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A method is proposed for generating Bessel-like opticahitzavith arbitrary trajectories in free space. The methodliras
phase-modulating an optical wavefront so that conical mmdf rays are formed whose apexes write a continuous foraéc
with prespecified shape. These ray cones have circular bast® input plane, thus their interference results in a 8dé®
transverse field profile that propagates along the specifigéelctory with a remarkably invariant main lobe. Such beaars
be useful as hybrids between nonaccelerating and acéeteraptical waves that share diffraction-resisting and-sebling
properties.

Nondiffracting optical beams play an important role in con-specified path. The beam shows resistance to diffractigo-kee
temporary optics. Two major classes of such beams caimg its main lobe remarkably invariant.

be distinguished: nonaccelerating and accelerating. Téte fi  We consider the paraxial Fresnel integral

class refers to waves whose transverse profile and propaga-

tion direction remain invariant. Perhaps the most renowned w(z,y,0) ,(x—0)?+(r—?

examples are Bessel beams, which came to light in 1987 [1] «(X.Y,Z) = // ~omiz € 27 dedy (1)
and have found numerous applications in micromanipulation

atom and nonlinear optics1[2]. Mathielll [3] and parabolicwhere u(z,y,0) = A(z,y)exp[iQ(x,y)] is the phase-
beams|[4] are other characteristic counterparts with expli modulated input wavefront with the transverse and longitu-
itly known angular spectrums. This class also includes waveginal coordinates being scaled bynd k12, respectivelyk
that remain invariant in a frame rotating around the propaneing the wavenumber, arids arbitrary. Our goal is to de-
gation axis[[5]. The second class is represented by recentiermine so that a focal curve is created that is paramet-
discovered nondiffracting beams with the peculiar propert rically expressed asf (Z),9(Z),Z), wheref, g are given

to self-accelerate along a parabola. These waves emerg@ghctions. Any pointF'(Z) of that curve must be the intersec-
in 2007 with the introduction of Airy beam5l[6], a concept tion of a conical ray bundle. Equivalently, from a stationar
stimulated by quantum mechani€s [7]. Parabolic accetegati phase approach to Eq (1), the first partials@ust sat-
beams|[[8] are another characteristic example. These beamgy ), = (f —2)/Z,Q, = (g — y)/Z, where(z,y,0) is
(mostly Airy) have also found several applications for tigh the starting point of any ray in that bundle. The continuum
trajectory control and navigation around objects, microma of points(z, y, 0) defines a geometric locus(Z) on Z = 0
nipulation, surface plasmon routing and curved plasma filawhich can be viewed as the isocurve of a functiofr, y).

ments and autofocusing (sée [9] for a recent review). Now note that, ifQ) is to be twice continuously differen-
Although the two wave families have evolved rather inde-tjgple, its mixed partials should be equal, i@,, = Q.

pendently, yet it would be interesting to combine their fea-yie|ding (+ — 22y = (y — ye)Za, Wherez, = f — Zf/,
tures toward the design of new wave entities. A possibil-y, — 43— 74/ (’ denotes!/dZ). Therefore, along an isocurve,
ity would be to design beams with the symmetry and resissy 7 is collinear to vectotz — x.,y — y.), which means that
tance to diffraction of Bessel beams that are also capable @(Z) is a circle with centetz,, y., 0) and radiusk(Z) that
self-acceleration. Moreover, it would be desirable to point is arbitrary for the moment. From the expressiongcquc it
the beam trajectory beyond the parabolic law. Although nois also obvious that the circle center is the point at whieh th
strictly nondiffracting, such beams could be useful as ligbr  tangent to the focal curve @t(Z) intersects the input plane.
between the two classes in applications such as microfabriye are therefore led to a clear physical picture: the continu
cation and optical tweezers. Interestingly, few recentksor oys focal line is the locus of the apexes of conical ray bundle
point toward this direction by proposing techniques to cre-emitted from expanding and shifting circles on the inpubpla
ate Bessel-like beams wittpiraling and snaking trajecto-  (Fig.[]).
ries [10+13]. The circle radius is directly related to the transverse
In this Letter we propose a method for generating Besselheam profile. To see this, notice that each pginty, 0) of
like beams with arbitrary trajectories. SpeCifica”y, wan€o C(Z) approximate|y contributes a p|ane wave to the field
sider the general problem of finding the phase of an inpugroundF(Z). Neglecting amplitude variations, this contri-
wavefront that directs rays to create an arbitrary focaV€ur pytion can be expressed in the paraxial approximation as
Any point on this curve is the apex of a conical ray bundleg,, — exp [iP+i(f—x,9—y)-(0X,0Y)/Z], (- denotes

emanating from a circle on the input plane and interferinginner product) wheréd X,6Y) = (X — f,Y — g) are local
to create a Bessel-like field pattern that propagates alo®g t focal coordinates and



Fig. 1. Schematic of the principle: Rays emitted from expand

C(Z,,) and the beam keeps resisting diffraction, we choose to

continue the trajectory along its tangent at the ultimatetpo

F(Z,,) while keeping the samB(Z). Then, circles”(Z) for

7 > Z,, are concentric and centeredat(Z,,), y.(Zm ), 0)

and the emitted ray cones create a Bessel beam propagating

in the direction of vectoff'(Z.,,.), ¢'(Zn), 1). The maximum

Z range is determined by the most exterior (largest) cone.
Figure[2 shows an example of a Bessel-like beam with a

parabolic trajectory lying on plang = 0. The input condi-

tion is the Gaussianxp(—r?/900) modulated by the phase

@ shown in Fig[2(a). The amplitude evolution Bn= 0 ver-

ifies the beam trajectory which is a parabola ugtp = 20

and a straight line thereafter. From the transverse pradiles

ing circles on the input plane intersect on the specifiedlfocadifferent distances, the Bessel-like pattern is observigu av

curve. The dots are the shifting circle centers.

P(2)=Q(x.y)+ |(f —2)"+(g-v)| /22 (2)
is constant alongC(Z) due the phase stationarity im-
posed on the integrand of Edl (1). By integrating @il

along C(Z) and using polar coordinate§X,dY")
r(cosd,sinf), (r — ey —ye) R (cosp,sinp), we
end up with 27K exp (iP)Jo (Rr/Z), where K
exp i (f —xc,g—ye) - (0X,0Y) /Z] and Jp is the Bessel

remarkably diffraction-resisting main lobe which is an abth
perfect fit of Jo(r) (v = 1). Note also how the Bessel rings
deform asymmetrically while the beam accelerates. Beyond
Zm, acceleration stops and the symmetric Bessel profile is
restored.

The beam’s trajectory can also be defined piecewise. Fig-
ured B(a)-(c) refer to a beam that initially propagatesgtita
and then is deflected along a half-period cosine to finally re-
turn to a straight but parallel to the initial path. The caka o
hyperbolic trajectory is shown in Figsl 3(d)-(f). A hypet&o
is asymptotic to a straight lingf”” — 0), hence its parameters

function. Therefore, at ang plane, the optical field around ¢@n be chosen so thai (4) is satisfied forzllin both cases
the focus behaves like a Bessel function modulated by a plar@ Fig.[3 note how accurately the trajectory of the main lobe

wave. By further choosing:(Z) = ~Z, the Bessel depen-
dence becomeg,(vyr), namely independent of, thus im-
parting to the beam a diffraction-resisting quality. Now, t
determineP, we differentiate Eq[{2) with respect to(or )
and use the stationarity conditions and the circle equation
obtain

Z

P(2) = [ {If OF +15 OF - [R©) (7} @)

0

where arbitrarilyP(0) = 0. Summarizing, the procedure for
computing@ for given trajectory and radius functions is as
follows: For any pointz, v, 0), solve the circle equatiofx —
ze)? + (y — y.)? = R? for Z, and then substitute to EqE] (3)
and Eq.[(2) to find® and(@, respectively.

The above algorithm is well defined only when the cir-
cle equation has a unique solution faf which means
that circlesC(Z) corresponding to differenZ must not
intersect. This is equivalent to the requirement tRaf
is finite. The gradient can be obtained by differentiating
the circle equation and read8Z = (z — xo,y — yo0) /D,
whereD = RR' + (v — z.) @'« + (y — yc) ¥, Wherez!, =
—Z "y, =—Zg". It follows thatD is never zeraff

R(2)> 2\l (@) + 9" (2) @)

This condition defines a maximum propagation distafige

reproduces the expected analytical curve (dashed lingn Al
notable is again the resistance of the main lobe to diffoacti
By virtue of their ray structure, the proposed waves inherit
from standard Bessel beams the property to self-recorstruc
their profile after being distorte@ [114]. Figure 4(a) shows t
evolution of the beam with hyperbolic trajectory of Higj. 3 af
ter removing a circular disk from its input wavefront. Despi
the initial distortion [Fig[#(b)], the beam profile is fulhe-
covered after somiaealing distance [Figl¥(c)]. Furthermore,
the beams’ trajectory can be engineered to guide light aroun
objects. In Figl4(d) a beam propagates along a hyperbalic se
cant path to avoid an on-axis index potential thus keepmg it
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Fig. 2. (a) Modulo2x input phase for a Bessel-like beam with

at which the focal curve can be created or, equivalently, drajectoryf(Z) = Z?/40,g = 0 andR(Z) = Z.(b) Evolu-

maximum circleC'(Z,,) in the exterior of which the above
definition of @ fails. BeyondZ,,,, a different trajectory must
be defined. In order tha is continuously differentiable on

tion of amplitude on plan& = 0. Dashed curve is the ana-
lytic trajectory. Bottom row: Transverse amplitude profibe
different 7.



Fig. 5. Main lobe track and transverse profiles of a beam

with trajectory f(Z) = 5tanh0.12(Z — 10)] + 5, 9(Z) =

Fig. 3. (a) Modulo27 input phase, (b) amplitude evolution

6sech0.12(Z — 10)]. The dashed curves are the projection of

onY = 0 and (c) transverse profile at the indicated distancdh® trajectory on th&t — ¥ plane.

for a Bessel-like beam with a piecewise trajectory. The<
Z < 60 part of the trajectory ig (Z) = 4[1 — cos(r Z=12)].
(d)-(f): Corresponding results for the hyperbolic tragegt
f(Z) = (0.642% — 327 + 800)'/2 — 800Y/2. R(Z) = Z
for both beams.

11.

Fig. 4. (a)-(c) Self-healing evolution and transverse esfi

of the hyperbolic beam of Fidl] 3, when a disk with center 15

(—10,0) and radius 20 is obstructed an = 0. (d)-(f) A
beam with trajectorgsech0.05(Z —45)] propagating around
a cylindrical potential with strength 0.5 (dashed line)

main lobe nearly unaffected [Figl 4(e)]. Finally, the cata o
beam with a 3D trajectory is examined in Hig. 5.

In conclusion, we have proposed a method for gener-
ating Bessel-like optical beams with arbitrary trajecesri
The proposed beams combine the circular profile, resistance
to diffraction and self-reconstructing properties of stard
Bessel beams with the ability to accelerate along rather arb
trary paths. Their implementation should be straightfadva
by phase-modulating a simple optical wavefront via a spatia
light modulator and is limited only by the pixelization ofeth
input phase. As hybrids between nonaccelerating and accel-
erating diffraction-resisting beams, the new waves can find
applications in particle manipulation and laser microiedor
tion.

(Supported by project ACMAC, FP7-REGPOT-2009-1,
and by action "ARISTEIA” - Operational Programme "Ed-
ucation and Lifelong Learning” co-funded by the European
Social Fund and National Resources)

References
1. J. Durnin, J. Opt. Soc. Am. A, 651 (1987).

2.

3.

4.

o

© ~N

10.

13.

14.

D. Mcgloin and K. Dholakia, Contemporary Phys#& 15
(2005).

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. G
Cerda, Opt. Lett25, 1493 (2000).

M. A. Bandres, J. C. Gutiérrez-\Vega, and S. Chavez-&erd
Opt. Lett.29, 44 (2004).

R. Piestun and J. Shamir, J. Opt. Soc. Anl5A3039 (1998).
G. A. Siviloglou and D. N. Christodoulides, Opt. L2, 979
(2007).

M. Berry and N. Balazs, Am. J. Phy&Z, 264 (1979).
M. A. Bandres, Opt. LetB3, 1678 (2008).
Y. Hu, G. Siviloglou, P. Zhang, N. Efremidis,

D. Christodoulides, and Z. CherSef-accelerating Airy
Beams. Generation, Control, and Applications (Springer,
2012), vol. 170 ofSpringer Series in Optical Sciences, pp.
1-46.

V. Jarutis, A. MatijoSius, P. D. Trapani, and A. Piskas Opt.
Lett. 34, 2129 (2009).

A. MatijoSius, V. Jarutis, and A. Piskarskas, Opt. Eg318,
8767 (2010).

J. Morris, T. Cizmar, H. Dalgarno, R. Marchington, F. Gun
Moore, and K. Dholakia, Journal of Opti@& (2010).

S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Expré8s
6988 (2010).

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbethda
K. Dholakia, Naturet19, 145 (2002).



