering theory 
46

, including all scattering orders. This result is presented in Figure 2 (d) 

and shows that despite some subtle differences near the cylinder surface, the fields are overall described 

very well by the multipole approximation treatment. This indicates that a metamaterial scatterer could be 

replaced by the much easier to handle multipole point sources, without sacrificing significant accuracy in 

the field description. 

 



 

Figure 2: The excited magnetic field amplitude distribution 
zE  for the first two multipole orders under 

monochromatic plane wave excitation at 632 nm. A dielectric cylinder with 158cr nm  and 18c   

embedded in free space is assumed. The multipoles act as sources, replacing the cylinder’s scattered fields. As 

a comparison, the cylinder’s perimeter is noted by the thin black line. The fields in all panels are normalized 

to the same value. The horizontal (x) and vertical (y) axes represent position in nm. (c): The total field 

produced by the multipole moments. (d): The scattered fields outside the cylinder as predicted from Mie 

scattering theory. Note that in (d) the fields inside the cylinder are not shown for fair comparison with the 

multipole treatment which only relates to scattered fields. 

 

III. MULTIPOLE POLARIZABILITIES FOR DIELECTRIC CYLINDERS 

In this section we focus on the case of a dielectric cylindrical rod illuminated by TM & TE waves, 

and calculate the electric, magnetic, and quadrupole polarizabilities for these structures. The 

polarizabilities are written as a function of the known cylindrical Mie scattering coefficients, and are also 

evaluated under the quasistatic and static approximations. 

The cylinder is assumed to have a relative permittivity c  and radius cr , while the background 

material is also assumed to be non-magnetic with relative permittivity b . We assume perpendicularly 

incident plane wave monochromatic excitations of the form ˆ /bjk xi

TME ze V m


  for TM waves and 

ˆ /bik xi

TE bE yZ e V m


   for TE waves, as shown in Figure 1. These incident fields will polarize the 

molecules of the dielectric material, generating a polarization density P . This in turn will excite 

longitudinal polarization currents zJ  in the TM case and ,x yJ J  in the TE case. In order to link the Mie 

coefficients with the multipole moments, we follow the approach suggested in 
37

 and match the far field 

expression retrieved using the multipole expansion (Eq. (5)) with the well-known far field expressions for 

scattering from a dielectric cylinder that involves the Mie coefficients,
46

 which are 
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. (7) 

The a  and b  Mie coefficients are assumed to be known, and encompass all the information of the 

scatterer, such as its radius cr , its permittivity c , as well as the permittivity b  of the background 



medium. The implicit hypothesis here is that the polarizabilities that correctly predict the far fields will 

also correctly describe the fields anywhere else in space. Note also that (7) has an even dependence on  , 

which applies to scatterers symmetric with respect to the x-axis. 

We now directly compare Eqs. (5) and (7), noting that the terms 
xm , 

xp , 
xxQ  and 

yyQ  vanish 

because the symmetry of the structure and the excitation impose that the polarization current components 

are even functions of the space coordinate y . The excited moments in terms of the Mie coefficients 

become 
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In this 2D system the units of the electric dipole, magnetic dipole, and electric quadrupole moments are 

Cb , A m , and Cb m , respectively. The electric dipole polarizability e is then defined through the 

equation 
0

e i

bp E    , the magnetic dipole polarizability m  through m im H  , and the electric 

quadrupole polarizability q  through 
0

q i

bQ E    , with 
0  the free space permittivity and 

b  the 

relative permittivity of the background medium. The nonzero elements of the dipole polarizability tensors 

are as follows: 
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Here ck  is the wavevector inside the cylinder, while      1 1 1g x J x xJ x . 

In addition to the relation between the polarizabilities and the Mie coefficients, two levels of 

approximation are presented in Eq. (9). The first is that the wavelength inside the background medium is 

much larger compared to the cylinder diameter, or 1b ck r  (quasistatic limit). This condition is usually 

required in metamaterials in order for the incident light to perceive the structure as a continuous medium, 

where effective material parameters can be assigned. If, in addition to 1b ck r , we also impose 1c ck r

(static limit), then the wavelength inside the cylinders as well is also much larger than their radius. In that 

case the well-known static electric polarizabilities of dielectric cylinders are retrieved, while any magnetic 



response of the cylinders disappears. The plasmonic resonance condition for cylinders, 
c b   , is also 

retrieved for the static case of the electric polarizability. 

Already at this stage it can be seen that if negative permeability is to be achieved with a dielectric 

metamaterial, the condition 1c ck r  must not be allowed, implying that high-permittivity materials must 

be utilized. As an example, Figure 3 shows the electric and magnetic polarizabilities of a silicon cylinder 

at optical frequencies ( 18c  ) embedded in free space, normalized to the cylinder’s cross sectional area 

2

cr , as a function of its radius normalized to the free space wavelength 
0 , for the approximations 

discussed above. 

 

 

Figure 3: Longitudinal ( zza ) and transverse ( xx yya a ) electric (a) and magnetic (b) polarizabilities as a 

function of the normalized radius for a cylindrical rod made from silicon ( 18c  ) embedded in free space. 

The polarizabilities are normalized to the rod’s cross sectional area 
2

cr , and are also shown under the QS-

quasistatic ( 1b ck r ) and static ( 1c ck r ) approximations. Note that no magnetic response occurs in the 

static limit. A perpendicularly incident plane wave propagating along the y-axis is assumed, as shown in 

Figure 1. 

 

Figure 3 is representative of polarizability resonances, indicating their width and strength for high-ε 

dielectric metamaterials. It is important to note here that unless one operates in the static limit, a single 

incident wave will simultaneously excite both electric and magnetic resonances, generating both electric 

and magnetic responses from the material. This is extremely important to consider in the design of 
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composite media: when attempting to excite artificial magnetism, for example, some electric effects will 

be inevitably excited as well, unless a properly designed element is used
48

. This is why it is of great 

interest to be able to predict the locations of the resonances for the various material parameters, because 

the most unusual artificial electromagnetic properties will occur around these resonances. This is the goal 

of the next section. 

IV. MAPING THE POLARIZABILITY RESONANCES FOR DIELECTRIC CYLINDERS 

In this section we examine the locations of the electric and magnetic polarizability resonances for 

high-ε dielectric cylinders as a function of the cylinder’s radius, its permittivity, as well as the background 

permittivity. 

From Eq. (9), the analytical expressions that describe the conditions for a polarizability resonance 

can be directly derived, for each level of approximation: 
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 (10) 

It is observed that in the static limit (rightmost formulas), as expected, only the transverse plasmonic 

polarizability resonance can be achieved, while in the quasistatic limit transcendental equations need to be 

numerically solved. 

The simplest example is the case of the resonance for the magnetic polarizability m

xx , where the 

approximate equation      1 1 1 1c c c c c c c cg k r J k r k r J k r    predicts that the first magnetic resonance will 

appear at a free space wavelength 0 12 c cr p   , where 1 2.405p  is the first zero of the Bessel 

function of zeroth order. As an example, for silicon ( 18c ) nanorods with 50 nm radius embedded in 

free space, this resonance will appear around 0 555nm . This type of resonance has been identified 

experimentally for mid-infrared frequencies using a lattice of silicon carbide nanorods
35

. The same 

equation also indicates that increased cylinder permittivity lowers the frequency of the resonance. 

The dependence of the resonances on the cylinder’s relative permittivity is first examined, by 

numerically solving Eq. (10) for the full case (no approximations). The permittivity is varied between 5 

and 30, while assuming a free space background medium. The locations of the first (lowest frequency) 

electric and magnetic dipole polarizability resonances as a function of the cylinder radius normalized to 

the free space wavelength, 0cr  , are presented in Figure 4. Higher order resonances may be available as 



well (as the value of 
0cr   is increased), however they are usually weaker and thus only the lowest one is 

examined here. 

 

 

Figure 4: The locations of the electric and magnetic polarizability resonances as a function of a cylindrical 

rod’s relative permittivity embedded in free space. The full description (a) and the quasistatic approximation 

(b) yield very similar results. The magnetic resonances are isotropic, occurring at the same frequency for 

both the longitudinal (
m

zz ) and transverse (
m

xxa ) magnetic polarizabilities, while the electric resonances 

simultaneously occur on either side of the magnetic one. 

 

It is observed that the locations of the polarizability resonances follow the same qualitative trends. 

In accordance with the analytically tractable case for the transverse magnetic polarizability m

xx  that was 

examined earlier, the resonant frequency is shifted lower for all polarizabilities as c  is increased. In 

addition, the mathematical property that 0 1b   is reflected by the overlap of the m

xx  and m

zz  curves. It is 

also worth noting that a single field excitation (TE or TM) will always simultaneously generate both 

electric and magnetic types of resonances, with different strengths and at different frequencies. For a 

given geometry, the magnetic resonances for TE and TM waves always appear at the same frequency, 

while the electric resonance can be placed either above or below the magnetic one, depending on the 

polarization. 

Next, we study the locations of the polarizability resonances as a function of the non-magnetic 

background medium and its relative permittivity b . The shape of the excited resonance on the dielectric 

cylinder is highly dependent on the value of b . We divide the behavior into three categories. First, there 

is the case where the background is a plasmonic medium ( 0b  ). Second, there is the case where a high 

contrast ratio is maintained between the permittivity of the cylinder and that of the background 
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( 0 b c  ). Finally, there is the case where this contrast ratio is low. Figure 5 shows the electric and 

magnetic longitudinal polarizability values 
e

zza  and 
m

zza  normalized to the cylinder cross sectional area as 

a function of its normalized radius, for three different background media with 1b   , 1b  , and 

3.5b  . As before, the cylinder is assumed to be made of silicon with 18c  . 

 

Figure 5: The electric (a) and magnetic (b) transverse polarizability responses normalized to the rod’s cross 

sectional area as a function of the normalized radius for a silicon ( 18c  ) cylinder embedded in three 

different background media with 1b   (dotted-dashed line), 3.5b   (dotted line) and 1b    (solid line), 

respectively. Qualitatively similar responses appear for the longitudinal polarizabilities as well.  

 

The resonant features of the dipole polarizabilities presented in Figure 5 follow similar patterns. 

For cylinders embedded in free space, 4.2c b   and there exist clearly distinct resonances (dotted-

dashed lines). When the index contrast is lowered to 2.3c b  , the resonances broaden and weaken, 
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while not significantly shifting in frequency (dotted lines). When a plasmonic material is assumed as a 

background, the resonances become very sharp and strong for both polarizabilities. This strongly 

indicates the presence of a negative permeability band around these locations. This phenomenon is 

extremely encouraging as a strong negative permittivity and permeability response can be extracted from 

dielectric rods surrounded by a plasmonic medium. It should also be noted that the sharp dips that appear 

in the polarizability plots correspond to well-known “cloaking” schemes where minimum excitation is 

observed from the metamaterial 
6
. 

To complete the picture of the dependence of the resonances on the background medium, the 

locations of the first (lowest frequency) electric and magnetic polarizability resonances as b  is varied are 

shown in Figure 6. It is observed that the locations of the resonances are relatively insensitive to the 

background medium permittivity. This is advantageous in attempting to identify the resonances 

experimentally, while the tuning of the frequency of interest can be achieved by controlling the size of the 

metamaterial unit element. 

 

Figure 6: The locations of the lowest frequency electric and magnetic polarizability resonances for silicon 

cylindrical rods as a function of the relative permittivity of the background medium. 

 

V. CONCLUSIONS 

In this work we theoretically studied the resonating properties of two-dimensional optical 

metamaterial elements made from all-dielectric materials. The purpose of this study was to identify the 

behavior of the magnetic and electric polarizability resonances, since the desired unusual responses of 

metamaterials such as optical magnetism are expected to occur in the neighborhood of these resonances. 

A novel analytical framework was developed based on a two-dimensional multipole expansion that 
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describes the electric and magnetic fields generated via the polarization currents when a 2D element is 

excited by both TE and TM plane waves propagating perpendicularly to the element’s axis. The 

polarizabilities where then derived for the case of dielectric cylinders as a function of the cylindrical Mie 

coefficients, and the proper approximate forms under the quasistatic and static approximations were also 

presented. 

Finally, it should be pointed out that all-dielectric materials typically give rise simultaneously to 

relatively broad electric and magnetic resonances. When plasmonic materials are utilized, the resonant 

lineshapes are narrower and the mode interference produces  non-Lorentzian Fano-type resonances
49
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VI. APPENDIX 

In this Appendix we detail the analytical steps for deriving the multipole scattering formulation 

for a cylindrical dielectric object with infinite extent along its axis and arbitrary cross-section. We begin 

with Maxwell’s equations satisfied by the electromagnetic field everywhere in space including the 

dielectric interior 

0 0, ,bE j H H J j E        A1 

where 0( ) ( ) ( )J r j r E r     is the polarization current and ( ) ( ) br r    

 

is the relative 

permittivity contrast of an arbitrary point in space relative to the background medium. For a homogeneous 

material, c b      inside the scatterer and zero outside, a discontinuity that has important 

implications discussed in the following. In the 2D scenario where the cylinder axis is in the z direction, 

the gradient operator becomes ˆ ˆ/ / .x x y y       Moreover, as a corollary of the invariance along z, 

the electromagnetic fields decouple into two independent states of polarizations, namely the transverse 

magnetic TM and transverse electric TE, with components , ,z x yE H H
 
 and , , ,z x yH E E

 
respectively. 

Each stated is excited by illuminating the cylinder with a plane EM wave with the corresponding 

polarization and then the total field can be expressed as the sum of the scattered and incident waves, the 

latter being the solution in the limit of a transparent scatterer. To obtain the multipole formulation, the 

field is first written in terms of the vector and scalar potentials produced by the current distribution J  



1
0, ,E j A H A       A2 

which, under the Lorentz assumption 
0 0 ,A j    satisfy the independently solvable wave 

equations  

   2 2 2 2
0 0 0

0

, ,
b

k A J k



 

          A3 

where 0 b E   

 

is the polarization charge density in Cb/m
3
. The latter is connected to the gradient 

of the polarization current through the continuity equation /J j  . The solutions to Eqs. A3 are 

readily obtained as radiation integrals 

     

         

0

0

,

1

b

A r G r r J r dS

r G r r r dS G r r r d



  
 

   

         
 



 
 A4 

where    1

0( ) | |
4

b

j
G r r H k r r   

 
is Green’s function in two dimensions for a j te 

 
time dependence 

and the dS
 
integration takes place over the cross-section of the dielectric rod. Attention should be paid to 

the second term in the expression of the scalar potential which is a line integral of the surface charge 

density σ in Cb/m
2

 
over the boundary of the cylinder. The surface density arises in the case of TE 

polarized fields from the discontinuity of the normal component of the polarization current at the 

dielectric interface, and is expressed as ˆ / ,J s j   
 
where ŝ

 
is the outward unit normal to the 

interface. In case of TM fields, the current is directed along the z axis and is independent of z hence there 

is no accumulation of volume or surface charge ( 0, 0).    Therefore in the TM case the scalar 

potential vanishes ( 0)   
while the vector potential has a single z component ˆ( ).zA zA  

The multipole expansion of the fields is obtained by Taylor-expanding Green’s function with 

respect to the point of integration inside the scatterer 

         
21

...
2

G r r G r r G r r G r          A5 

Each term in this series gives rise to a particular moment. For | | 1bk r ,
 
the contribution of the higher-

order terms becomes increasingly weak allowing a fair approximation of the solution with a finite number 

of terms. Focusing on the first three terms, the scalar potential from Eq. A4 is approximated in the TE 

case as 

0 0 0

: ,
2

TE
b b b

q p Q
G G G

     
       A6 

where the dependence of 
 
and G  

on r
 
has been omitted for brevity. Here 



   

   

   

,

,

q r dS r d

p r r dS r r d

Q r r r dS r r r d

 

 

 

    

      

          

 

 

 

 A7 

are the total volume and surface electric charge, dipole and quadrupole moments, respectively, and   

denotes the dyadic product between two vectors. It should be kept in mind that, in 2D, the charge and 

moment units are normalized per unit length, i.e. q  is in Cb/m, p  in Cb and Q  in Cb·m. Note also that 

the operator 2( )r 
 
in Eq. A6 has been replaced by the dyadic double-dot product : .r r    The 

monopole term can be shown to be zero as expected for a neutral object. Indeed, by the divergence 

theorem: ˆ 0.j q JdS J sd          In addition, the dipole and quadrupole moments can be related 

to the polarization current by making use of the identities 

   

     

ˆ ,

ˆ

J r dS J s r d JdS

J r r dS J s r r d J r r J dS

         

                  

  

  
 A8 

where 
 
means that the operator acts on the primed coordinates , .x y   The first of the Eqs. A8 can be 

proved by integrating the identity ˆ( ) ( )J x Jx J x         
 
over the cylinder’s cross-section and by 

applying the divergence theorem for the first term in the right-hand side and similarly for the y 

component. The second dyadic identity is shown in a similar way for any of the components of the 

dyadic. For example, for the xy component one integrates the identity 

ˆ ˆ( ) ( ) [( ) ( ) ]J x y Jx y J x y J y x                 and so on. Dividing Eqs. A8 by j
 
and recalling the 

continuity equations and the definitions A7, it is straightforward to obtain the first and third of Eqs. 1, 

which are here repeated for convenience 

 ,
j j

p JdS Q J r r J dS
 

          A9 

Expanding the quadrupole dyadic into its components we readily obtain the 2×2 leading principal 

submatrix of matrix Q  
in Eq. 3.  From Eqs. A7 and A9 it follows that the dipole and quadrupole 

moments of the polarization charge are equivalent to zero- and first-order order moments of the 

polarization current, respectively. 

We now turn to Eq. A4 and the vector potential. Using again the Taylor expansion A5 we 

obtain 

     0 0 ,A J r dS G J r r dS G          A10 



which is valid for both TE and TM fields. Note that we have now kept only the first two terms of the 

Taylor series, in order to obtain the same degree of approximation with the scalar potential, i.e. up to the a 

first-order moment of .J  The first integral in the right-hand side of Eq. A10 is readily recognized from 

Eq. A9 as the electric dipole moment. For the second integral we decompose the dyadic as 

   
1 1

2 2
J r J r r J J r r J              A11 

The first symmetric dyadic is recognized from Eq. A9 as the quadrupole moment. The second 

antisymmetric dyadic can be cast into a simpler form by noting that for any vector b
 
 

       J r r J b r b J J b r r J b                A12 

Using the above Eq. A10 is brought into its final form 

0
0 0

2

j
A j pG Q G m G


       A13 

where 
1

2
m r JdS    is the magnetic dipole moment associated with the polarization current. Although 

Eq. A13 is a general one, it is useful to emphasize that, in the case of TM fields, the term depending on  

Q
 
does not physically represent an electric quadrupole moment because a z-directed and z-invariant 

current does not produce volume or surface charge densities. In fact the contribution of the “quadrupole” 

term is equal to that of magnetic dipole or the quadrupole moment degenerates to magnetic dipole 

moment as mentioned previously and the vector potential reduces to 

 0 02TMA j pG m G     A14 

The factor 2 has also been spotted in Eqs. 5. 

Substituting the approximations of the potentials from Eqs. A6 and A13 into Eqs. A2 we 

obtain the multipole expansion of the EM fields of Eq. 2, which are generally valid for both 

polarizations. In the TM case however the use of the reduced expressions 

   

2

2

/ 2

2

TM b b b b

TM b b b

E Z k c pG jk G m

H jk G pc k mG m G

   

         

 A15 

may be more convenient and intuitive. The polar expression of Eqs. 2 are straightforward to obtain and 

have been given in Eq. 4. For the sake of completeness we here quote the corresponding Cartesian 

forms of the transverse fields TEE
 
and TMH . For the magnetic fields, we have 
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where the primes denote the derivatives of    1

0( )
4

b

j
G r H k r

 
with respect to 

bk r . Finally, for the electric 

fields we have
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