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Global-in-time behavior of the solution to a

Gierer-Meinhardt system∗

Georgia Karali, Takashi Suzuki and Yoshio Yamada

August 20, 2012

Abstract

Gierer-Meinhardt system is a mathematical model to describe bio-
logical pattern formation due to activator and inhibitor. Turing pat-
tern is expected in the presense of local self-enhancement and long-
range inhibition. The long-time behavior of the solution, however, has
not yet been clarified mathematically. In this paper, we study the case
when its ODE part takes periodic-in-time solutions, that is, τ = s+1

p−1 .
Under some additional assumptions on parameters, we show that the
solution exists global-in-time and absorbed into one of these ODE or-
bits. Thus spatial patterns eventually disappear if those parameters
are in a region without local self-enhancement or long-range inhibition.

1 Introduction

Several models in mathematical biology take the form of a reaction-
diffusion system

ut = ε2∆u+ f(u, v)

τvt = D∆v + g(u, v) in Ω× (0, T ) (1)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T ) (2)

where ε, τ , and D are positive constants, Ω is a bounded domain inRN

with smooth boundary ∂Ω, and ν is the outer unit normal vector. One

∗Key Words: reaction-diffusion equation, Gierer-Meinhardt system, Turing pattern,
Hamilton structure, asymptotic behavior of the solution, AMS Mathematical Subject
Classification 2010: 35K57, 35Q92
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of them is the Gierer-Meinhardt system in morphogenesis [2] which is
the case of

f(u, v) = −u+
up

vq
, g(u, v) = −v +

ur

vs
(3)

with
p > 1, q, r > 0, s > −1. (4)

It is concerned with pattern formations of spatial tissue structures of
hydra, where u = u(x, t) > 0 and v = v(x, t) > 0 stand for the activator
and inhibitor, respectively. Fundamental ideas of this model are from
Turing [17], that is, instability of constant stationary solutions is driven
by diffusion terms (see also Murray [13]).

Mathematical study on Gierer-Meinhardt system, the reaction -
diffusion system (1)-(2) with the nonlinearity (3)-(4), has been done
in details. “Turing pattern” is observed as spiky stable stationary
solutions [15, 6] in the case of

0 < ε ≪ 1, D ≫ 1, 0 < τ ≪ 1, (5)

and
p− 1

r
<

q

s+ 1
. (6)

See also Wei [18] and the references therein for later studies.
Condition (6) takes the following roles in the ODE system

du

dt
= −u+

up

vq
, τ

dv

dt
= −v +

ur

vs
. (7)

First, if (6) is the case, the ODE orbits near the equilibrium (u, v) =
(1, 1) are cyclic. Next, in the case of

0 < τ <
s+ 1

p− 1
(8)

the constant solution (u, v) = (1, 1) is stable as a steady state of (7)
because the linearized equation takes the form

d

dt

(
y
τz

)
=

(
p− 1 −q
r −(s+ 1)

)(
y
z

)
and the real parts of all the eigenvalues of the matrix

A =

(
p− 1 −q
r/τ −(s+ 1)/τ

)
are negative if and only if (8) is satisfied. Finally, if τ = 0 the ODE
system (7) is reduced to the single equation

du

dt
= −u+ uγ , γ = p− qr

s+ 1
.
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Then condition (6) implies 0 < γ < 1 and hence global-in-time exis-
tence of the solution of this reduced system.

In spite of such a stable profile of the stationary solution (u, v) =
(1, 1) in ODE, it becomes unstable as a steady state of

ut = ε2∆u− u+
up

vq

τvt = D∆v − v +
ur

vs
in Ω× (0, T ) (9)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T ) (10)

if its linearized part

∂

∂t

(
w
τz

)
=

(
ε2∆+ p− 1 −q

r D∆− (s+ 1)

)(
w
z

)
in Ω× (0, T ) (11)

with
∂w

∂ν
=

∂z

∂ν
= 0 on ∂Ω× (0, T ) (12)

is unstable. This property arises if

λ

(
α
τβ

)
=

(
−µε2 + p− 1 −q

r −µD − s− 1

)(
α
β

)
(13)

has a positive eigenvalue λ, where µ is a positive eigenvalue of −∆ with
∂
∂ν · = 0 on ∂Ω. In fact, since

λ = −µε2 + (p− 1)− qr

µD + (s+ 1) + τλ

the instability λ = λ(ε,D, τ) > 0 occurs for D ≫ 1 and 0 < ε ≪ 1.
Condition (6), on the other hand, implies λ(ε,D, τ) < 0 for 0 < D ≪ 1
and 0 < τ ≪ 1. Thus, the instability of (u, v) = (1, 1) as a stationary
state of (9) with (10) arises if and only if D ≫ 1, provided that (6)
and 0 < ε, τ ≪ 1 are the cases.

Henceforth we assume (6). Unique existence of the regular solution
local-in-time to (9) with (10) is standard, for given smooth initial values

u|t=0 = u0(x) ≥ 0, v|t=0 = v0(x) > 0 on Ω. (14)

Its global-in-time existence was studied by Masuda-Takahashi [12], and
recently, Jiang [7] has established this property for

p− 1

r
< 1. (15)
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Condition (15) is almost optimal, regarding the work of Ni-Suzuki-
Takagi [14] concerning the ODE system (7). Namely, according to
their classification of orbits, there is fintie time blowup in (7) for

p− 1

r
> 1.

One of other mathematical results on the Gierer-Meinhardt system
(9) is the existence and non-existence of the global-in-time solution to
the shadow system

ut = ε2∆u− u+
up

ξq
in Ω× (0, T )

∂u

∂ν
= 0 on ∂Ω× (0, T )

τ
dξ

dt
= −ξ +−

∫
Ω

ur

ξs
dx in (0, T )

done by Li-Ni [11], where

−
∫
Ω

· dx =
1

|Ω|

∫
Ω

· dx.

Yanagida [19, 20], on the other hand, formulated (9) as a skew-gradient
system

rut = rε2∆u+Hu(u, v)

τqvt = qD∆v −Hv(u, v) in Ω× (0, T )

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T )

in the case of
p+ 1 = r, q + 1 = s,

using

H(u, v) = −r

2
u2 +

q

2
v2 +

ur

vq
.

Consequently, any non-degenerate mini-maximizer of

E(u, v) =

∫
Ω

rε2

2
|∇u|2 − qD

2
|∇v|2 −H(u, v) dx

is linearly stable by general theory.
The asymptotic behavior of the solution as t ↑ +∞ of the Gierer-

Meinhardt system, however, has been studied mostly for the system
with supplementary terms

ut = ε2∆u− u+
up

vq
+ σ1

τvt = D∆v − v +
ur

vs
+ σ2 in Ω× (0, T )
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with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T )

where σi = σi(x) ≥ 0, i = 1, 2, are smooth functions satisfying σ1 +
σ2 > 0 (see [12, 7]). Technical difficulties to this problem lie on the
uniform esitmate of v > 0 from below, and to our knowledge the present
paper is the first challenge for the case without supplementary terms.

Our result, however, is restrited to the special case

τ =
s+ 1

p− 1
(16)

where the ODE part takes the first integral (see [14])

H(u, v) =
vs+1

up−1
+

p− 1

r − p+ 1
ur−p+1 − s+ 1

s+ 1− q
vs+1−q. (17)

Thus, any solution (u, v) = (u(t), v(t)) to (7) with u(t), v(t) > 0 satis-
fies

d

dt
H(u(t), v(t)) = 0.

If
p− 1

r
≤ 1 ≤ q

s+ 1
, (18)

furthermore, all the level curves of H are closed in uv plane with
u, v > 0. Consequently, any solution (u, v) = (u(t), v(t)) to (7) is
time-periodic with a period determined by the first integral (or en-
ergy) H = H(u(t), v(t)), which is constant in t.

Actually, periodic orbits to (7) arise if and only if (16) and (18) are
the cases, according to the classification of the ODE orbits done by
[14]. Our result is now stated as follows.

Theorem 1. Let
d1 = ε2, d2 = τ−1D, (19)

and assume

2
√
d1d2

d1 + d2
≥

√
(s+ 1)(p− 1)

sp
, s > 0. (20)

Assume, furthermore, (16), that is,

τ =
s+ 1

p− 1

and
p

r
< 1 <

q

s+ 1
. (21)
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Then, given a solution (u, v) = (u(·, t), v(·, t)) to the Gierer-Meinhardt
system (9) with (10), we have an ODE orbit Ô ⊂ R2 to (7) such that

lim
t↑+∞

distC2((u(·, t), v(·, t)), Ô) = 0. (22)

Furthermore, if this Ô is not composed of a single point there is ℓ > 0
such that

lim
t↑+∞

∥(u(·, t+ ℓ), v(·, t+ ℓ))− (u(·, t), v(·, t))∥C2 = 0. (23)

The proof is based on the theory of dynamical systems. We in-
troduce a Lyapunof function which has not been known so far. This
Lyapunov function is valid only in the case of (20) and (21). In spite
of these additional restrictions, parameters (p, q, r, s) satisfying all the
requirements of Theorem 1 exist.

Actually, the set of the values of the left-hand of (20) is equal to
[1, 0) as di, i = 1, 2, varies. Hence inequality (20) requires

p− 1

s
≤ 1, (24)

which, however, is consistent to (21). The extremal value 1 of the left-
hand side of (20) is achieved if and only if d1 = d2. In other words
the admissible parameter region of (p, q, r, s) assumed in Theorem 1 is
wider as two diffusion coefficients di, i = 1, 2, are closer.

Since condition (21) is included by (15) and (18), in the parameter
region treated in Theorem 1 any solution (u, v) = (u(·, t), v(·, t)) to
(9) with (10) and (14) exists global-in-time, any solution to its ODE
part (7) is time-periodic, and any PDE orbit O = {(u(·, t), v(·, t))}t≥0

is absorbed into one of the periodic orbits of its ODE part, denoted
by Ô. In other words, any spatial patterns of the Gierer-Meinhardt
system eventually disappear in the parameter region (21) of (p, q, r, s)
under the assumptions of τ = (s + 1)/(p − 1) and d1 ≈ d2. These
assumptions are far from (5), the local self-enhancement 0 < ε ≪ 1
and the long-range inhibition D ≫ 1, 0 < τ ≪ 1. Thus Theorem
1 still supports the paradigm, Turing patterns expected under such
environments [9]. .

Assumption (16) may look restrictive. Here we emphasize again
that this is the only case that the ODE part of (9)-(10) takes peiodic-
in-time orbits. The proof of Theorem 1, furthermore, implies that the
stationary state to (9)-(10) must be spatially homogeneous without
this condition.

Theorem 2. Let

p

r
< 1 <

q

s+ 1
,

p− 1

s
≤ 1 (25)
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and d,D > 0 be in the region

2
√
dD√

s+1
p−1d+

√
p−1
s+1D

≥

√
(s+ 1)(p− 1)

sp
. (26)

Then any solution to

d∆u− u+
up

vq
= 0, D∆v − v +

ur

vs
= 0 in Ω (27)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω (28)

must be the constant (1, 1).

Theorem 1.1 of Jiang-Ni [8] is also concerned with the uniqueness
of the solution to (27)-(28). There, this property is established for

max{q, r} < s+ 1 (29)

and D/d ≤ k with k = k(p, q, r, s) calculated explicitly. We note that
this case of [8] is a counter part of the one treated in Theorem 2,
comparing (25) and (29).

The same properties as in Theorems 1 and 2 are observed in the
classical prey-predator system

ut = ε2∆u+ u(a− bv)

τvt = D∆v + v(−c+ du) in Ω× (0, T ) (30)

with
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω× (0, T ), (31)

where a, b, c, d > 0 are constants (see [1, 10]), that is, the ODE part
takes always time-periodic orbits and the PDE solution is absorbed
into one of them. We have, actually, common mathematical structures
between these two models. In fact, first, any orbit of the ODE part of
(30)

du

dt
= u(a− bv), τ

dv

dt
= v(−c+ du) (32)

with u = u(t) > 0 and v = v(t) > 0 is time-periodic. This property
follows from the fact that system (32) takes the first integral

H(u, v) = −a log v + bv − τ−1c log u+ τ−1du (33)

of which level curves are closed in uv plane, u, v > 0. Then,

H(u(·, t), v(·, t)) = −
∫
Ω

H(u(x, t), v(x, t))dx (34)
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casts a Lyapunov function to (30) with (31).
Although these structures are common to (7) for (16), here we use

additional technical ingredients. One is due to Masuda-Takahashi [12]
estimating

d

dt

∫
Ω

uav−bdx, a, b > 0.

The other is the use of a comparison principle to v−a to derive the
uniform estimate of v = v(x, t) > 0 from below.

In the following sections, first, we confirm that H(u, v) defined by
(17) is a Hamiltonian of an ODE system associated with (7) for (16)
and then show that H(u(·, t), v(·, t)) defined by (34) and (17) acts as a
Lyapunov function to (9) with (10). This propery implies Theorem 2
immediately. The proof of Theorem 1 is given in the final section.

2 Preliminaries

The parabolic strong maximum principle to (9), (10), and (14) guar-
antees u(·, t) > 0 in Ω × (0,+∞), provided that u0 ̸≡ 0 on Ω. Hence
we shall treat positive solutions to (9) with (10) and to (7), mostly.

Writing (7) in the form of

u−p(ut + u) = v−q, vs(vt + τ−1v) = τ−1ur,

we introduce new variables,

ξ =
u−p+1

p− 1
, η =

vs+1

s+ 1
. (35)

Then it follows that

ξt = −utu
−p, ηt = vsvt (36)

and hence

ξt = u−p+1 − v−q = (p− 1)ξ − {(s+ 1)η}−
q

s+1

ηt = −τ−1vs+1 + τ−1ur = −τ−1(s+ 1)η + τ−1{(p− 1)ξ}−
r

p−1 .

It is not hard to formulate this system as a Hamilton system in the
case of (16), that is, p− 1 = τ−1(s+ 1). In fact, we have

dξ

dt
= Hη,

dη

dt
= −Hξ (37)

using

H(ξ, η) = (p−1)ξη+

(
r

p− 1
− 1

)−1

A(ξ)+

(
q

s+ 1
− 1

)−1

B(η) (38)
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and

A(ξ) = τ−1(p− 1)−
r

p−1 ξ1−
r

p−1

B(η) = (s+ 1)−
q

s+1 η1−
q

s+1 . (39)

This Hamiltonian is actually equivalent to the first integral defined by
(17).

Here we assume
p− 1

r
< 1 <

q

s+ 1

and put

α =
r

p− 1
− 1 > 0, β =

q

s+ 1
− 1 > 0. (40)

Then it follows that

H(ξ, η) = (p− 1)ξη + (s+ 1)−1(p− 1)−αα−1ξ−α

+(s+ 1)−β−1β−1η−β , (41)

recalling (16).
Now we use (19) and (35). First, (36) implies

ξt = −d1u
−p∆u+ u−p+1 − v−q

ηt = d2v
s∆v − τ−1vs+1 + τ−1ur.

Then, (9) and (10) read as

ξt = −d1(p− 1)ξ
p

p−1∆ξ−
1

p−1 +Hη, ξ > 0

ηt = d2(s+ 1)η
s

s+1∆η
1

s+1 −Hξ, η > 0 in Ω× (0, T )

and
∂ξ

∂ν
=

∂η

∂ν
= 0 on ∂Ω× (0, T ),

respectively. This formulation implies

d

dt
−
∫
Ω

H(ξ, η)dx = −
∫
Ω

Hξξt +Hηηt dx

= −
∫
Ω

−Hξd1(p− 1)ξ
p

p−1∆ξ−
1

p−1 +Hηd2(s+ 1)η
s

s+1∆η
1

s+1 dx,

while

Hξ = (p− 1)η − (s+ 1)−1(p− 1)−αξ−α−1

Hη = (p− 1)ξ − (s+ 1)−β−1η−β−1
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holds by (41). Then it follows that

d

dt
−
∫
Ω

H(ξ, η)dx = (p− 1)−
∫
Ω

−d1(p− 1)ηξ
p

p−1∆ξ−
1

p−1

+d2(s+ 1)ξη
s

s+1∆η
1

s+1 dx

+−
∫
Ω

d1(s+ 1)−1(p− 1)−α+1ξ−α+ 1
p−1∆ξ−

1
p−1

−d2(s+ 1)−βη−β− 1
s+1∆η

1
s+1 dx. (42)

The last two terms of the right-hand side of (42) are treated by

−
∫
Ω

ξ−α+ 1
p−1∆ξ−

1
p−1 dx =

(
−α+

1

p− 1

)
1

p− 1
−
∫
Ω

ξ−α−2|∇ξ|2dx

−
∫
Ω

η−β− 1
s+1∆η

1
s+1 dx =

(
β +

1

s+ 1

)
1

s+ 1
−
∫
Ω

η−β−2|∇η|2dx

using (10), while for the first two terms we note

−
∫
Ω

ηξ
p

p−1∆ξ−
1

p−1 dx =
1

p− 1
−
∫
Ω

∇(ηξ
p

p−1 ) · ξ−
p

p−1∇ξ dx

=
1

p− 1
−
∫
Ω

∇ξ · ∇η +
p

p− 1
ηξ−1|∇ξ|2 dx

and

−
∫
Ω

ξη
s

s+1∆η
1

s+1 dx = − 1

s+ 1
−
∫
Ω

∇(ξη
s

s+1 ) · η−
s

s+1∇η dx

= − 1

s+ 1
−
∫
Ω

∇ξ · ∇η +
s

s+ 1
ξη−1|∇η|2dx.
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Therefore, it follows that

1

p− 1

d

dt
−
∫
Ω

H(ξ, η)dx = −−
∫
Ω

d1

(
∇ξ · ∇η +

p

p− 1
ηξ−1|∇ξ|2

)
+d2

(
∇ξ · ∇η +

s

s+ 1
ξη−1|∇η|2

)
+d1(s+ 1)−1(p− 1)−α−1

(
α− 1

p− 1

)
ξ−α−2|∇ξ|2

+d2(s+ 1)−β−1(p− 1)−1

(
β +

1

s+ 1

)
η−β−2|∇η|2 dx

= −−
∫
Ω

(d1 + d2)∇ξ · ∇η + d1 ·
p

p− 1
ξ−1η|∇ξ|2

+d2 ·
s

s+ 1
ξη−1|∇η|2

+d1(s+ 1)−1(p− 1)−α−1

(
α− 1

p− 1

)
ξ−α−2|∇ξ|2

+d2(s+ 1)−β−1(p− 1)−1

(
β +

1

s+ 1

)
η−β−2|∇η|2 dx.

Here, the inequality α − 1
p−1 > 0 is equivalent to p

r < 1 and the
quadratic form

Q(X,Y ) = d1 ·
p

p− 1
X2 + d2 ·

s

s+ 1
Y 2 + (d1 + d2)XY

is non-negative definite if and only if (20). We thus end up with the
following lemma.

Lemma 3. Under the assumptions of Theorem 1, it holds that

d

dt
−
∫
Ω

H(ξ, η)dx ≤ −−
∫
Ω

c1|∇ξ−α/2|2 + c2|∇η−β/2|2 dx (43)

where ci > 0, i = 1, 2, are constants.

Concluding this section, we note the following. First, by (35) and
(40) it holds that

−
∫
Ω

H(ξ, η)dx ≈ −
∫
Ω

u−p+1vs+1 + ur−p+1 + v−q+s+1 dx (44)

and

−
∫
Ω

|∇ξ−α/2|2 + |∇η−β/2|2 dx ≈ −
∫
Ω

|∇u
r−p+1

2 |2 + |∇v
−q+s+1

2 |2 dx,

where
r − p+ 1 > 0 > −q + s+ 1.

Next, Lemma 3 implies the following proof.
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Proof of Theorem 2. Any solution (u, v) to (27)-(28) is regarded as
a stationary solution (u, v) to (9)-(10) for ε2 = d. This stationary
system of (9)-(10) is independent of τ , so that (u, v) may be regarded
as a stationary solution to (9)-(10) for τ = s+1

p−1 . Then, the left-hand

side of (43) vanishes because this (u, v) is independent of t. Therefore,
it follows that that (ξ, η) and hence (u, v) are spatially homogeneous
under the assumptions of Theorem 1. Here, condition (20) for d1 =
ε2 = d and d2 = τ−1D = p−1

s+1D means (26). Thus (u, v) = (1, 1)
follows if (25)-(26) are the cases.

3 Proof of Theorem 1

Henceforth, Ci, i = 1, 2, · · · , 13, denote positive constants independent
of t. To clarify their dependnce on parameters, say, a, b, · · · , we some-
times write them as Ci(a, b, · · · ). Furthermore, we shall use standard
semigroup estimates (see, for instance, [4, 16] and the references in [5]).

First, we show the following lemma.

Lemma 4. Under the assumptions of Theorem 1, it holds that

∥v(·, t)−1∥∞ ≤ C1 (45)

for any t ≥ 0.

Proof. Given ℓ > max{n/2, 1}, we put a = ℓ
q−s−1 > 0 and v = w−a >

0. Then we obtain
∥w(·, t)∥ℓ ≤ C2 (46)

by Lemma 3. It also holds that

wt = d2∆w − d2(a+ 1)w−1|∇w|2 + a−1τ−1(w − urwa(s+1)+1)

≤ d2∆w + a−1τ−1w

and hence

wt ≤ (d2∆− µ)w + (µ+ τ−1a−1)w in Ω× (0,+∞)

∂w

∂ν
= 0 on ∂Ω× (0,+∞),

where µ > 0. Then, the standard maximum principle guarantees

0 < w ≤ w on Ω× [0,+∞) (47)

using the solution w = w(x, t) to

wt = (d2∆− µ)w + (µ+ τ−1a−1)w in Ω× (0,+∞)

∂w

∂ν
= 0 on ∂Ω× (0,+∞)

w|t=0 = v0(x)
−a in Ω.
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It holds that

w(·, t) = et(d2∆−µ)v−a
0 + (µ+ a−1τ−1) ·

∫ t

0

e(t−s)(d2∆−µ)w(·, s)ds

with
∥et∆∥Lℓ(Ω)→Lℓ(Ω) ≤ C3(ℓ).

Therefore, we obtain

∥∆γw(·, t)∥ℓ ≤ C4(γ, ℓ)

by (46), where 0 < γ < 1. Then it follows that

∥w(·, t)∥W 2γ,ℓ ≤ C5(γ, ℓ)

which implies
∥w(·, t)∥∞ ≤ C6

by ℓ > max{n/2, 1} and Morrey’s theorem because 0 < γ < 1 is
arbitrary. Hence we obtain

∥v(·, t)−a∥∞ = ∥w(·, t)∥∞ ≤ C6

by (47). Since a > 0, the result follows with C1 = C
1/a
6 .

Following [12], now we estimate

d

dt

∫
Ω

uav−bdx

from above, where a, b > 0. First, we have

d

dt

∫
Ω

uav−bdx =

∫
Ω

aua−1v−but − buav−b−1vt dx

=

∫
Ω

−d1a∇u · ∇(ua−1v−b)− auav−b + aua−1+pv−b−q

+d2b∇v · ∇(uav−b−1) + τ−1b(uav−b − ua+rv−b−1−s)dx

=

∫
Ω

−a(a− 1)d1u
a−2v−b|∇u|2

+ab(d1 + d2)u
a−1v−b−1∇u · ∇v − b(b+ 1)d2u

av−b−2|∇v|2

+(τ−1b− a)uav−b + aua+p−1v−b−q

−τ−1bua+rv−b−s−1 dx.

The following lemma is essentially obtained in the proof of Lemma 2
of [7].
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Lemma 5. Let (6) and (15) be satisfied. Then, given a > 1 and b > 0
such that

2
√
d1d2

d1 + d2
≥

√
ab

(a− 1)(b+ 1)
, (48)

it holds that

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx

+C7(a, b)

(∫
Ω

v−θ/εdx

)ε (∫
Ω

uav−bdx

)1−ε

(49)

with ε and θ defined by

θ =
r

r − p+ 1− δ

[
q − (p− 1)(s+ 1)

r
−
(
s+ 1

r
− b

a

)
δ

]
ε =

δ

a

(
r

r − p+ 1− δ

)
. (50)

Here we take 0 < δ ≪ 1 so that 0 < ε < 1 and θ > 0 are achieved,
recalling (6).

Proof. By (48) the quadratic form

Q(X,Y ) = a(a− 1)d1X
2 + b(b+ 1)d2Y

2 − ab(d1 + d2)XY

is non-negative definite. Hence it holds that

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx

+

∫
Ω

aua+p−1v−b−q − τ−1bua+rv−b−s−1 dx.

First, we use

ua+p−1v−b−q =
{
v−θ(uav−b)1−ε

}1− p−1+δ
r ·

(
ur+av−s−b−1

) p−1+δ
r (51)

derived from (50). In fact, we have

a(1− ε) · {1− p− 1 + δ

r
}+ (r + a) · p− 1 + δ

r

= a(1− ε) + (r + aε) · p− 1 + δ

r

= a+ p− 1 + δ + aε · p− 1 + δ − r

r
= a+ p− 1

14



and

{θ + b(1− ε)}{1− p− 1 + δ

r
}+ (s+ b+ 1) · p− 1 + δ

r

= θ + b(1− ε) + {−θ + bε+ s+ 1} · p− 1 + δ

r

= θ · r − p+ 1− δ

r
+ bε · −r + p− 1 + δ

r
+ b

+(s+ 1) · p− 1 + δ

r

=

{
q − (p− 1)(s+ 1)

r
− (

s+ 1

r
− b

a
)δ

}
− b

a
δ + b+ (s+ 1) · p− 1 + δ

r
= q + b.

Hence (51) follows.
Next, we use Young’s inequality as

aua+p−1v−b−q

= a
{
v−θ(uav−b)1−ε

}1− p−1+δ
r ·

(
ur+av−s−b−1

) p−1+δ
r

=

{
p− 1 + δ

r
· τ−1b · ur+av−s−b−1

} p−1+δ
r

·
{[

a

(
τ−1b · p− 1 + δ

r

)− p−1−δ
r

](1− p−1+δ
r )−1

·v−θ(uav−b)1−ε
}1− p−1+δ

r

≤ τ−1b · ur+av−s−b−1 + C8(a, b) · v−θ · (uav−b)1−ε,

where

C8(a, b) = (1− p− 1 + δ

r
) ·

[
a

(
τ−1b · p− 1 + δ

r

)− p−1−δ
r

](1− p−1+δ
r )−1

.

We thus end up with

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx

+C8(a, b)

∫
Ω

v−θ(uav−b)1−εdx.

Since∫
Ω

v−θ(uav−b)1−εdx ≤
{∫

Ω

uav−bdx

}1−ε

·
{∫

Ω

v−θ/εdx

}ε

,

we obtain (49) with C7(a, b) = C8(a, b).
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Now we show the following lemma.

Lemma 6. Under the assumptions of Theorem 1, any a > 1 admits
0 < b ≪ 1 such that ∫

Ω

uav−bdx ≤ C9, t ≥ 0. (52)

Proof. If a > 1 and b > 0 satisfy (48), we have

d

dt

∫
Ω

uav−bdx ≤ (−a+ τ−1b)

∫
Ω

uav−bdx+ C10

{∫
Ω

uav−bdx

}1−ε

by Lemmas 4 and 5. Given a > 1, on the other hand, we can take
0 < b ≪ 1 satisfying (48) and a > τ−1b. Then inequality (52) follows
from Lemma 2.2 of [12] or Lemma 3 of [7].

We proceed to the following lemma.

Lemma 7. Under the assumptions of Theorem 1, it holds that

lim
t↑+∞

∥(u(·, t), v(·, t))− (u(t), v(t))∥C2 = 0, (53)

where

u(t) = −
∫
Ω

u(x, t) dx, v(t) = −
∫
Ω

v(x, t) dx. (54)

Proof. Lemmas 4 and 6 guarantee∥∥∥∥up

vq
(·, t)

∥∥∥∥
ℓ

+

∥∥∥∥ur

vs
(·, t)

∥∥∥∥
ℓ

≤ C11

for ℓ > max{n/2, 1}. Then we obtain

∥u(·, t)∥∞ + ∥v(·, t)∥∞ ≤ C12 (55)

similarly to the proof of Lemma 4. The orbit

O = {(u(·, t), v(·, t)}t≥0

is thus compact in C2(Ω) × C2(Ω) by the parabolic regularity using
inequalities (45) and (55).

From the classical theory of dynamical systems (see [3], for exam-
ple), ω-limit set of the above O is defined by

ω(u0, v0) = {(u∗, v∗) | ∃tk ↑ +∞
s.t. ∥(u(·, tk), v(·, tk))− (u∗, v∗)∥C2 = 0}.
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It is compact and connected in C2(Ω) × C2(Ω). On the other hand,
we have

v∗ > 0 on Ω (56)

by (45) and therefore, a semi-flow is well-defined on ω(u0, v0) using (9)
and (10).

The set ω(u0, v0), furthermore, is invariant under this flow, and the
solution (ũ, ṽ) = (ũ(·, t), ṽ(·, t)) to (9), (10), and

ũ|t=0 = u∗ ≥ 0, ṽ|t=0 = v∗ > 0 on Ω

satisfies
d

dt
−
∫
Ω

H(ξ̃(·, t), η̃(·, t)) dx = 0, t > 0, (57)

where

ξ̃ =
ũ−p+1

p− 1
, η̃ =

ṽs+1

s+ 1
.

In fact, Fatou’s lemma guarantees∫
Ω

u−p+1
∗ vs+1

∗ + ur−p+1
∗ + v−q+s+1

∗ dx < +∞,

recalling (44). Since v∗ > 0 on Ω, it holds that∫
Ω

u−p+1
∗ dx < +∞

and hence u∗ ̸≡ 0. Then we obtain ũ(·, t) > 0 on Ω for t > 0 by the
parabolic strong maximum principle to (9) with (10).

Consequently, the value H(ξ̃(·, t), η̃(·, t)) is well-defined for t > 0,
which is invariant from the LaSalle principle. This property implies
(57). Then, it holds that

−
∫
Ω

c1|∇ξ−α/2|2 + c2|∇η−β/2|2 dx ≤ 0

by (43). Hence this (ũ, ṽ) = (ũ(·, t), ṽ(·, t)), t > 0, is a pair of spatially
homogeneous functions. Namely, the above (u∗, v∗) must be a pair of
positive constant functions.

We have proven that ω(u0, v0) is contained in the set of pairs of
positive constants. Then it holds that

lim
t↑+∞

{∥∇u(·, t)∥C1 + ∥∇v(·, t)∥C1} = 0 (58)

and hence (53) with (54).

We show the first part of Theorem 1.
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Lemma 8. Under the assumptions of Theorem 1 there is an ODE
orbit Ô ⊂ R2 satisfying (22).

Proof. Given the solution (u, v) = (u(·, t), v(·, t)) to (9), (10), and (14)
with u0 ̸≡ 0, the orbit O = {(u(·, ), v(·, t))}t≥0 exists global-in-time
and is compact in C2(Ω)× C2(Ω). By (43) the value

H∞ = lim
t↑+∞

H(ξ(·, t), η(·, t)) (59)

exists, where (ξ, η) = (ξ(·, t), η(·, t)) is defined by (35). Furthermore,
any (u∗, v∗) ∈ ω(u0, v0) is a pair of positive constants.

Since the set ω(u0, v0) is invariant under the flow defined by (9) and
(10), this (u∗, v∗) lies on one of the ODE orbit of (7) which is always
time-periodic in the case of τ = (p−1)/(s+1). Since this ODE system
takes the Hamilton formalism (37), the above orbit is detemined by the
first integral, that is, H∞ defined by (59). Hence ω(u0, v0) is contained
in a definite ODE orbit denoted by Ô, and then it holds that (22).

The following lemma is used for the proof of the second part of
Theorem 1.

Lemma 9. Under the assumptions of Theorem 1 each tk ↑ +∞ ad-
mits {t′k} ⊂ {tk} and an ODE solution (û(t), v̂(t)) such that Ô =
{(û(t), v̂(t))}t∈R and

lim
k→∞

sup
t∈[−T,T ]

∥(u(·, t+ t′k), v(·, t+ t′k))− (û(t), v̂(t))∥C2 = 0 (60)

for any T > 0.

Proof. Inequalities (45) and (55) imply

∥ut(·, t)∥C2 + ∥vt(·, t)∥C2 ≤ C13, t ≥ 1

by the parabolic regularity. Hence by the Ascoli-Arzelá theorem tk ↑
+∞ admits {t′k} ⊂ {tk} and a solution (û, v̂) = (û(·, t), v̂(·, t)) to (9)-
(10) such that

lim
k→∞

sup
t∈[−T,T ]

∥(u(·, t+ t′k), v(·, t+ t′k))− (û(·, t), v̂(·, t))∥C2 = 0 (61)

for any T > 0. Since (58) implies

∇û(·, t) = ∇v̂(·, t) = 0, t ∈ [−T, T ]

this (û, v̂) = (û(·, t), v̂(·, t)) must be spatially homogeneous, denoted
by (û, v̂) = (û(t), v̂(t)). Consequently, it is a solution to (7), and then
(60) follows from (61).
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We are ready to complete the following proof.

Proof of Theorem 1. It remains to show (23). Let ℓ ≥ 0 be the time
period of the solution to (7) on Ô in Lemma 9. Unless Ô is composed
of a single point, it holds that ℓ > 0. Then we take T > 2ℓ.

By Lemma 9, any tk ↑ +∞ admits {t′k} ⊂ {tk} and a solution

(û(t), v̂(t)) to (7) such that Ô = {(û(t), v̂(t))}t∈R and (60). Let t ∈
[−ℓ, ℓ] be fixed. Then it holds that

(û(t+ ℓ), v̂(t+ ℓ)) = (û(t), v̂(t)) (62)

and therefore,

lim sup
k→∞

∥(u(·, t+ ℓ+ t′k), v(·, t+ ℓ+ t′k))

−(u(·, t+ t′k), v(·, t+ t′k))∥C2

≤ lim
k→∞

∥(u(·, t+ ℓ+ t′k), v(·, t+ ℓ+ t′k))− (û(t+ ℓ), v̂(t+ ℓ))∥C2

+ lim
k→∞

∥(u(·, t+ t′k), v(·, t+ t′k))− (û(t), v̂(t))∥C2 = 0.

This property means

lim
s↑+∞

∥(u(·, t+ ℓ+ s), v(·, t+ ℓ+ s))− (u(·, t+ s), v(·, t+ s))∥C2 = 0

and in particular, (23) follows.
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