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ANOTHER CONSTRUCTION OF BV SOLUTIONS TO
RATE-INDEPENDENT SYSTEMS

Minh N. Mach

Dipartimento di Matematica
Università di Pisa

Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

Abstract. We study one kind of weak solutions to rate-independent systems, which is
constructed by using the local minimality in a small neighborhood of order ε and then
taking the limit ε → 0. We show that the resulting solution satisfies both the weak local
stability and the new energy-dissipation balance, similarly to the BV solutions constructed
by vanishing viscosity introduced recently by Mielke, Rossi and Savaré.

1. Introduction

A rate-independent system is a specific case of quasistatic systems. It is time-dependent
but its behavior is slow enough that the inertial effects can be ignored and the systems
are affected only by external loadings. Some specific rate-independent systems were studied
by many authors including Francfort, Marigo, Larsen, Dal Maso and Lazzaroni on brittle
fractures [9, 8, 11, 6], Dal Maso, DeSimone and Solombrino on the Cam-Clay model [5], Dal
Maso, DeSimone, Mora, Morini on plasticity with softening [3, 4], Mielke on elasto-plasticity
[13, 14], Mielke, Theil and Levitas on shape-memory alloys [21, 22, 23], Müller, Schmid and
Mielke on super-conductivity [24, 26], and Alberti and DeSimone on capillary drops [1]. We
refer to the surveys [16, 15, 17, 18] by Mielke for the study in abstract setting as well as for
further references.

In this work, for simplicity we consider an evolution u : [0, T ] → Rd, subject to a force
defined by an energy functional E : [0, T ] × Rd → [0,+∞), which is of class C1, and a
dissipation function Ψ(x) := |x|. Let an initial position x0 ∈ Rd such that x0 is a local
minimizer for the functional x 7→ E (0, x) + |x − x0|. We say that u is a solution to the
rate-independent system (E , x0) if u(0) = x0 and the following inclusion holds true,

0 ∈ (∂x| · |)(u̇(t)) +∇xE (t, u(t)) for a.e. t ∈ (0, T ).(1)

In general, strong solutions to (1) may not exist [27]. Hence, the question on defining some
weak solutions arises naturally.

A widely-used weak solution is energetic solution, which was first introduced by Mielke
and Theil [21] (see [22, 12, 10, 16] for further studies). A function u : [0, T ] → Rd is called
an energetic solution to the rate-independent system (E , x0), if it satisfies

(i) the initial condition u(0) = x0,
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(ii) the global stability that for (t, x) ∈ [0, T ]×Rd,

E (t, u(t)) ≤ E (t, x) + |x− u(t)|,(2)

(iii) and the energy-dissipation balance that for all 0 ≤ t1 < t2 ≤ T ,

E (t2, u(t2))− E (t1, u(t1)) =

∫ t2

t1

∂tE (s, u(s)) ds−Diss(u; [t1, t2]).(3)

Here we used the notion of dissipation

Diss(u(t); [t1, t2]) := sup

{
N∑
i=1

|u(si−1)− u(si)| | N ∈ N, t1 ≤ s0 < s1 < · · · < sN ≤ t2

}
.

Note that in the case that energy functional is not convex, the global minimality (2) makes
the energetic solutions jump sooner than they should, and hence fail to describe the related
physical phenomena (see Examples 2 below). Hence, some weak solutions based on local
minimality are of interests.

Recently, an elegant weak solution based on vanishing viscosity method was introduced by
Mielke, Rossi and Savaré [19, 20]. Their idea is to add a small viscosity term to the dissipation
functional Ψ. This results in a new dissipation functional Ψε, e.g. Ψε(x) = |x| + ε|x|2,
which has super-linear growth at infinity and which converges to Ψ as ε tends to zero in an
appropriate sense. They showed that the modified system (E , x0) with | · | replaced by Ψε

admits a solution uε. The limit u of a subsequence uε as ε → 0, called BV solution, enjoys
the following properties

(i) the initial condition u(0) = x0,
(ii) the weak local stability that for all t ∈ [0, T ]\J ,

|∇xE (t, u(t))| ≤ 1,(4)

(iii) and the new energy-dissipation balance that for all 0 ≤ t1 ≤ t2 ≤ T ,

E (t2, u(t2))− E (t1, u(t1)) =

∫ t2

t1

∂tE (s, u(s)) ds−Dissnew(u; [t1, t2]).(5)

Here we denote the jump set by

J := {t ∈ [0, T ] | u(·) is not continuous at t}
and the new dissipation by

Dissnew(u; [t1, t2]) := Diss(u; [t1, t2]) +
∑
t∈J

(
∆new(t, x(t−), x(t)) + ∆new(t, x(t), x(t+))

)
−
∑
t∈J

(
|u(t−)− u(t)|+ |u(t)− u(t+)|

)
,

where ∆new(t; a, b) depends also on the energy functional E , and is defined by

inf

{∫ 1

0

|γ̇(s)| ·max{1, |∇xE (t, γ(s))| ds} | γ ∈ AC([0, 1];Rd), γ(0) = a, γ(1) = b

}
.

The new energy-dissipation balance is a deeply insight observation, which contains the
information at the jump points. Indeed, it was shown in [20] if the BV solution u jumps
at time t, then there exists an absolutely continuous path γ : [0, 1] → Rd, which called an
optimal transition between u(t−) and u(t+), such that

(i) γ(0) = u(t−) and γ(1) = u(t+),
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(ii) |∇xE (t, γ(s))| ≥ 1 for all s ∈ [0, 1],

(iii) and E (t, u(t−))− E (t, u(t+)) =
∫ 1

0
|∇xE (t, γ(s))| · |γ′(s)| ds.

An inconvenience of the BV solution constructed by vanishing viscosity is that it depends
on the choice of the viscosity, and the solution obtained by some viscosity does not have
expected behavior (see Examples 2).

In this work, we shall study another weak solution which is constructed by the local
minimality in a small neighborhood. The idea is to consider the minimization problem (2)
in a small neighborhood of order ε and obtain a solution uε, and then take ε → 0 to get a
limit u, which called BV solution constructed by epsilon-neighborhood method. The epsilon-
neighborhood approach was first suggested in [14, Section 6] for one dimensional case when
ε is chosen proportional to the square root of the time-step and the weak local stability was
then obtained in [7].

Roughly speaking, this approach is a special case of vanishing viscosity approach when
viscosity term is chosen as follows

Ψ0(v) :=

{
0 if |v| ≤ 1,

+∞ if |v| > 1.

However, Ψ0 does not quite satisfy the requirement to become a viscosity in vanishing vis-
cosity in [20, Section 2.3].

In this article, we shall show that the BV solutions constructed by epsilon-neighborhood
method u indeed satisfies both the weak local stability and the new energy-dissipation bal-
ance, similarly to the BV solutions introduced by Mielke, Rossi and Savaré [19, 20].

2. Main results

For simplicity, we shall consider the case when X = Rd and Ψ(x) = |x|. Moreover, we
assume that the energy functional E (t, x) : [0, T ] × Rd → [0,∞) is C1, and satisfies the
following technical assumption: there exists λ = λ(E ) such that

|∂tE (s, x)| ≤ λE (s, x) for all (s, x) ∈ [0, T ]×Rd.(6)

Remark. The condition (6) was proposed in [18]. The condition (6) together with Gronwall’s
inequality imply that

E (r, x) ≤ E (s, x) eλ|r−s|, |∂tE (r, x)| ≤ λE (s, x) eλ|r−s|(7)

for any r, s in [0, T ].

Definition (Construction of discrete solution). Let ε > 0, τ > 0 and let N ∈ N satisfy
T ∈ [τN, τ(N + 1)). We define a sequence {xε,τ}Ni=0 by xε,τ0 = x0 (initial position) and

xε,τi ∈ argmin{E (ti, x) + |x− xε,τi−1| | |x− x
ε,τ
i−1| ≤ ε} for every i ∈ {1, . . . , N}.

We define the discretized solution xε,τ (·) by interpolation

xε,τ (t) := xε,τi−1 for every t ∈ [ti−1, ti), i ∈ {1, . . . , N}.

Our main result is as follows.

Theorem 1 (BV solutions constructed by epsilon-neighborhood method). Let E : [0, T ] ×
Rd → [0,+∞] be of class C1 and satisfy (6). Let an initial datum x0 ∈ Rd be such that x0 is
a local minimizer for the functional x 7→ E (0, x) + |x − x0|. Then the following statements
hold true.
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(i) (Discrete solution) For any ε > 0 and τ > 0, there exists a discretized solution
t 7→ xε,τ (·) as described above.

(ii) (Epsilon-neighborhood solution) For any ε > 0 fixed, there exists a subsequence τn → 0
such that xε,τn(·) converges pointwise to some limit xε(·). The function xε(·) satisfies
• (Epsilon local stability) If xε(·) is right-continuous at t, namely limt′→t+ x

ε(t′) = xε(t),
then xε(t) satisfies the epsilon local stability

(eps-LS) E (t, xε(t)) ≤ E (t, x) + |x− xε(t)| for all |x− xε(t)| ≤ ε.

• (Energy-dissipation inequalities) We have Diss(xε; [0, T ]) ≤ C (independent of ε),
∂tE (·, xε(·)) ∈ L1(0, T ) and for all 0 ≤ s ≤ t ≤ T ,

−Dissnew(xε; [s, t]) ≤ E (t, xε(t))− E (s, xε(s))−
∫ t

s

∂tE (r, xε(r)) dr ≤ −Diss(xε; [s, t]).

(iii) (BV solution constructed by epsilon-neighborhood) There exists a subsequence εn → 0
such that xεn converges pointwise to some BV function u. The function u satisfies
• (Weak local stability) If t 7→ u(t) is continuous at t, then

|∂xE (t, u(t))| ≤ 1.

• (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T , one has

E (t, u(t))− E (s, u(s)) =

∫ t

s

∂tE (r, u(r)) dr −Dissnew(u; [s, t]).

The proof of Theorem 1 is provided in the next sections.

An example. An explicit example is given below (a detail explanation can be found in
Appendix).

Example 2. Consider the case X = R, Ψ(x) = |x|, x0 = 0 and the energy functional

E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− x, t ∈ [0, 2].

(i) The energetic solution constructed by time-discretization satisfies

x(t) = 0 if t <
1

6
, x(1/6) ∈ {0,

√
5/3} and x(t) =

√
10 +

√
10 + 90t

3
if t >

1

6
.

The solution jumps at t = 1/6, from x = 0 to x =
√

5/3, but this jump is not
reasonable (see Fig. 1 below). The energetic solution satisfies the energy-dissipation
balance but it does not satisfies the new energy-dissipation balance.

(ii) The BV solution corresponding to the viscous dissipation Ψε(x) = |x|+ εx2 is

x(t) = 0 for all t ∈ [0, 2].

(iii) The BV solution constructed by epsilon-neighborhood method satisfies

x(t) = 0 if t < 1 and x(t) =

√
10 +

√
10 + 90t

3
if t > 1.

This solution jumps at t = 1 which is reasonable (see Fig. 2 below). This solution sat-
isfies the new energy-dissipation balance but it does not satisfy the energy-dissipation
balance.
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Figure 1. Function E (t, x) + |x| with t = 1/6 in Example 2.

Figure 2. Function E (t, x) + |x| with t = 1 in Example 2.

3. Epsilon-neighborhood solution xε

We start by considering the discrete solution.

Lemma 3 (Discretized solution). For any given initial state x0, any ε > 0 and τ > 0
and any partition 0 = t0 < t1 < · · · < tN ≤ T of [0, T ] such that tn − tn−1 = τ and
T ∈ [τN, τ(N + 1)), there exists a sequence {xε,τi }Ni=0 such that xε,τ0 = x0 and for every
i = 1, 2, . . . , N , xε,τi minimizes the functional

x 7→ E (ti, x) + |xε,τi−1 − x|

over x ∈ Rd, |x− xε,τi−1| ≤ ε.
Moreover, the function t 7→ xε,τ (t) defined by the interpolation xε,τ (t) = xε,τi−1 if t ∈ [ti−1, ti),

i ∈ {1, ..., N} satisfies the following energy estimates.

(i) (Discrete bound) For any n ∈ {1, . . . , N} we have

E (tn, x
ε,τ
n ) ≤ E (0, x0) e

λtn and E (0, xε,τn ) ≤ E (0, x0) e
2λtn .
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(ii) (Integral bound) For all 0 ≤ s ≤ t ≤ T , it holds that Diss(xε,τ ; [s, t]) < ∞,
∂tE (·, xε,τ (·)) ∈ L1(0, T ) and

E (t, xε,τ (t))− E (s, xε,τ (s)) ≤
∫ t

s

∂tE (r, xε,τ (r)) dr −Diss(xε,τ ; [s, t]).

Proof. Since x 7→ E (tn, x) + |x− xε,τi−1| is continuous, this functional has a minimizer xε,τi in
the compact set |x − xε,τi−1| ≤ ε. The energy estimates can be proved similarly for energetic
solution (see e.g. [16]). A detailed proof can be found in the Appendix. �

Lemma 4 (Epsilon-neighborhood solution). Given any initial data x0 ∈ Rd such that
E (0, x0) < ∞ and x0 is a local minimizer for the functional x 7→ E (0, x) + |x − x0|. Let
xε,τ be as in Lemma 3. Then there exists a subsequence τn → 0 such that xε,τn(t) → xε(t)
for all t ∈ [0, T ]. Moreover, the epsilon-neighborhood solution xε(·) satisfies the following
properties:

(i) (Epsilon local stability) If xε(·) is right-continuous at t, namely limt′→t+ x
ε(t′) = xε(t),

then xε(t) satisfies the epsilon local stability

E (t, xε(t)) ≤ E (t, x) + |x− xε(t)| for all |x− xε(t)| ≤ ε.

(ii) (Energy-dissipation inequalities) We have Diss(xε; [0, T ]) ≤ C (independent of ε),
∂tE (·, xε(·)) ∈ L1(0, T ) and for all 0 ≤ s ≤ t ≤ T ,

−Dissnew(xε; [s, t]) ≤ E (t, xε(t))− E (s, xε(s))−
∫ t

s

∂tE (r, xε(r)) dr ≤ −Diss(xε; [s, t]).

Proof. Step 1. Existence. By the Integral bound in Lemma 3, the fact that E is non-
negative, and condition (E1), we have

Diss(xε,τ ; [0, T ]) ≤ E (0, x0)− E (T, xε,τ (T )) +

∫ T

0

∂tE (r, xε,τ (r)) dr

≤ E (0, x0) +
N+1∑
i=1

∫ ti

ti−1

λE (ti−1, x
ε,τ
i−1) e

λ(r−ti−1) dr.

Here we denote T by tN+1. Then, using the Discrete bound in Lemma 3, we get

Diss(xε,τ ; [0, T ]) ≤ E (0, x0) +

∫ T

0

λE (0, x0) e
λr dr

= E (0, x0) e
λT .

Thus, {xε,τ (·)} has uniformly bounded variation and it is uniformly bounded. Therefore,
applying Helly’s selection principle [12, 1, 25], we can find a subsequence τn → 0 and a BV
function xε(·) such that xε,τn(t)→ xε(t) as n→∞ for all t ∈ [0, T ].

Step 2. A consequence of the right-continuity. Let us denote by {tni }Nn
i=0 the par-

tition corresponding to τn and assume that t ∈ [tni−1, t
n
i ). It is obvious that

xε,τni−1 = xε,τn(t)→ xε(t)

as n→∞. Now we show that if xε(·) is right-continuous at t, then

xε,τni = xε,τn(tni )→ xε(t).
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Let t′ > t. Due to the Integral bound in Lemma 3, we have

E (t′, xε,τn(t′))− E (t, xε,τn(t)) + Diss(xε,τn ; [t, t′]) ≤
∫ t′

t

∂tE (r, xε,τn(r)) dr ≤ C|t′ − t|,

here the last inequality due to the continuity of ∂tE and the fact that xε,τn is bounded on
(0, T ). For n large enough, we have t < tni < t′. Therefore,

|xε,τni − xε,τni−1 | ≤ Diss(xε,τn ; [t, t′]).

Moreover, when n→∞, we have

xε,τn(t)→ xε(t) and xε,τn(t′)→ xε(t′).

Thus it follows from the above integral bound that

E (t′, xε(t′))− E (t, xε(t)) + lim sup
n→∞

|xε,τni − xε,τni−1 | ≤ C|t′ − t|.

Since this inequality holds for all t′ > t, we can take t′ → t and use the assumption xε(t+) =
xε(t) to obtain

lim sup
n→∞

|xε,τni − xε,τni−1 | ≤ 0.

Since we have already known that xε,τni−1 → x(t), we can conclude that xε,τni → x(t).

Step 3. Stability. We show that for all t ∈ [0, T ], if xε(·) is right-continuous at t, then

E (t, xε(t)) ≤ E (t, z) + |z − xε(t)| for all |z − xε(t)| ≤ ε.

First, we prove the result for z ∈ Rd such that |z−xε(t)| < ε. Since limn→∞ x
ε,τn(t) = xε(t),

we get

|z − xε,τn(t)| < ε

for n large enough. Using the notation in Step 2. Since t ∈ [tni−1, t
n
i ), we get xε,τn(t) = xε,τni−1 .

From the definition of xε,τni and condition |z − xε,τni−1 | < ε, we obtain

E (tni , x
ε,τn
i ) + |xε,τni − xε,τni−1 | ≤ E (tni , z) + |z − xε,τni−1 |.

Taking the limit as n → ∞ and using the fact that both xε,τni−1 and xε,τni converge to xε(t)
(see Step 2), we obtain

E (t, xε(t)) ≤ E (t, z) + |z − xε(t)| for all |z − xε(t)| < ε.(8)

Now for any z such that |z − xε(t)| = ε, we can choose a sequence zn converges to z such
that |zn − xε(t)| < ε. Applying (8) for zn, we get

E (t, xε(t)) ≤ E (t, zn) + |zn − xε(t)|.(9)

Notice that the mappings z 7→ E (t, z) and z 7→ |z − xε(t)| are continuous. Hence, we can
take the limit in (9) and get the result also for |z − xε(t)| = ε.

Step 4. Energy-dissipation inequalities.
By the Integral bound in Lemma 3, we have for all 0 ≤ s ≤ t ≤ T ,

E (t, xε,τn(t))− E (s, xε,τn(s)) ≤
∫ t

s

∂tE (r, xε,τn(r)) dr −Diss(xε,τn ; [s, t]).

Since xε,τn(r)→ xε(r) for all r ∈ [0, T ], we have

E (t, xε,τn(t))− E (s, xε,τn(s))→ E (t, xε(t))− E (s, xε(s))
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and ∫ t

s

∂tE (r, xε,τn(r)) dr →
∫ t

s

∂tE (r, xε(r)) dr

as n→∞. Moreover, one has

lim inf
n→∞

Diss(xε,τn ; [s, t]) ≥ Diss(xε; [s, t]).

Thus we can derive one energy-dissipation inequality

E (t, xε(t))− E (s, xε(s)) ≤
∫ t

s

∂tE (r, xε(r)) dr −Diss(xε; [s, t]).

We shall use Lemma 5 to obtain the other energy-dissipation inequality,

E (t, xε(t))− E (s, xε(s)) ≥
∫ t

s

∂tE (r, xε(r)) dr −Dissnew(xε; [s, t]).

It is suffices to verify that |∇xE (t, xε(t))| ≤ 1 for a.e. t ∈ (0, T ). In fact, for every t ∈ [0, T ]
such that xε(·) is right-continuous at t, we have proved in Step 3 the ε-stability

E (t, xε(t)) ≤ E (t, x) + |x− xε(t)| for all |x− xε(t)| ≤ ε.

This inequality implies that |∇xE (t, xε(t))| ≤ 1. On the other hand, since xε(·) is a BV
function, it is continuous except at most countably many points. Therefore, the desired
inequality follows from the following result. �

Lemma 5 (Lower bound of the new energy-dissipation balance). For any BV function
u : [0, T ] → Rd, for any energy functional E ∈ C1([0, T ] × Rd) satisfying the constraint
|∇xE (t, u(t))| ≤ 1 for a.e. t ∈ (0, T ), it holds that

E (t1, u(t1))− E (t0, u(t0)) ≥
∫ t1

t0

∂tE (s, u(s)) ds−Dissnew(u; [t0, t1]).

This result is due to Mielke, Rossi and Savaré [20, Theorem 4.7]. For the reader conve-
nience, a proof of Lemma 5 is included in Appendix.

4. BV solution constructed by epsilon-neighborhood method

Lemma 6 (Limit of epsilon-neighborhood solution). Let be given an initial datum x0 ∈ Rd

such that E (0, x0) <∞ and x0 is a local minimizer for the functional x 7→ E (0, x) + |x−x0|.
Let xε be as in Lemma 4. Then there exists a subsequence εn → 0 and a BV function u
such that xεn(t) → u(t) for all t ∈ [0, T ]. Moreover, the function u satisfies the following
properties

(i) (Local stability) If t 7→ u(t) is continuous at t, then

|∇xE (t, u(t))| ≤ 1.

(ii) (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T , one has

E (t, u(t))− E (s, u(s)) =

∫ t

s

∂tE (r, u(r)) dr −Dissnew(u; [s, t]).

Proof. Step 1. Existence. Since Diss(xε; [0, T ]) ≤ C independent of ε, by Helly’s selection
principle we can find a subsequence εn → 0 and a BV function u such that xεn(t)→ u(t) as
n→∞ for all t ∈ [0, T ].



BV SOLUTIONS VIA EPSILON-NEIGHBORHOOD METHOD 9

Step 2. Stability. Let

A := {t ∈ [0, T ] |xεn(·) is right continuous at t for all n ≥ 1}.
Then [0, T ]\A is at most countable. Moreover, for t ∈ A, by Lemma 4 we have

E (t, xεn(t)) ≤ E (t, z) + |z − xεn(t)| for all |z − xεn(t)| ≤ εn

for all n ≥ 1. Therefore,

|∇xE (t, xεn(t))| ≤ 1 for all n ≥ 1.

Taking n→∞, we obtain

|∇xE (t, u(t))| ≤ 1

for all t ∈ A.
Moreover, by continuity, we also get |∇xE (t, u(t))| ≤ 1 provided u is continuous at t.

Step 3. New energy-dissipation balance. First, similarly to the proof of energy in-
equalities in Lemma 4, we have

−Dissnew(u; [s, t]) ≤ E (t, u(t))− E (s, u(s))−
∫ t

s

∂tE (r, u(r)) dr ≤ −Diss(u; [s, t]).

(More precisely, the second inequality is a consequence of the corresponding inequality of xε

in Lemma 4 and Fatou’s lemma, while the first inequality follows from Lemma 5.)
Notice that if the solution t 7→ u(t) is continuous on [a, b] ⊂ [0, T ], then Diss(u; [a, b]) =

Dissnew(u; [a, b]). Thus, we have immediately the energy-dissipation balance

E (b, u(b))− E (a, u(a))−
∫ b

a

∂tE (r, u(r)) dr = −Diss(u; [a, b]) = −Dissnew(u; [a, b]).

Therefore, it remains to consider jump points. More precisely, we need to show that if u
jumps at t ∈ (0, T ), namely u(t−) 6= u(t+), then

E (t, u(t+))− E (t, u(t−)) = −∆new(t, u(t−), u(t))−∆new(t, u(t), u(t+)).

This fact follows from Lemma 7 and 8 below. �

To prove the upper bound, we start by showing that the discretized solution xε,τ is “almost”
an optimal transition.

Lemma 7 (Approximate optimal transition). For the discretized solution xε,τ , if we write
xj := xε,τ (tj), then

−∇xE (ti, xi) · (xi − xi−1) = max{1, |∇xE (ti, xi)|} · |xi − xi−1|.
Consequently, if δ ≥ ε+ |t− ti| and we denote by v : [a, b]→ Rd the linear curve connecting
xi−1 and xi, namely

v(s) = xi−1 +
s− a
b− a

(xi − xi−1),

then
b∫

a

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds ≤ E (t, xi−1)− E (t, xi) + g(δ) · |xi − xi−1|

where g(δ)→ 0 as δ → 0.
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Proof. Step 1. Recall that xi is a minimizer for

inf
|z−xi−1|≤ε

h(z) = inf
|z−xi−1|≤ε

{E (ti, z) + |z − xi−1|} .

Denote c := |xi − xi−1|; then xi is also a minimizer for

inf
|z−xi−1|=c

h(z).

By Lagrange multiplier, there exists λ ∈ R such that

∇xE (ti, xi) = λ(xi − xi−1).

Step 2. Moreover, since the function h1(t) = h(xi−1 + t(xi − xi−1)) satisfies h1(t) ≥ h1(1)
for all t ∈ [0, 1], we obtain

0 ≥
[
dh1
dt

]
t=1

= ∇xE (ti, xi) · (xi − xi−1) + |xi − xi−1|.

Thus either xi = xi−1, or |∇xE (ti, xi)| ≥ 1 and λ < 0. Therefore, we can conclude that

∇xE (ti, xi) · (xi − xi−1) = −max{1, |∇xE (ti, xi)|} · |xi − xi−1|.

Step 3. Consequently, using |t − ti| ≤ δ, |xi−1 − xi| ≤ ε ≤ δ and the fact that ∇xE (·, ·) is
continuous on compact sets, we obtain that

−∇xE (t, v(s)) · v̇(s) ≥ max{1, |∇xE (t, v(s))|} · v̇(s)− g(δ) |v̇(s)|

for every s ∈ [a, b]. Therefore,

E (t, xi−1)− E (t, xi) = −
∫ b

a

∇xE (t, v(s)) · v̇(s) ds

≥
∫ b

a

max{1, |∇xE (t, v(s))|} · v̇(s) ds− g(δ) · |xi − xi−1|.

�

Now we prove the new energy-dissipation upper bound.

Lemma 8 (Upper bound). Let u be the function as in Lemma 6. If u(t−) 6= u(t), then

∆new(t, u(t−), u(t)) ≤ E (t, u(t−))− E (t, u(t)).

Proof. Let 0� τ � ε� δ � 1. By the definition of the discretized solution xε,τ , for every
t ∈ (0, T ) we have

xε,τ (t− δ) = xε,τ (ti) and xε,τ (t) = xε,τ (ti+k)

for ti, ti+k ∈ [t− 2δ, t+ δ].
We can construct an absolutely continuous function v : [0, 1]→ Rd by linearly interpolat-

ing the following (k + 3) points:

u(t−), xε,τ (t− δ) = xε,τ (ti), x
ε,τ (ti+1), . . . , x

ε,τ (ti+k) = xε,τ (t), u(t).
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More precisely, we define

z0 = u(t−),

z1 = xε,τ (t− δ) = xε,τ (ti),

z2 = xε,τ (ti+1),

. . .

zk+1 = xε,τ (ti+k) = xε,τ (t),

zk+2 = u(t),

and denote r := 1/(k + 2) and

v(s) = zj +
s− jr
r

(zj+1 − zj) when s ∈ [jr, (j + 1)r], j = 0, 1, . . . , k + 1.

By the definition of the new dissipation, we have

∆new(t, u(t−), u(t)) ≤
∫ 1

0

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds

=
k+1∑
j=0

∫ (j+1)r

jr

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds.

When j = 0 and j = k + 1, we estimate∫ (j+1)r

jr

max{1, |∇xE (t, v(s))|} · |v̇(s)| ≤ C

∫ (j+1)r

jr

|v̇(s)| ds = C|zj+1 − zj|.

When j = 1, 2, . . . , k, using Lemma 7, we obtain∫ (j+1)r

jr

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds ≤ E (t, xε,τ (ti+j−1))− E (t, xε,τ (ti+j))

+g(δ) · |xε,τ (ti+j)− xε,τ (ti+j−1)|

where g(δ) → 0 as δ → 0. Taking the sum over j = 0, 1, . . . , k + 1 and using the bound
Diss(xε,τ ; [0, T ]) ≤ C, we find that

∆new(t, u(t−), u(t)) ≤
∫ 1

0

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds

≤ E (t, xε,τ (t− δ))− E (t, xε,τ (t)) + Cg(δ)

+C|u(t−)− xε,τ (t− δ)|+ C|xε,τ (t)− u(t)|.

Taking the limit τ → 0, then ε→ 0, then δ → 0, we conclude that

∆new(t, u(t−), u(t)) ≤ E (t, u(t−))− E (t, u(t)).

This finishes the proof. �

5. Appendix: Technical proofs

5.1. Example 2.
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Part I. Energetic solution via time-discretization. Step 1. Fix a time step τ > 0. To
find the discretized solution xτ (t), it suffices to calculate xi := xτ (ti) where 0 = t0 < · · · <
tN ≤ 1 and ti − ti−1 = τ for all i = 1, 2, . . . , N. Here N ∈ N satisfies 1 ∈ [τN, τ(N + 1)).

We have x0 = 0 and for all i = 1, 2, . . . , N , xi is a minimizer of the functional

x ∈ R 7→ E (ti, x) + |x− xi−1|.

Step 2. Let us fix t ∈ (0, 2] and consider the functional

F (x) := E (t, x) + |x| = x2 − x4 + 0.3x6 + t(1− x2)− x+ |x|, x ∈ R.

It is straightforward to see that

• When t ≤ 1, F (x) has two local minimizers (see Fig. 1)

x = 0 and x = y(t) :=

√
10 +

√
10 + 90t

3
.

Moreover,

F (y(t))− F (0) =
1

243
(10 +

√
10 + 90t)(8− 18t−

√
10 + 90t),

which is positive if t < 1/6 and negative if t > 1/6. Hence F has a unique global
minimizer x = 0 if 0 ≤ t < 1/6, and then F has a unique global minimizer at x = y(t)
if 1/6 < t < 1.
• When t > 1, F (x) has a unique local (also global) minimizer at x = y(t).

Step 3. By induction, we can show that if ti0 < 1/6 ≤ ti0+1, then xi = 0 for all i = 1, 2, ..., i0,
and either xi0+1 = y(ti0+1), or xi0+1 = 0 and xi0+2 = y(ti0+2).

Next, we show that if ti−1 ≥ 1/6 and xi−1 = y(ti−1) > 0, then xi = y(ti). Recall that xi is
a global minimizer for the functional

x ∈ R 7→ Fi(x) := E (ti, x) + |x− xi−1| = x2 − x4 + 0.3x6 + ti(1− x2)− x+ |x− xi−1|.

By using the triangle inequality −x+ |x−xi−1| ≥ −xi−1 and the same analysis of F , we can
conclude that xi = y(ti).

Taking the limit as τ → 0, we obtain the energetic solution

x(t) = 0 if t ∈ [0, 1/6), x(1/6) ∈ {0,
√

5/3}, x(t) = y(t) if t ∈ [1/6, 2].

Step 4. Finally, we show that the energetic solution does not satisfies the new energy-
dissipation balance. It suffices to show that at the jump point t = 1/6,

E (t, x(t+))− E (t, x(t−)) > −∆new(t, x(t−), x(t+)).

In fact, a direct computation gives us at t = 1/6,

E (t, x(t+))− E (t, x(t−)) = E (1/6,
√

5/3)− E (1/6, 0) = −
√

5/3.

On the other hand, at t = 1/6 we have

∆new(t, x(t−), x(t+)) =

∫ √15/3
0

max

{
1,

∣∣∣∣23y − 4y3 + 1.8y5 − 1

∣∣∣∣} dy =
185

486
+

√
5

3
.

Thus,

E (t, x(t+))− E (t, x(t−)) > −∆new(t, x(t−), x(t+)) at t = 1/6.
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Part II. BV solution constructed by the viscous dissipation Ψε(x) = |x|+ εx2. We
construct the BV solution via vanishing viscosity with the viscous term εx2 by the method
in [20].

Let us briefly recall the construction of the BV solution. Let ε > 0 and τ > 0 and denote
e := ε/τ and let 0 = t0 < · · · < tN ≤ T be a partition of [0, T ] satisfying ti − ti−1 = τ
for every i ∈ {1, . . . , N} and T − tN < τ . The discretized problem now becomes to find a
sequence {xε,τ}Ni=1 such that xε,τ0 = 0 and xε,τi is a global minimizer for the functional

x ∈ R 7→ {E (ti, x) + |x− xτ,εi−1|+ e|x− xτ,εn−1|2}
for every i = 1, 2, ..., N and e = ε/τ. Then use interpolation and pass to the pointwise limit
as τ → 0, ε→ 0, e = ε/τ →∞ to obtain the BV solution.

Now coming back to our example, for t ∈ (0, 2], we consider the function

F (x) := E (t, x) + |x|+ e|x|2 = t+ (1 + e− t)x2 − x4 + 0.3x6 − x+ |x|, x ∈ R.
If e is large enough (such that 1 + e− t ≥ 1), one has

F (x) ≥ t+ x2 − x4 + 0.3x6 = t+
1

6
x2 +

(√
5

6
x−

√
3

10
x3

)2

≥ t = F (0).

Thus F has a unique global minimizer at x = 0. Therefore, the discretized sequence {xτ,εi }
is identically equal to 0. Thus the BV solution is also identically equal to 0.

Part III. BV solution constructed by epsilon-neighborhood method. Step 1. Let
ε > 0 and τ > 0 be small. Let us compute xi := xε,τ (ti), where ti = i/N for i = 0, 1, . . . , N .
Here N ∈ N such that 1 ∈ [τN, τ(N + 1)).

By definition, x0 = 0 and xi is a minimizer for the functional

Fi(x) := E (ti, x) + |x− xi−1| = x2 − x4 + 0.3x6 + ti(1− x2)− x+ |x− xi−1|
over x ∈ [xi−1 − ε, xi−1 + ε].

Step 2. In particular, if xi−1 = 0, then xi is a minimizer for

Fi(x) := x2 − x4 + 0.3x6 + ti(1− x2)− x+ |x|
over x ∈ [−ε, ε].

Recall that if ti < 1, then Fi(x) has two local minimizer at x = 0

x = y(t) =

√
10−

√
10 + 90ti

3
=

1

3

√
100− (10 + 90ti)

10 +
√

10 + 90ti
≥
√

1− ti
2

.

Therefore, if ε <
√

(1− ti)/2, then x = 0 is the unique minimizer for Fi(x) on x ∈ [−ε, ε].
By induction, we can conclude that if ti < 1− 2ε2, then xi = 0.

Step 3. We show that if ti ∈ [1− 2ε2, 1], then xi ≤ y(ti). By induction, we can assume that
xi−1 ≤ y(ti−1). We assume by contradiction that xi > y(ti).

Since xi−1 ≤ y(ti−1) < y(ti) < xi ≤ xi−1+ε, there exists a ∈ (y(ti), xi)∩ [xi−1−ε, xi−1+ε].
Then using the fact that the function x 7→ x2 − x4 + 0.3x6 + ti(1− x2) is strictly increasing
on [y(ti),∞) and the triangle inequality −x+ |x− xi−1| ≥ −xi−1 we have

Fi(xi) = x2i − x4i + 0.3x6i + ti(1− x2i )− x+ |x− xi−1|
> a2 − a4 + 0.3a6 + ti(1− a2)− xi−1 = Fi(a).
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This contradicts to the assumption that xi is a minimizer for Fi(x) over x ∈ [xi−1−ε, xi−1+ε].
Thus we must have xi ≤ y(ti).

Step 4. Now assume that ti ∈ (1, 2] and xi−1 ∈ [−y(ti−1), y(ti−1)]. It is straightforward to
show that if xi−1 = 0, then xi ∈ {±ε}; and if xi−1 ∈ (0, y(ti−1)], then xi = min{xi−1+ε, y(ti)}.

Then taking the limit as τ → 0, we obtain that the epsilon-neighborhood solution xε(·)
satisfies xε(t) = 0 if t < 1− 2ε2 and xε(t) = y(t) for all t ∈ (1, 2].

Taking the limit ε→ 0, we obtain that the BV solution constructed by epsilon-neighborhood
method satisfies that x(t) = 0 if t ∈ (0, 1) and x(t) = y(t) for t ∈ (1, 2).

Step 5. We show that the BV solution constructed by epsilon-neighborhood does not satisfy
the energy-dissipation balance. At the jump point t = 1, one has

−|x(t−)− x(t+)| = −2
√

5

3
> E (t, x(t+))− E (t, x(t−)) = −400

243
−
√

20

3
.

5.2. Proof of energy estimate in Lemma 3. Step 1. By the minimality of xε,τn at time
tn, we have

E (tn, x
ε,τ
n ) + |xε,τn−1 − xε,τn | ≤ E (tn, x

ε,τ
n−1) = E (tn−1, x

ε,τ
n−1) +

∫ tn

tn−1

∂tE (t, xε,τn−1) dt.

From the assumption (7),

∂tE (t, xε,τn−1) ≤ λE (tn−1, x
ε,τ
n−1) e

λ(t−tn−1) for all t ∈ [tn−1, tn],

by Gronwall’s inequality we obtain

E (tn, x
ε,τ
n ) ≤ E (tn, x

ε,τ
n ) + |xε,τn−1 − xε,τn |

≤
∫ tn

tn−1

λE (tn−1, x
ε,τ
n−1) e

λ(t−tn−1)dt+ E (tn−1, x
ε,τ
n−1)

= E (tn−1, x
ε,τ
n−1)(e

λ(tn−tn−1) − 1) + E (tn−1, x
ε,τ
n−1) = E (tn−1, x

ε,τ
n−1) e

λ(tn−tn−1).

By induction,

E (tn, x
ε,τ
n ) ≤ E (tn−1, x

ε,τ
n−1) e

λ(tn−tn−1) ≤ E (tn−2, x
ε,τ
n−2) e

λ(tn−1−tn−2) eλ(tn−tn−1)

≤ · · · ≤ E (0, x0) e
λ(t1−t0) eλ(t2−t1) . . . eλ(tn−tn−1) = E (0, x0) e

λtn .

Finally, by (7) again,

E (0, xε,τn ) ≤ E (tn, x
ε,τ
n ) eλtn ≤ E (0, x0) e

2λtn .

Step 2. Now we prove the integral bound. Assume that ti−1 < s ≤ ti < ti+1 < · · · < tj ≤
t < tj+1, where {tn} is the partition corresponding to xε,τ . We start by writing

E (t, xε,τ (t))− E (s, xε,τ (s)) = E (t, xε,τ (t))− E (tj, x
ε,τ (tj)) + . . .(10)

+E (tj, x
ε,τ (tj))− E (tj−1, x

ε,τ (tj−1)) + E (ti, x
ε,τ (ti))− E (s, xε,τ (s)).

By the minimality of xk := xε,τ (tk) at time tk, we have

E (tk, xk)− E (tk−1, xk−1) ≤ E (tk, xk−1)− |xk−1 − xk| − E (tk−1, xk−1)

=

∫ tk

tk−1

∂tE (r, xk−1) dr − |xk−1 − xk|.
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Taking the sum for all k from i+ 1 to j and using xε,τ (r) = xk−1 for all r ∈ [tk−1, tk), we get

j∑
k=i+1

[E (tk, xk)− E (tk−1, xk−1)] ≤
j∑

k=i+1

∫ tk

tk−1

∂tE (r, xε,τ (r)) dr −
j∑

k=i+1

|xk − xk−1|.(11)

Moreover, since ti−1 < s ≤ ti and tj ≤ t < tj+1, we have

E (ti, x
ε,τ (ti))− E (s, xε,τ (s)) = E (ti, xi)− E (s, xi−1)

≤ E (ti, xi−1)− |xi−1 − xi| − E (s, xi−1)

=

∫ ti

s

∂tE (r, xε,τ (r)) dr − |xε,τ (s)− xi|.(12)

E (t, xε,τ (t))− E (tj, x
ε,τ (tj)) = E (t, xj)− E (tj, xj)

=

∫ t

tj

∂tE (r, xε,τ (r)) dr − |xε,τ (t)− xj|,(13)

From (10), (11), (13) and (12), we get

E (t, xε,τ (t))− E (s, xε,τ (s)) ≤
∫ t

s

∂tE (r, xε,τ (r)) dr

−

(
|xε,τ (t)− xj|+

j∑
k=i+1

|xk − xk−1|+ |xε,τ (s)− xi|

)

=

∫ t

s

∂tE (r, xε,τ (r)) dr −Diss(xε,τ ; [s, t]).

5.3. Proof of Lemma 5.

Proof. Since u is BV, the distributional derivative Du can be split into three parts: the
absolutely continuous part w.r.t. Lebesgue measure Dau, the jump part Dju and the Cantor
part Dcu. Now we denote u′co = Dau+Dcu, then applying the chain rule formula for E ∈ C1

and u ∈ BV (see [2]), we get

E (t1, u(t1))− E (t0, u(t0))

=

∫ t1

t0

∂tE (s, u(s)) ds+

∫ t1

t0

〈∇xE (s, u(s)), u′co(s)〉 ds

+
∑

t∈J∩(t0,t1)

[
E (t, u(t))− E (t, u(t−))

]
+

∑
t∈J∩(t0,t1)

[
E (t, u(t+))− E (t, u(t))

]
+E (t0, u(t+0 ))− E (t0, u(t0)) + E (t1, u(t1))− E (t1, u(t−1 ))

≥
∫ t1

t0

∂tE (s, u(s)) ds−
∫ t1

t0

|u′co(s)| ds

−
∑

t∈J∩(t0,t1)

|E (t, u(t))− E (t, u(t−))| −
∑

t∈J∩(t0,t1)

|E (t, u(t+))− E (t, u(t))|

−|E (t0, u(t+0 ))− E (t0, u(t0))| − |E (t1, u(t1))− E (t1, u(t−1 ))|.
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Notice that∫ t1

t0

|u′co(s)| ds = Diss(u; [t0, t1])−
∑

t∈J∩(t0,t1)

|u(t)− u(t−)| −
∑

t∈J∩(t0,t1)

|u(t+)− u(t)|

−|u(t+0 )− u(t0)| − |u(t1)− u(t−1 )|.(14)

Moreover, for every absolutely continuous curve v in AC([0, 1];Rd) such that v(0) = u(t−),
v(1) = u(t) we have

|E (t, u(t))− E (t, u(t−))| =

∣∣∣∣∫ 1

0

∇xE (t, v(s)) · v̇(s) ds

∣∣∣∣
≤

∫ 1

0

max{1, |∇xE (t, v(s))|} · |v̇(s)| ds.

Therefore,

|E (t, u(t))− E (t, u(t−))| ≤ ∆new(t, u(t−), u(t)).(15)

Similarly,

|E (t, u(t+))− E (t, u(t))| ≤ ∆new(t, u(t), u(t+)).(16)

Thus it follows from (14), (15) and (16)

E (t1, u(t1))− E (t0, u(t0)) ≥
∫ t1

t0

∂tE (s, u(s)) ds−Diss(u; [t0, t1])

+
∑

t∈J∈(t0,t1)

|u(t−)− u(t)|+
∑

t∈J∈(t0,t1)

|u(t)− u(t+)|

+|u(t0)− u(t+0 )|+ |u(t−1 )− u(t1)|
−

∑
t∈J∩(t0,t1)

∆new(t, u(t−), u(t))−
∑

t∈J∩(t0,t1)

∆new(t, u(t), u(t+))

−∆new(t0, u(t0), u(t+0 ))−∆new(t1, u(t−1 ), u(t1))

=

∫ t1

t0

∂tE (s, u(s)) ds−Dissnew(u; [t0, t1]).

This ends the proof of Lemma 5. �

Acknowledgments. I warmly thank Professor Giovanni Alberti for proposing to me the
problem and giving many helpful directions.
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