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A method is proposed for generating Bessel-like optical beams with arbitrary trajectories in free space. The method involves
phase-modulating an optical wavefront so that conical bundles of rays are formed whose apexes write a continuous focal curve
with prespecified shape. These ray cones have circular baseson the input plane, thus their interference results in a Bessel-like
transverse field profile that propagates along the specified trajectory with a remarkably invariant main lobe. Such beamscan
be useful as hybrids between nonaccelerating and accelerating optical waves that share diffraction-resisting and self-healing
properties.

Nondiffracting optical beams play an important role in con-
temporary optics. Two major classes of such beams can
be distinguished: nonaccelerating and accelerating. The first
class refers to waves whose transverse profile and propaga-
tion direction remain invariant. Perhaps the most renowned
examples are Bessel beams, which came to light in 1987 [1]
and have found numerous applications in micromanipulation,
atom and nonlinear optics [2]. Mathieu [3] and parabolic
beams [4] are other characteristic counterparts with explic-
itly known angular spectrums. This class also includes waves
that remain invariant in a frame rotating around the propa-
gation axis [5]. The second class is represented by recently
discovered nondiffracting beams with the peculiar property
to self-accelerate along a parabola. These waves emerged
in 2007 with the introduction of Airy beams [6], a concept
stimulated by quantum mechanics [7]. Parabolic accelerating
beams [8] are another characteristic example. These beams
(mostly Airy) have also found several applications for light
trajectory control and navigation around objects, microma-
nipulation, surface plasmon routing and curved plasma fila-
ments and autofocusing (see [9] for a recent review).

Although the two wave families have evolved rather inde-
pendently, yet it would be interesting to combine their fea-
tures toward the design of new wave entities. A possibil-
ity would be to design beams with the symmetry and resis-
tance to diffraction of Bessel beams that are also capable of
self-acceleration. Moreover, it would be desirable to control
the beam trajectory beyond the parabolic law. Although not
strictly nondiffracting, such beams could be useful as hybrids
between the two classes in applications such as microfabri-
cation and optical tweezers. Interestingly, few recent works
point toward this direction by proposing techniques to cre-
ate Bessel-like beams withspiraling and snaking trajecto-
ries [10–13].

In this Letter we propose a method for generating Bessel-
like beams with arbitrary trajectories. Specifically, we con-
sider the general problem of finding the phase of an input
wavefront that directs rays to create an arbitrary focal curve.
Any point on this curve is the apex of a conical ray bundle
emanating from a circle on the input plane and interfering
to create a Bessel-like field pattern that propagates along the

specified path. The beam shows resistance to diffraction keep-
ing its main lobe remarkably invariant.

We consider the paraxial Fresnel integral

u(X,Y, Z) =

∫∫

u(x, y, 0)

2πiZ
ei

(X−x)2+(Y −y)2

2Z dxdy (1)

where u(x, y, 0) = A(x, y)exp[iQ(x, y)] is the phase-
modulated input wavefront with the transverse and longitu-
dinal coordinates being scaled byl andkl2, respectively,k
being the wavenumber, andl is arbitrary. Our goal is to de-
termineQ so that a focal curve is created that is paramet-
rically expressed as(f (Z) , g (Z) , Z), wheref, g are given
functions. Any pointF (Z) of that curve must be the intersec-
tion of a conical ray bundle. Equivalently, from a stationary
phase approach to Eq. (1), the first partials ofQ must sat-
isfy Qx = (f − x)/Z, Qy = (g − y)/Z, where(x, y, 0) is
the starting point of any ray in that bundle. The continuum
of points(x, y, 0) defines a geometric locusC(Z) onZ = 0
which can be viewed as the isocurve of a functionZ(x, y).
Now note that, ifQ is to be twice continuously differen-
tiable, its mixed partials should be equal, i.e.Qxy = Qyx,
yielding (x − xc)Zy = (y − yc)Zx, wherexc = f − Zf ′,
yc = g−Zg′ (′ denotesd/dZ). Therefore, along an isocurve,
∇Z is collinear to vector(x− xc, y − yc), which means that
C(Z) is a circle with center(xc, yc, 0) and radiusR(Z) that
is arbitrary for the moment. From the expressions ofxc, yc it
is also obvious that the circle center is the point at which the
tangent to the focal curve atF (Z) intersects the input plane.
We are therefore led to a clear physical picture: the continu-
ous focal line is the locus of the apexes of conical ray bundles
emitted from expanding and shifting circles on the input plane
(Fig. 1).

The circle radius is directly related to the transverse
beam profile. To see this, notice that each point(x, y, 0) of
C(Z) approximately contributes a plane wave to the field
aroundF (Z). Neglecting amplitude variations, this contri-
bution can be expressed in the paraxial approximation as
du = exp [iP + i (f − x, g − y) · (δX, δY ) /Z], (· denotes
inner product) where(δX, δY ) = (X − f, Y − g) are local
focal coordinates and
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Fig. 1. Schematic of the principle: Rays emitted from expand-
ing circles on the input plane intersect on the specified focal
curve. The dots are the shifting circle centers.

P (Z) = Q (x, y) +
[

(f − x)
2
+ (g − y)

2

]

/2Z (2)

is constant alongC(Z) due the phase stationarity im-
posed on the integrand of Eq. (1). By integrating alldu
along C(Z) and using polar coordinates(δX, δY ) =
r(cos θ, sin θ), (x− xc, y − yc) = R (cosϕ, sinϕ), we
end up with 2πK exp (iP )J0 (Rr/Z), where K =
exp [i (f − xc, g − yc) · (δX, δY ) /Z] and J0 is the Bessel
function. Therefore, at anyZ plane, the optical field around
the focus behaves like a Bessel function modulated by a plane
wave. By further choosingR(Z) = γZ, the Bessel depen-
dence becomesJ0(γr), namely independent ofZ, thus im-
parting to the beam a diffraction-resisting quality. Now, to
determineP , we differentiate Eq. (2) with respect tox (or y)
and use the stationarity conditions and the circle equationto
obtain

P (Z) = 1/2

Z
∫

0

{

[f ′ (ζ)]
2
+ [g′ (ζ)]

2
− [R (ζ) /ζ]

2

}

dζ (3)

where arbitrarilyP (0) = 0. Summarizing, the procedure for
computingQ for given trajectory and radius functions is as
follows: For any point(x, y, 0), solve the circle equation(x−
xc)

2 + (y − yc)
2 = R2 for Z, and then substitute to Eqs. (3)

and Eq. (2) to findP andQ, respectively.
The above algorithm is well defined only when the cir-

cle equation has a unique solution forZ which means
that circlesC(Z) corresponding to differentZ must not
intersect. This is equivalent to the requirement that∇Z
is finite. The gradient can be obtained by differentiating
the circle equation and reads∇Z = (x− x0, y − y0) /D,
whereD = RR′ + (x− xc)x

′

c + (y − yc) y
′

c, wherex′

c =
−Zf ′′, y′c = −Zg′′. It follows thatD is never zeroiff

R′ (Z) > Z

√

[f ′′ (Z)]
2
+ [g′′ (Z)]

2 (4)

This condition defines a maximum propagation distanceZm

at which the focal curve can be created or, equivalently, a
maximum circleC(Zm) in the exterior of which the above
definition ofQ fails. BeyondZm, a different trajectory must
be defined. In order thatQ is continuously differentiable on

C(Zm) and the beam keeps resisting diffraction, we choose to
continue the trajectory along its tangent at the ultimate point
F (Zm)while keeping the sameR(Z). Then, circlesC(Z) for
Z > Zm are concentric and centered at(xc(Zm), yc(Zm), 0)
and the emitted ray cones create a Bessel beam propagating
in the direction of vector(f ′(Zm), g′(Zm), 1). The maximum
Z range is determined by the most exterior (largest) cone.

Figure 2 shows an example of a Bessel-like beam with a
parabolic trajectory lying on planeY = 0. The input condi-
tion is the Gaussianexp(−r2/900) modulated by the phase
Q shown in Fig. 2(a). The amplitude evolution onY = 0 ver-
ifies the beam trajectory which is a parabola up toZm = 20
and a straight line thereafter. From the transverse profilesat
different distances, the Bessel-like pattern is observed with a
remarkably diffraction-resisting main lobe which is an almost
perfect fit ofJ0(r) (γ = 1). Note also how the Bessel rings
deform asymmetrically while the beam accelerates. Beyond
Zm, acceleration stops and the symmetric Bessel profile is
restored.

The beam’s trajectory can also be defined piecewise. Fig-
ures 3(a)-(c) refer to a beam that initially propagates straight
and then is deflected along a half-period cosine to finally re-
turn to a straight but parallel to the initial path. The case of a
hyperbolic trajectory is shown in Figs. 3(d)-(f). A hyperbola
is asymptotic to a straight line(f ′′

→ 0), hence its parameters
can be chosen so that (4) is satisfied for allZ. In both cases
of Fig. 3 note how accurately the trajectory of the main lobe
reproduces the expected analytical curve (dashed line). Also
notable is again the resistance of the main lobe to diffraction.

By virtue of their ray structure, the proposed waves inherit
from standard Bessel beams the property to self-reconstruct
their profile after being distorted [14]. Figure 4(a) shows the
evolution of the beam with hyperbolic trajectory of Fig. 3 af-
ter removing a circular disk from its input wavefront. Despite
the initial distortion [Fig. 4(b)], the beam profile is fullyre-
covered after somehealing distance [Fig. 4(c)]. Furthermore,
the beams’ trajectory can be engineered to guide light around
objects. In Fig. 4(d) a beam propagates along a hyperbolic se-
cant path to avoid an on-axis index potential thus keeping its
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Fig. 2. (a) Modulo-2π input phase for a Bessel-like beam with
trajectoryf(Z) = Z2/40, g = 0 andR(Z) = Z.(b) Evolu-
tion of amplitude on planeY = 0. Dashed curve is the ana-
lytic trajectory. Bottom row: Transverse amplitude profiles at
differentZ.
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Fig. 3. (a) Modulo-2π input phase, (b) amplitude evolution
onY = 0 and (c) transverse profile at the indicated distance
for a Bessel-like beam with a piecewise trajectory. The10 <
Z < 60 part of the trajectory isf(Z) = 4[1− cos(πZ−10

50
)].

(d)-(f): Corresponding results for the hyperbolic trajectory
f(Z) = (0.64Z2

− 32Z + 800)1/2 − 8001/2. R(Z) = Z
for both beams.
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Fig. 4. (a)-(c) Self-healing evolution and transverse profiles
of the hyperbolic beam of Fig. 3, when a disk with center
(−10, 0) and radius 20 is obstructed onZ = 0. (d)-(f) A
beam with trajectory8sech[0.05(Z−45)] propagating around
a cylindrical potential with strength 0.5 (dashed line)

main lobe nearly unaffected [Fig. 4(e)]. Finally, the case of a
beam with a 3D trajectory is examined in Fig. 5.

In conclusion, we have proposed a method for gener-
ating Bessel-like optical beams with arbitrary trajectories.
The proposed beams combine the circular profile, resistance
to diffraction and self-reconstructing properties of standard
Bessel beams with the ability to accelerate along rather arbi-
trary paths. Their implementation should be straightforward
by phase-modulating a simple optical wavefront via a spatial
light modulator and is limited only by the pixelization of the
input phase. As hybrids between nonaccelerating and accel-
erating diffraction-resisting beams, the new waves can find
applications in particle manipulation and laser microfabrica-
tion.
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