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FRONT MOTION IN THE ONE-DIMENSIONAL
STOCHASTIC CAHN-HILLIARD EQUATION

D.C. ANTONOPOULOU'Y, D. BLOMKER?, G.D. KARALITY

ABSTRACT. In this paper, we consider the one-dimensional Cahn-Hilliard equation perturbed by additive
noise, and study the dynamics of interfaces for the stochastic model. The noise is smooth in space and defined
as a Fourier series with independent Brownian motions in time. Motivated by the work of Bates & Xun on
slow manifolds for the integrated Cahn-Hilliard equation, our analysis reveals the significant difficulties and
differences in comparison to the deterministic problem. New higher order terms that we estimate appear due
to It6 calculus and stochastic integration and dominate the exponentially slow deterministic dynamics. Using
a local coordinate system and defining the admissible interface positions as a multi-dimensional diffusion
process, we derive a first order linear system of stochastic ordinary differential equations approximating the
equations of front motion. Furthermore, we prove stochastic stability of the approximate slow manifold of
solutions over a very long time scale and evaluate the noise effect.

Keywords: 1-D Stochastic Cahn-Hilliard equation, slow manifold, interface motion, additive noise, dynamics,
stability.

1. INTRODUCTION

1.1. The problem. The standard Cahn-Hilliard equation is a simple model for the phase separation of
a binary alloy at a fixed temperature proposed in [18, [19]. This model was extended by Cook [25], 43] in
order to incorporate thermal fluctuations in the form of an additive noise. In this paper, we consider the
one-dimensional Cahn-Hilliard equation posed on (0,1) with an additive stochastic term:

(SC-H) wy = (—Ugg + [(U))ge + O We, 0<z <1, t>0,
with no-flux boundary conditions of Neumann type:

(1.1) Uy = Upze = 0 at =0, 1.

The nonlinearity f = f(u) is the derivative of a smooth double equal-well potential F' taking its global
minimum value 0 at v = £1 [I], with non-degenerate minima. A typical example is F(u) := 1 (u* —1)? with
f(u) := u® — u. The parameter ¢ > 0 is a small atomistic interaction length modeling the width of layers
that develop during the initial phase separation of spinodal decomposition (cf. [13, [14]). In the later stages
of the separation process ¢ measures the width of transitions between the pure phases u = +1. Here, W, is
a space-time noise smooth in space, and defined as the formal derivative of an e-dependent Wiener process
We. As it is common in stochastic phase-field models, the noise scales with €. See for example the work of
Funaki [35] or Shardlow [47] on the stochastic Allen-Cahn equation. Here the noise strength is controlled by
e, more specifically it is bounded by O(£%) for some § > 9/2. For details see Assumption later.

A characteristic feature of the Cahn-Hilliard equation model is the conservation of total mass fol u(t, x)dx,
which we now fix to be M € (—1,1). Substituting @(t,z) := [ u(t,y)dy we obtain the equivalent integrated
stochastic Cahn-Hilliard equation:

(ISC-H) Gy = —%Uppee + (f(U2))e + We, 0<z <1, >0,
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associated with the boundary conditions:
a(t,0) =0, a(t,1) =M,

(12) ﬁzz(t70) - amz(t7 1) =0.

J. Carr and R. Pego in [22] 23] presented a detailed analysis of the slow evolution of patterns of the singularly
perturbed Ginzburg-Landau equation. They proved existence and persistence of metastable patterns and
analyzed the equations governing their motion. These metastable states have been characterized in terms
of the global unstable manifolds of equilibria. In [8 @], P.W. Bates and J. Xun extended their argument
and studied the dynamics of the one-dimensional C-H equation in a neighborhood of an equilibrium having
N +1 transition layers, using several estimates presented in [22] [23]. They determined the exponentially slow
speed of the layer motion and described precisely the layer motion directions. In addition, they established
existence of an N-dimensional unstable invariant manifold attracting solutions exponentially fast uniformly
in €. Related works in this direction are [10), 36} 45].

Motivated by the work of Bates and Xun for the deterministic problem, we study dynamics for the
stochastic model. Due to stochastic integration, new higher order terms appear that we estimate using
techniques and ideas of [8, [0, 22 23]. In the sequel we shall refer frequently to some important definitions
and results presented in the aforementioned articles; therefore, we give some details concerning our notation.
Following [22] 23], we use the letter f for the nonlinearity in (SC-H), and denote by F' the double equal well
potential. In [8, 9] the symbol W’ is used in place of f; we avoided such a notation since we denote by the
standard symbol W the additive noise.

1.2. The effect of noise. The stochastic Cahn-Hilliard equation being one of the important examples of
the nonlinear Langevin equations is based on a field-theoretic approach to the non-equilibrium dynamics
of metastable states (see for example [25] 40, [43]). The multi-dimensional generalized stochastic Cahn-
Hilliard equation associated with Neumann boundary conditions posed on bounded domains contains a time
dependent noise in the chemical potential and an additive noise defined as the formal derivative of a Wiener
process. The chemical potential noise describes external fields [38], [0, 42], while the free-energy independent
noise may describe thermal fluctuations or external mass supply [25] [38] [40, [43].

Existence and uniqueness of solution for the stochastic problem was first studied in [26], where the
nonlinearity f is a polynomial of odd degree and the problem is posed on multi-dimensional rectangular
domains. Further, in [20], the author proved existence of solution and of its density for the stochastic Cahn-
Hilliard equation with additive noise (in the sense of Walsh, cf. [48]) posed on cubic domains. When the
trace of the Wiener process is finite, existence was analyzed in [30]. In [5], existence for the generalized
stochastic Cahn-Hilliard equation was derived for general convex or Lipschitz domains; the main novelty
was the derivation of space-time Holder estimates for the Green’s kernel of the stochastic problem, by using
the domain’s geometry, which can be very useful in many other circumstances. The polynomial nonlinearity
which forces the solution to stay between the pure phases +1 has been analyzed in [13] 14} 201 2T} 26 [30],
while in [29] 28| 37] a stochastic Cahn-Hilliard equation with reflection was considered.

In [13, [14] (see [15] for a review), the effect of noise on evolving interfaces during the initial stage of
phase separation is analyzed. The evolution of these interfaces is stochastic and not yet fully understood.
In [13], the authors show that for a solution starting at the homogeneous state, the probability of staying
near a certain finite-dimensional space of pattern is high as long the solution stays within the distance of
the homogeneous state. Further, in [I4], the dynamics of a nonlinear partial differential equation perturbed
by additive noise are considered. Under the assumption that the underlying deterministic equation has an
unstable equilibrium, the authors show that the nonlinear stochastic partial differential equation exhibits
essentially linear dynamics even far from equilibrium.

On the other hand interface motion has been studied for many related models like Allen-Cahn or Ginzburg
Landau and phase-field models, cf. for example [4, 12} [16] for a rigorous analysis or the results of [32] for
formal arguments, which describe the interfaces as interacting Brownian motions. Numerical results for
interface motion are presented in [39, [47]. The problem of singular perturbation for a reaction-diffusion
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stochastic partial differential equation of Ginzburg-Landau type is investigated in [34]. The motion of
interfaces for Cahn-Hilliard equation was only studied in an unpublished note by S. Brassesco in 2003, where
she studied a solution with a single interface on R. When properly rescaled, the interface is driven by non-
Markovian dynamics (cf. [I2] for a similar result). In [46], the authors present a numerical study of the late
stages of spinodal decomposition with noise.

The deterministic Cahn-Hilliard equation was proposed by Cahn and Hilliard ([I8| [I7]) as a model for
the phase separation of a binary alloy at a fixed temperature, with u(¢,x) defining the mass concentration
of one of the phases at a point x at time ¢. For a more physical background, derivation and discussion
of the deterministic Cahn-Hilliard equation and related equations, we refer to [7, 17, 18| 31} B3] and the
references therein. Results for the noisy Cahn-Hilliard equation are of great interest for the studying of
Ostwald ripening [2] Bl [41] and nucleation [II]. For a survey, including numerical results and conjectures
concerning the nucleation problem, see [I5].

1.3. The approximate slow manifold. The space-time noise that we introduce is smooth in space allowing
for the application of It6-formula. For our study of the dynamics of transition layers for the stochastic model,
we closely follow the approach of Bates & Xun and Carr & Pego based on the analysis of an approximate
invariant manifold M. Although constructed in a different way, it can be thought of as piecing together a
rescaled one kink (or front) of steady state solutions on the whole real-line. The elements of the manifold
are parametrized by the position of the fronts given by h € RN*1. Nevertheless, in our case the dependency
on time is stochastic. This fact leads to the very interesting and difficult problem of further investigating
the properties of M by means of deriving higher order estimates related to the stationary problem.

Let us present first the details necessary for the steady state solutions ¢, the parameters h and the
manifold M. Given € > 0, we consider a such that f’(u) > 0 for all u satisfying |u &+ 1| < a. Then, cf. [22],
there exists p > 0 such that if £ satisfies § < p then a unique solution ¢ = ¢(x, £, £1) exists for the following
stationary Dirichlet problem

E2¢pe — f(0) =0, —£/2<x<1/2,

(13) $=0, z=+0/2,

that satisfies:
(a) ¢(x,£,+1) > 0 for |z| < £/2 and |¢(0) — 1] < q, (b) ¢(z,¢,—1) < 0 for |z| < £/2 and |¢(0) + 1| < a.

For sufficiently small € > 0, it is known that ¢ ~ +1 with transition layers of order O(¢) near x = ££/2.
Following [9], we consider the slowly evolving solutions with N + 1 layers well separated and bounded
away from the boundary x = 0,1 and define the set of admissible positions h of the interfaces

(1.4) Q, = {heRN+1:0<h1<---<hN+1<17 and%<hj—hj,1, j:17...,N+2},

with hg := —h1, hyyo := 2 — hy41. These interfaces evolve in time, and we expect them to have a width
of order €. Thus, the distance is bounded below by ¢/p for some small p. Later we fix p = &* for any small
K> 0.

Let h € €, be given as above, and denote the mid points between interfaces by m; :=
j=1,...,N+2 with mg =0 and my41 = 1. Moreover, we define the function u" : I; := [m;,m;1] — R
for the interfaces h by

himithi gor
2

uh(x) :{1 - X (%) } 0 (x —my,h; — hj_1, (—1)j)

(1.5) /
+x (%) ¢ (x—mjy1, hjpr — hy, (1)7T1)

where x : R — [0,1] is a C*° cut-off function such that y =1 on [1,00) and x = 0 on (—o0, —1].
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Definition 1.1 (Approximate slow manifold). The first approximate manifold of the stochastic Cahn-
Hilliard equation solution is defined by

My = {uh che Qp}.

Fizing a mass M € (—1,1), we define as the second approximate manifold the submanifold M of My where
mass conservation holds i.e.

M = {uhEMlz/luhdaﬂ—M}.
0

For the integrated equation, we consider the manifold

M = {ﬂh s ul e M, ﬁh(x):/wuhdx}.
0

A ¢(- —my,hy — hy, 1) ¢(-—mn,hny1r — by, 1)

ho = —hy hy / \ ho hn m hnt1 hn42

| | | —

N

¢('72h17—1) ¢('71’272h1\/+1771)

FIGURE 1.1. Gluing together positive and negative solutions of (1.3) to obtain u® € M.
Note that mq =0, my42 = 1, and I; = [m;, m,41].

Remark 1.2. In view of the initial stochastic equation (SC-H), conservation of mass holds if and only if
formally

(1.6) /1 D, Wedy = W.(1) — W.(0) = 0.

This is later assured by our assumptions on W, which impose Dirichlet-boundary conditions for W, (cf. Deﬁ
mtzon 9 and Assumptzon.) A wvery simple rigorous example is the following: consider W, = 0c9(x )ﬁ(t),
where B(t) is a white noise in time and g a smooth function satisfying g(1) = g(0), then by integrating in
space the equation (SC-H) and using the fact that

1 . . 1
/ D, VW.dy = 6.4(1) / 0o (y)dy = 0,
0 0

we obtain mass conservation even with the noise. This example extends to infinite series of such terms.
Throughout the entire paper we assume that the additive noise in (SC-H) satisfies (1.6)), and therefore the
proposed stochastic model exhibits mass conservation.

1.4. The new coordinate system. Along M the natural coordinate system would be to use the parameters
h € Q, for the position in M (where N of them are sufficient due to mass conservation), together with the
orthogonal projection onto M. In order to relate the coordinate system to the deterministic flow of (ISC-
H), one approximates the tangent space of M by the span of some functions Ef ,i=1,...,N related to
eigenfunctions of the linearization to be defined in the sequel. Here, we follow [§].
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/ | =

FIGURE 1.2. The local coordinate system @ = @€ + ¢ around M for N = 1 (two interfaces).
Note that Ef ~ aﬁ, which is the tangential vector along the manifold.

We denote the L2(0,1) inner product by (u,v) := fol uvdx, the induced L2-norm by || - || and introduce
the symbol g(t,z) := fom 9(t,y)dy, for any g, which is spatially integrable.
Due to mass conservation, we reduce the parameter space €1, by one dimension. Define

f:z (fla---7§N):(h1a-~-ahN)7

- 3 .
and u§ = 20 we obtain

and consider hyy1 as a function of £. Thus, for @ 3E,
J

ho._ oa"
j T Oh;

2 du"  Ohyy | oa"

I Ohny1  Oh; | Ohy

We use @ — (£,7) as coordinate system around M. Let us split a solution @ of (ISC-H) into a sum of
stochastic processes

(1.7) a(t) == a*® +o(t).

Here the position on M is given by @ € M while the distance from M is given by & which is defined as the
following projection such that

(1.8) (#,E5) =0 for j=1,...,N.

It turns out that the functions Ef are good approximations to the first eigenfunctions of the linearized

integrated Cahn-Hilliard operator, which in turn are good approximations to the tangent space of M. They
are defined as follows:

Ef(m) =w;(z) — Q,(x), W;(z) = ﬂ?(x) + ﬂ;ﬁrl(m) ,
Q@) = (—éﬁ + %xQ - éx)wm(()) + %(ﬁ — )ijen() + 2y (1), j=1,...,N.

The Q; are exponentially small terms (cf. [8], pg. 437-439), taking care of the boundary values of Ef
More precisely, w; are good approximations of these eigenfunctions while @;(0) = 0, and @;(1), W;q(0),
Wjzz (1) are exponentially small quantities. Introducing the polynomial correction terms @; in the definition

of E]E(x) modifies the @; so that Ef are good approximations and satisfy exactly the boundary conditions
of the linearized integrated Cahn-Hilliard operator, i.e.

EJ§:E§ =0 for z=0,1.

jxx
For short-hand notation, we also define higher derivatives using indices:
JoH 2B5 246
:—a O flk:* 0 , and ﬁil:: o7a .
& 0§08, 08,0

1.5. Assumptions on the noise and layers. Throughout this paper the following three fundamental
assumptions are considered for the noise and transition layers:

(1.9) ES:
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1) The noise is sufficiently regular in space and of small strength. As derived, the manifold used in this paper
is stable and attractive for a long time-scale with high probability and thus consists a good approximation of
the stochastic Cahn-Hilliard equation solution, if the noise W, is sufficiently regular in space (cf. Assumption
and its strength is bounded by O(e?) for some § > 9/2. The noise is presented in details at Deﬁnition
as the formal derivative of a Wiener process W, given by a Fourier series of independent Brownian motions
in the sense of DaPrato and Zabzcyck, [27].

2) We analyze local solutions of the (ISC-H): The coordinates & of the projection onto the manifold perform
a diffusion process. A main difference in stochastic dynamics of interfaces in comparison to the deterministic
problem is that due to the noise the movements of the layers are co-related, and thus the resulting stochastic
o.d.e. system given by may be non-linear for a general noise definition.

In order to make the analysis tractable, when we derive the equations of motion for the interface we
assume that the coordinates £ of the projection onto the manifold perform a multi-dimensional diffusion
process. By this natural assumption, we consider that the interfaces solve a very general stochastic ordinary
equation driven by a Wiener process.

To be more precise, let @ be the solution of (ISC-H) where W, is an e-dependent Wiener process defined
in Definition We assume that the projection coordinates £(t) (positions of the interface) is a stochastic
diffusion process in RY. Since the specific W, is introduced in (ISC-H) then the only underlying probability
space is the Wiener space corresponding to W,. Therefore, diffusion is driven by W, and is defined for any
k=1,...,N by

dgy, = b (&)dt + (ox (&), dWe),
for some unknown vector field b : RY — R¥ and some variance o on RY. The unknown functions b, o might
not only depend on &, but also on time ¢ and the distance from the manifold 2.

As aresult, we apply Ito calculus to the general system in order to calculate explicitly the co-relations
of layers movements and derive finally closed forms of b and . The assumption of € being a diffusion process
is justified later in Theorem [3.2] after the derivation of the SDE for the motion of the interfaces. More
specifically, the diffusion process £ exists locally as a solution of the SDE defined up to a stopping time since
the nonlinearities are only locally Lipschitz. It is possible to continue solutions, until they leave the domain
of definition of the equations close to M. In addition, as long as ¢ is well defined and ||7]| sufficiently small,
then % given by @ := @* + is well defined and solves the initial (ISC-H) equation (cf. Theorem [3.2). Further,
by attractivity and stochastic stability, we derive that the time of existence is with high probability larger
than the exit time from some slow channel (neighborhood of the approximate manifold), in which we study
the stability result. So, local solutions of the form @ := @&+ for £ given as the solution of a diffusion process
for the specific o and b defined by and respectively, exist and solve (ISC-H). Local solutions of
(ISC-H) of this type until some stopping time 7* < T are analyzed and approximated in this paper.

3) The number of transition layers is fized. This is a natural assumption, which is also present in the work
of Carr & Pego and Bates & Xun in [22] 8 [0]. Suggested by Fusco and Hale in [36] and further analyzed in
[22,8,19], a geometric method was adopted and developed for the construction of a slow manifold of functions
approximating a metastable state. This construction is valid for a fixed number of transition layers.

In [8], the study of dynamics of the one-dimensional Cahn-Hilliard equation considers the slow evolution of
patterns in a neighborhood of an equilibrium having NV + 1 transition layers. Further, in the aforementioned
paper, the authors constructed an N-dimensional approximate invariant manifold consisting of states with a
fixed number of N 41 transition layers and a narrow tubular neighborhood or channel around this manifold.
Solutions starting nearby approach this channel exponentially fast. In addition, [9] verifies the existence of
an N-dimensional invariant manifold and all solutions inside the slow channel are attracted exponentially
fast to this invariant manifold. The change of numbers of layers is only possible either by a rare stochastic
event or when the solution leaves the slow channel after moving slowly along the manifold.

In our analysis, we study the dynamics for the stochastic problem locally in time i.e. as long as the
number of transition layers is fixed and thus indeed the layer locations are well separated and bounded away
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from the boundary points 0, 1 (cf. [22], [8, @] for the deterministic problem). This is also justified by the fact
that, as we prove, for a sufficiently bounded noise strength stability and attractivity of the manifold hold in
the stochastic case also, at least for a very long time scale and with high probability. Of course the solution
can leave the manifold at the boundary by a layer breaking down.

Moreover, due to rare stochastic events an extra ‘bump’ (layer) could be formed. In our case this interesting
event is rather unlikely, since the strength of the additive noise is sufficiently small so that the manifold M
is stable and attractive with high probability. Apart from large deviation results the rigorous mathematical
study on extra layers generation is highly not trivial. See for example the work of Xinfu Chen [24] on
generation, propagation, and annihilation of metastable patterns for the deterministic Allen-Cahn equation.
Therefore, this is not analyzed in the present paper.

2. MAIN RESULTS

The SDE (Stochastic Differential Equation) system for the motion of fronts is given by the projection onto
the manifold M, using the coordinate system of Section We then prove that M is locally exponentially
attracting and show that solutions stay with high probability in a small slow tube around M, until large
times or until one of the layers becomes small. The flow along M is well described by the SDE for the
interfaces £. Depending on the strength of the noise, we investigate how the equation of motion of the fronts
looks like and evaluate the noise effect. In addition, we study extensively the case N = 1 where the motion of
the second interface is determined by the first. Here the motion is given by the Wiener process W, projected
onto M. Finally, the case of space-time white noise is discussed. In the last section, we present the proofs
of the estimates used in our analysis concerning all the higher order terms that appear in the stochastic
setting. These are technical results that are independent of the other sections.

Let us first explain briefly how the equations of motions along M are derived in Section 3. For details we
refer to Subsection If @ is the solution of (ISC-H), then applying the Ito-formula in differentiating with
respect to ¢t , we get for ¢ = 1,--- | N the following system in d¢;,--- ,déy for the stochastic Cahn-Hilliard
equation:

> [ BS) = (0, B5) | de; =(— (@0 + Tunzan) + (F(@ + 52)), Bt

J

+Z [% (8, Bfy) — (i, Bf) — <ﬁi=Efz>}dfld§k

- Z<dWE7 E5)de;
J
+ (B, dW.) .

We note that the last three additive terms above at the right-hand side are not present in [8, @] where the
deterministic Cahn-Hilliard equation was studied.

Remark 2.1. In view of (2.1), we observe that the analysis of the stochastic dynamics is a much more
complicated and difficult problem compared to the deterministic one.

(1) Deterministic case: The system is linear in d€;, therefore by estimating the inverse matriz on the
left-hand side (possibly close to M) and the right-hand side terms, the motion of interfaces is ob-
tained, see [9].

(2) Stochastic case: Obviously, for a general noise definition the system is non-linear due to the appear-
ance of d&;d&y, which as we shall prove will dominate the exponentially small deterministic dynamics.
In the sequel, in order to get rid of the co-relations d&;d€;, we make the ansatz that £ performs a
diﬁusion process which 1s justified later. Further, we need estimates for the additional higher order

terms Ezy’ Ellk, and u ukl Therefore, we need to improve the estimates of [§].
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The sufficiently regular noise W, is the formal derivative of a Wiener process W, defined as follows.

Definition 2.2 (The Wiener process W.). Let W¢ be a Q.- Wiener process in the underlying Hilbert-space

H = L?(0,1), Q. a symmetric operator and (ex)ren an orthonormal basis with corresponding eigenvalues
2 h th

Qg i, suc that

O.ep = 045 wek  and W( Zae KOk (L) e,
for a sequence of independent real-valued standard Browman motions {Bx(t)}+>0 (¢f DaPrato, Zabzcyck
[27] ).
We always rely on the following assumption, which implies mass conservation and regularity.

Assumption 2.3. Suppose that the ey, are the eigenfunctions of the Dirichlet-Laplacian. Moreover, assume
for some 6. >0

(1) Q:l <Cs2,  (2) D alyBeler) <O, (3) 110,Q:| < C&,

where we assume additionally that 5. < €%/ 2=%) for some small k > 0. B, is defined as
Be(e) = 52”61’1’”2 + ”6:13”2 )
while for g = 1 ke € L*(0,1) the linear operator 8, Q. is defined as

(0:92)9 = > _ W0x(Qeer) = Y aZ y0zey .
k=1

k=1

The first assumption on the norm of Q. as an operator in H implies that the strength of the noise is
bounded by O(d.), while the second and third one are additional assumptions on the noise regularity. Note
that B.(-)*/? is equivalent to the standard H2-norm (see (3.15)).

For the calculation of the motion of the interfaces, we will assume that £(¢) a diffusion process in RY (see
Section is defined for any K =1,...,N by

dé = b (&)dt + (or (&), dWe),

for some vector field b : RV — RY and some variance o : R — H¥. Later in Theorem we justify this
ansatz.
Following [9] we define the matrix

A'LJ(E) = <’L7,§7Ef> - <67Ei§j>7

which is invertible close to the slow manifold. The assumptions on the noise combined with (2.1), gives the
following SDE system for the motion of interfaces:

ZAU €)de; =(—*(S ppp + Do) + (F@S + Ta))a, B )t
+Z|:%UEZ“€ g, BY) — (a5, BY)|(Qeou(€), 0u(€))dt
+ Z<Q€Eij, 0;(€))dt
+<jEf,dW€>.

(cf. also the equivalent presentation ([3.11))). From this we can easily read off b and o. Moreover, the flow
along M is described by the interface positions. It is now easy to check, by construction, that the difference
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FIGURE 2.1. The stability of the slow manifold M for two interfaces (N = 1). A small
tubular neighborhood T', the slow channel, is attracting over long time-scales. Solutions
tend to exit at the end of I" by loosing an interface.

¥ = —uf is actually the ¥ of the coordinate system (see Subsec. . In addition, a solution of (2.2 together
with a corresponding equation for o (see (3.14)), later) describes a solution @ of (ISC-H); see Theorem [3.2

Further, in Section 3, the variance o of the multi-dimensional diffusion process ¢ of the interfaces is
computed first explicitly and then estimated in terms of €. A main result is the stochastic analysis of the
stability of the approximate manifold, which is presented in Theorem of Section 3. Over a long time-
scale of order O(¢7?) for any large ¢ > 0, we show that, with high probability, the solution of the stochastic
Cahn-Hilliard equation stays in a small neighborhood T of the integrated manifold M, unless an interface
breaks down.

In Section 4, we present first Theorem in which we approximate the terms in and derive the
equations of motion of interfaces. Further, we consider several examples where Theorem is simplified. If
the noise is exponentially small, then we recover the slow motion results of [8 [9]. There is a slow channel
given by a neighborhood of M, in which with high probability the motion of the interfaces is described by
the deterministic regime. There is also an interesting intermediate regime of still exponentially small noise,
which for simplicity of presentation we do not consider in this article. Here, due to the presence of noise,
additional deterministic and stochastic terms appear in the deterministic equation of Bates & Xun [9]. An
interesting case from the point of applications is the case where the noise strength is a power of €. As the
general case is quite involved in presentation, we consider only two interfaces (i.e. N = 1). Here, obviously
the motion of the second interface is determined by the first one which is approximated by the following

SDE (cf. (T1)):
1

0 1
2.3 A&y = || QY2 Ef|2dt + — (B, dW,
(23) 6 = 53 g, | QB IPd + - (BF W
where £o is the distance between the two interfaces. We comment later that here §; is approximately the
projection of the Wiener process W, onto M.

Finally in this section, we also discuss the case of non-smooth in space space-time white noise (Q. = 6.1d),
which is unfortunately not covered by our assumptions. Here &; would be close to a Brownian motion with
variance 02 /(44).

2
Section 5 provides estimates for the second order derivatives %hﬁgﬁ, for the higher order derivatives of
1O

Ef and %¢, and a bound for the quantity (L°7, ﬂi» (needed in the proof of the stability Theorem). Here the
operator L€ acting on a general smooth in space function ¢ is given by

Lc(d)) = _52¢x3cacx + (f/(uh)d)a:)a
The results of this section are quite technical since their proof involves extensive calculations related to
properties of solutions of the stationary problem (1.3). The new terms to estimate appear only in the

stochastic setting due to the frequent application of It6-formula, and were therefore not treated in the work
of Bates & Xun [8, 9] or Carr & Pego [22] 23].
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3. FRONT MOTION

In this section, we derive the equations of motions of the fronts and show that the approximate manifold
is locally attracting.

3.1. Preliminaries and definitions. Let us first recall some notation. If u is the solution of (SC-H), then
a(t,x) == fox u(t, y)dy is the solution of the integrated one i.e. of (ISC-H). Let a, €, p, N be given; for some
¢ such that €/¢ < p, we consider the unique solution ¢ of which satisfies the properties (a) and (b).
Let also (h1,...,hnt1) € Q, be the admissible interface positions and take hg := —h1, hyio :=2 — hny.

Let ¢; = h; — hj;_1 be the distance between interfaces and ¢ := min{/¢y, ..., ¢y} the lower bound on them.
Note that by the construction of 2, the functions ¢ are always well defined. Let

ri=c/l, Bi(r):=1F¢0,¢,£) and ayr(r):=F(¢(0,4,+)).
In view of , we also define
¢ (2) = ¢ (x —my, £, (=1)7)
and u;l = th: for j =1,...,N + 1. Considering r; := €/¢;, let
Poy= {0 e 0) = )
We recall that in [9], as an application of the implicit function Theorem,

Ohn 11
oh,

(3.1) =(-D)NT + 0 B(r)).

In addition, let

. . f ] )
o (r) = a(r) for ‘] Y and a(r) == maxa’(r) .
a_(r;) for j odd J
We see later, that both a and 3 are exponentially small in ¢, if we consider r; < p < & for some small
positive k.

3.2. The SDE for the front motion. Let @ be a solution of (ISC-H). We assume that the N front

positions, i.e. the coordinates of £(t) = (&1(t),...,&n(t)), define a multi-dimensional diffusion process which
is given by
(3.2) dé, = bp(§)dt + (o (§),dW:), k=1,...,N,

for some vector field b : RY — R¥ and some variance o : R — HY. The main aim of this paragraph is to
identify b and o, which might also depend on 7, i.e. on the distance from the manifold.

We use Ito-formula, in order to differentiate ¢ with respect to ¢, and get
o*at

N
(3.3) div=> aSdg; + 4 > dg,dgedg +dv,  with i, = e

j=1 1<k,I<N

We take as in [9], p. 175, the inner product in the space of equation (ISC-H) with Ef, to get for any
i=1,...,N

(3.4) (E;,di) = (L°(a), B;)dt + (Bf, dWe)
where we defined the nonlinear ICH-operator as
Lc(u) = *52uxrzz + (f(um)):t

for short-hand notation.
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On the other hand, if we take the inner product of (3.3|) with Ef, we derive

N
(3.5) (Bf diy = (@5, E5ydg + 5 Y iy, 5 )dédé + (B, db) .
j=1 1<k,I<N
Throughout the rest of this paper, any summation is on 1,2,..., N for any index.
In order to eliminate do, we apply Ito-formula to the orthogonality condition (o, Ef ) =0, and arrive at
(Bf,di) = —(0,dEf) — (db,dE})
= Z 0, B5)de — 3> (0, B )dede, — > (B, di)dé;.

J.k J

Now, we use that do = dii — dai and the fact that dtdt = 0 and dW.dt = 0. In detail:
Z (Ef;, dv)de; = —Z (B, dii)de; +Z E;,, duf)de;

(3.6) - Z B, £°(a) dtd@-—Z(Efj,dW VE; +Z B, g, déde;
:—Z B, dW.)de; +Z B, ) dde;,

where we took the inner product in space of equation (ISC-H) with E”, and used that

dé;dt = b;(&)dtdt + (o (&), dW.)dt = 0.
Therefore, by (3.6) it follows that

(3.7) (B, dﬂ>=—Z<~ ES)dg; — 3 (0, By )dg dee — > (dWe, E) d&ﬁZuw Ve dgy, -

J.k J

Combining ((3.4) with ( and ( we arrive at
Z [<a§,E§> - <@,E§>}d@ =(Le(@), Ef)dt
(3.8) +Z{ (@, Egy) — 35y, EY) — (a@, B >]d§ldfk
Z (dWe, E5,)de; + (B, dW.) .

Lemma 3.1. For all 1 <k, I < N it holds that

<0k(€)7 dW5><Jl(£)7 dW£> = <an—k(€)7 Jl(€>>dt
Proof. Since dB3;d; = §;;dt and W,(t) = > 7o | o 0k(t)e, we obtain, using Parcevals identity,

(o1 (£), dWe) (01(E), W) Zae,iae,j<0k(§)76i>< a1(§), ej)df;dB; = Z%] k(&) ej)(u(£), ¢5)dt

= D (Qeon(&),e5)(0u(&), e5)dt = (Qea(£), Uz(£)>dt :

J

Analogously to this Lemma we easily obtain (using dtdW, = 0)
(Efj, dWe)dg; = (B, dWe) (0(6), dWe) = (QeEfj, 05(6)) dt.

770 75
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Moreover, for short-hand notation, as in [8], we define the matrix A(¢) = (4;;(£)) € RVN*N by
(3.9) A (€) = (@5, ) — (0, Ey)

which is invertible, provided that we are near the slow manifold (cf. Lemma later). Let us denote the
inverse matrix of A by A=1(¢) = (Ai_jl(f)) € RVXN,
Therefore, for all ¢ € {1,..., N} we arrive at

D Ay(&)de; = (L(u + ), Ef)dt
(3.10) +Z[ Efy) — 3y, BY) — (g, E)| (Qeow(€), ou(€)) dt
+ Z<Q6Eij,aj(£)>dt +(B;,dW) .

To obtain the equation for d¢ we use that d¢ = A(&)"LA(&)dE .

Thus, the final equation for 5 (as long as @ is near the manifold) is given for any r =1,..., N by
Z A € 4+5), ESYdt
(3.11) + ZA [% Efy) — $(agy, E) — (i}, B >} (Qeor(§), 0u(8))dt
3,0,k

+ZA &) (0B, oy(€))dt + 3 AN E)(EE, W) .
J 7

We can now recover o and b from (3.11). The only term that does involve noise is the last one. Thus, in
view of (3.2) we derive

(3.12) 7r(6) = D AT OB

After we obtained o, we can proceed, in order to determine b(¢) from the remaining terms (cf. (3.2))). So
we get for r =1,..., N that

(3.13) ZA @ + 1), B)
+ZA [% Ef)) — %(ukl’E€> (ii5, B >}<Q€Jk(§) 1(8))

a0,k

+Y AN (QES 05(8)
7 J

3.3. Justification of the ansatz. Let us first give an equation for v = 4 — @¢ describing the flow “orthog-
onal“ to M. Following [§] p. 449, we consider equation ({3.3))

N
o _ R
do=da— Y aSde; — 3 > g, dérds;,
J=1 kl

and thus the key equation for the distance from the manifold M is described by
~ o/~ _ _ 1 _
(3.14) i = LO(A)dt — Y aSh;()dt — Y i (0 (€),dWe) — 5 > 5 (Qeon(8), 0u(€))dt + dW .
J J ki

The following theorem is straightforwardly verified:
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Theorem 3.2. Consider the pair of functions (§,0) as local solutions of the system given by and the
ansatz where o and b are given by and .

As long as ||0]| = O(e*/2) and £(t) € Q,, the function @ = ¢ + ¥ is well defined and solves (ISC-H) with
(v, E5) = 0.

The orthogonality condition follows directly from 1) as the differential d(v, Ef) = 0. The fact that @
is a solution follows from a lengthy calculation. Basically, one reverses the calculation of the previous section
leading to (3.2).

3.4. Stability and Attractivity of the manifold. In this section, we prove the stability and discuss the
attractivity of M. Considering the stability, we show that with high probability (over a long time-scale) the
solution stays close to M, unless an interface breaks down.

In [8 Theorem B, Bates and Xun show that in the deterministic setting the slow manifold is exponentially
attracting in a (9(57/ 2)-neighborhood in H?, until the solution reaches an exponentially small neighborhood,
where the motion of the solution along the manifold is exponentially slow. Using large deviation estimates,
it is straightforward to verify for small noise, that the stochastic solution follows the deterministic one up to
error terms of the order of the noise strength. Hence, the exponential attraction of M still holds for (ISC-H),
until the solution reaches a neighborhood of the manifold that is determined by the strength of the noise.

Here, for simplicity of presentation we will focus only on the stability of M. The proof can be modified,
in order to show attraction, too. Once, we are in the slow channel around M, we cannot exit with high
probability for a long time-scale T¢, unless one of the interfaces breaks down.

We define A, and B; as

1 1
(3.15) A7) = / €22, 4 f(uf)itlde  and  B.(d) = / €202, + i2]da.
0 0
Obviously, it holds that
1 1
0,922 = / v2dx < / [€20%, + 0%)dx = B.(9) .
0 0

Observe also that even if the function f’(u®) appearing in the definition of A. changes sign, then provided
p is small for o € C? satisfying & = 0 at 2 = 0,1 and <17,EJ§> =0 for any j = 1,--- , N, there exists C
independent of €, ¥ such that
CA.(D) > e’B.(9).

This estimate, which depends heavily on the properties of 9, is established in [8] after an extensive analysis
of the spectrum of the linearized integrated Cahn-Hilliard operator (see pg. 434-446, Lemmas 4.2, 3.2, 3.4).
More specifically Bates and Xun proved that for p small the spectrum consists of exactly IV exponentially
small eigenvalues, while all the other eigenvalues are negative and bounded away from 0 uniformly in e.
Under weaker assumptions, such as @ € H?, the same estimate follows, cf. Theorem A.1 of [9] at pg. 209-
211. Further, since f’(u¢) is bounded we get A.(?) < cB.(%), while by definition and for e < 1 it follows
that B.(0) < ||0]|%2. Hence, the next relation holds true

10:9)|32 < Be(9) < Ce™2A. (D) < ce ?B.(9) < e 2||9]|%-
In addition, by Lemma 4.1 of [§] at pg. 445, we have
(3.16) 1913 < B:(3) , 1921123 < H£=B.(v) .

g

Definition 3.3. (¢f. [8], p. 452) Define a neighborhood I of M by
I'={i+9 : £€€Q,, B.(v)<¢e®},
and we define the slow tube I' by
Di={a*+0 : £€Q, A (D) <627"},
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where 0 < k < 1 presented in the definition of the noise (cf. Assumption and d. estimates the noise
strength.

The small tube I" is a neighborhood of the slow manifold, where the coordinate system (cf. (1.7)) is well
defined, while the slow tube I' is a neighborhood in which with high probability solutions do not exit for
long times unless one of the interfaces breaks down. Recall that I' C T by definition of §.. We even have
B.(9) < C§%27%¢=2 < Ce”, which we need in the proof of stability.

As indicated in the introduction, the first term at the right-hand side of the flow given by is identical
to the right-hand side of the deterministic flow and has been estimated in [8]. In our stochastic case, in
order to approximate the flow, we need to bound also the additional higher order terms and estimate the
contribution of the noise. Later, in the next Section 4, we will identify the dominant terms in .

Using (4.27) of [9] and the fact that ||Efj | = O(e~'/2) ([9] p. 187), we obtain in I considering the matrix
A the following invertibility result:

Lemma 3.4. Suppose that h € Q, and ||3|| = O(c%/?), then
(€)= (=1 94lq if iz
and the matriz is invertible, with
T P B
A=1(e) — wn Y i=0
i (£) =0 +{ 0 otherwise
where 1 > {; > e/p denotes the length of the i-th interface.

As the equation is deterministically stable, we can show that o stays small for a long time (depending on
the noise strength). To be more precise, we show a bound on A, (%) for solutions near M. Compare also

(86) of [8]).
Fix some large time 7. and define 7* > 0 as the first exit time (below the threshold T;) of @ from I".
This is the stopping time
™ =T Anf{t > 0: &(t) € Q, or A(d(t)) > 6277} .
Note that for ¢t < 7* also B.(9(t)) < Ce”, as discussed above.

Definition 3.5. We say that a term is O(ee), if it is asymptotically smaller than any polynomial in e
uniformly for times t < 7*.

Note that «, 8 are O(e.), if p = &".

Ce? for any q > 0, and suppose that for all
62P. Then for all p > 0 there exists a constant

Theorem 3.6. Suppose p = € for some small k > 0, 6,
p > 0 there exists a constant ¢, > 0 such that EA.(9(0))P <
Cp > 0 such that

>
Cp

EA(9(7))P < Cp(T. + 1)527 .

Therefore, we can show that the probability that the solution exits from the slow tube before T. (i.e.
7* =T,) or an interface is breaking down (i.e. £(7*) & Q,) is bounded above by

P (A (8(1%)) > 627%) < EA(8(7%))P6- PP < Cp(T. + 1)057

for any p > 0. Thus the probability that the solution exits from the slow tube before T is of the order of
O(ee) provided T. < 677 for some large ¢ > 0. The typical case for applications would be to consider a
noise strength polynomial in €, where we can take T, = ¢~ ¢ for any ¢ > 0.

Remark 3.7. (Exponentially small noise-strength 6.) If we want to have exponentially long times T,
then we need to take exponentially small noise strength d. and look closer at the various error terms in the
proof of Theorem [3.6. This is straightforward, but for simplicity of presentation, we refrain from stating
details here.
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On the other hand, assuming that 0. is exponentially small, the probability of the solution leaving the slow
tube I' before time T, without an interface breaking down, is exponentially small, even for some exponentially
large time Tr.

3.5. Bounds on the SDE. The following Lemmas replace the bound on f , used in the deterministic setting
(cf. Lemma 4.3. in [q]).

Lemma 3.8. Let @S +0 €I’ andr=1,...,N, then (with E1€V+1 = 0 for shorthand notation)

1
(&) = T

Proof Note that ||3]| < B.(9)'/?. Thus from the definition of o (cf. (3.12)), Lemma and the bound on
Ei one obtains

(BS+Ef ) +0(E)  and o ()] <C/t < Cp/e.

| (€ |<Z|A ONES| < C/e.
Moreover,
O-T(f) A 1EE + Ar ,r+1 7"+1 + O( )
and the claim follows from Lemma [3.4 O

The next Lemma estimates the vector field b of the diffusion process &.

Lemma 3.9. Let @€ + 0 € I and assume that p = € for some small k > 0, then there is a constant ¢ > 0
such that

(3.17) br(&)] < el Qe {¥ 7/ + 72} 4 Ofee),
foranyr=1,...,N.

Proof. We recall first b,

(3.18) ZA £4+0), B

+ZA [% 1lk> %(ukl’E£> <ﬂkv >}<Qeak(f) 1(§))

a0,k
+ZA Z QEEZJ’UJ
7 J

Then we use Lemma and the bound on . Moreover, in Section 5, after tedious computations the next
estimates are derived (cf. (5.44)), (5.45)), (5.46)), (5.41) and (5.42)), respectively):

(@, B < O7) [46i41 + O(8)],

(ii5, E5)| < O™ V2 + 7471 p),

(5, ES,0 < O(™2 4+ 7571 8) ]| < ¢+ O(=="/21)

since in the slow channel ||3]| < ||7]|oo < ¢B.(9)/? < ce®/2. Moreover,

| Bl < 4liss + O(e2B), 1B < O + 04 1p).
In addition, we observe that (cf. [9 ])
IZAM (@€ + 1), ES)| = O(a/t) + O(ca) = Ole.) .

In this way, since 0 = O(pe ') and Aj;' = O(pe™'), we obtain

b ()] < €ll Qe lp%e ™72 4 cl| Q. %% + Ofec) < el Q| {72 + 2752} 4 O(e) .
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O

3.6. Proof of Stability. Now let us turn to the proof of the Theorem [3.6f Considering the linearized
C-H-operator and using Ito-formula we arrive at

(3.19) dA.(D) = d(—L°D, ) = 2(— LD, dd) + (—L°dv,dd) + dR ,
with ) ) )
dR = / 2" (u)du® dx + / O f" (uf) di, - du® da + / V2" (uf) (dub)? dx .
0 0 0

All terms in R appear, because A, itself depends on & through f’(uf). Using It6-formula and the equations
(3-2) and (3.14) for £ and ¥, we expand all terms

1 1
AR =3 [ ") de by di + 2 [y dot@uoy it + 2 / 01 ()i dx (o, W)
—~ Jo —
J
1
+ % ZA f)?ﬂf’”(ug Ju; uf dw<QsO—]>01 )dt + Z/ Urf// u£ Jus ’U,f dw<Q50jaO—i>dt

+Z/vlf” Ju$50,(Qe05) da dt .

Now we use Theorem [5.8| in £ variables, to obtain that Hu§||Oo = 0(e™Y), Hu Jloo = O(e72) and ||u5||
O(e~1/?). Moreover, by definition it holds that ||9,]? < Be(?), so using Lemmas E and . we have

= 0(62¢77/?) and o; = O(e71). Finally, as u¢ is uniformly bounded, we can bound the nonlinearity f by
a constant and get

dR = O(B.(5)e~"/282)dt + O(B.(2)/~7/262)dt + (I, dWV.).
with X
=3 / B di 0y = O(Bo(9)e )
—~Jo
J
As we are in the slow channel, we obtain

(3.20) dR = O(82)dt + (Ir,dW.).

This is the crucial and only point where we we need B. (%) = O(¢7), in order to estimate the 5" term of R.
Now we turn to the other terms in (3.19)). Lemma gives

(3.21) dA(5) — dR =2(— L°%, £(a))dt
(3.22) = > 2= LeD, )b (€)dt

- i2<—Lca, 5)(05(6), dWe)
(3.23) - ZJ}—LC@, 5 ( Qe (£), 0u(&))dt
(3.24) + Z — L, 15)(Qe04(8), 05 (€))dt
(3.25) + Z —L°05, Qeo4(€))dt

- 2<L%7, AW,)

(3.26) + trace(QY2L°QY?)dt
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For the term in we follow [8] pages 449/450, where
LE(@) = LA 4 D) = LD + L) + 0p(f20,0)
with
102 (f20:0)|| < Ce™2Be ().
Moreover, note that by Lemma 5.1 in [§] we have
1£(7)loo = [[02L"(u®) |0 < C™ta(r)
and thus
(=L, £%(a)) < —[IL°0)|* + C(e*B:(0) + e~ a(r))[| L]
—2||L0|]* + Ce*B-. (17)||LCT1|| + Ce2a(r)?
—3lIL°0||* + Ce™2a(r)?,

/\

(3.27)

IN

where we used that for some constant a > 0 independent of ¢ and r (cf. [8], Lemma 3.2 at p. 434, and
Lemma 4.2 at p. 446)

c — cx~
e Loa)f .

(3.28) B.(v) < Ce72A(0) < o,

Using B.(7) = O(e"*) in the slow channel, we obtain
2(—LD, L()) < =3[ LD||* — aA. (D) + Ce2a(r)>.
Now consider the remaining four deterministic integrals. For the term in , notice that
(L°,05) = (0, L°U5) = (0, 0,0;L"(uf)) .
Thus integration by parts and Lemma 5.2 of [§] yields

(3.29) (L8, 15)| < Cl0xdlle">B(r) = Oee).
We use now (3.29)) to arrive at
(3.30) |Z — L0, @5)b;(§)| < Ce™®?B(r) B=(8)"/? sup{|b; (§)[} = Oec),

which is exponentially small in € by Lemma By Definition a term is O(e.), if it is asymptotically
smaller than any polynomial in & uniformly for times ¢ < 7*.
Now let us turn to (3.24). Similarly, we get

(L9, )] = (i85, 0,0, £ ())] < (]| 1 10,0, £2(u) oo < C=A(r)

PREad]
where we used Lemma 5.1 of [8] and the bound [|@t |1 = O(1) (cf. (5.38), for § bounded). Thus we obtain
for the term in (3.24))

(3.31) IZ — L7, 65)(Qe04(€), 05(€))| < O *B(r) || Qe[| = Oec) -

For the term in 1) we use the bounds on (—L°, ﬂiﬁ provided by Theorem Thus, we get

(L0, 5, (Qe0k(€), 01(€))] < Cl|Qelle>C=2B(r) 3] = Oe.) -

Using similar estimates and Lemma [3.§] the term in (3.25) is also O(e.).
For the term in (3.26]), we use the eigenfunctions e, of Q. and the uniform bound on f/(uf), in order to
obtain

trace(Q/2L°QL?) = "aZ \ (Lo, ex) < CY a2 Be(ex) < Co2 .
k=1 k=1
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This is the largest deterministic term, as the other ones are all O(e.). This term comes directly from the

Ito-correction of the additive noise.
Consider now Equations (3.21)) - (3.26]), with all deterministic integrals already estimated and include the
bound on R from (3.20)). For ¢t < 7*

(3.32) dA.(3(t)) < C82dt — (|| L°0||* + aA-(8))dt+ < I,dW,. >,

where

1= 2(—L%,i)0;(€) — 2L + I ,
J
with Ir = O(B.(9)e3/2).
In order to bound I, we use (3.29)), and the asymptotic formula for o;(£) of Lemma [3.8 combined with
(54)-(55) of [§] to obtain that (L "~, ~§>aj(§) = O(ee) and thus
(I, Q-1)] < O(ee) + Cl|Qe|(IL°0)|* + Be(3)% ™) .

Now from (3.28) as in the slow channel at least B.(9) = O(e%) we obtain B.(9)?c =2 < C||L°9||?B:(0)e ™% <
C||L¢%||? and thus

(I, Q:1)| < Oee) + CJ| Qe[| L°3]J* .
Now we can bound powers of A, for ¢t < 7*

FAAL(0)P = AL(0)P AL (D) + PR AL (0)P 2 (dAL(9))?

(3.33) < Ce® A (D)P7hdt — (|| L°0]1* + aA-(9)) A (9)Pdt

+ A (0PI, dWL) + 2 A ( PTHI, Qb .
Taking integrals up to 7* and expectation, we easily obtain from ([3.32]) and (3.33 - using that the expectation
of a stochastic integral is 0)

EA. (5(T*)) + %IE/ | L)% dt + aE/ Ac(9)dt < A(9(0)) + CT.62
0 0
and for p > 2

LEA, (5(7))” + / |52 A (0"t + o | " Aoyt

* .

< ]EAE(G(O))?’JrC(S?IE/ Ag(ﬂ)p‘ldt+(’)(e€)~E/ As(ﬁ)p‘zdt+0||Qs||-E/ A (5)P~2|| L5 2dt
0 0 0

=

Now (using . > Ce?) it is easy to verify by induction on p that

*
T

SEA(0(7)P + 5 / | LoD Ac (D)~ 1dt+a1€/ A (D)Pdt < O(T. +1)6%7 .
This implies the claim.

4. MOTION OF THE INTERFACES

In this section, we investigate some important special cases in detail to see what the SDE for &
actually implies for the motion of the interfaces. We assume first that the noise is exponentially small.
Then considering the two interfaces problem (i.e. when N = 1) we discuss the case of noise strength being
polynomial in €. Although not covered by our theorems, we present some comments on how the equation
would look like for non-smooth space-time white noise, which means that Q. is proportional to the identity.
Finally, we present the approximate SDE system for the front motion considering the general precise system
E1).

Let us first state the result we achieved so far. The motion of the interfaces for the stochastic model is
given by the following theorem.
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Theorem 4.1. Let i* + 0 € I' and assume that p is small, then the equations dominating the flow of the
Stochastic Cahn-Hilliard equation within the slow channel are given by

1
dé = v, —(a® —ab)dt + O(e)dt + d AL
2
1
dés = 10 —(a® — al)dt + 73(& — a®)dt + O(ea)dt + dAP
(4.1) dEs = (0 — a?)dt + —— (0 — a®)dt + O(ca)dt + dAD
445 40,
1 1
déy = —— (@ — N Hdt+ ——— (N2 — o)dt + O(e)dt + dAN),
4N 4N 41
where
1 £; —ALl; )
(4.2) = iKiAi exp(—A+l;/e) [1 + O(;j exp (%))} ji=12...,N+2,
for
1
Ag 1
4.3 = f = — .
(4.3) Ay = f'(£1) and Ky :=2exp [/0 [2F(:|:t)1/2 l—t}dt}
Here, the stochastic processes AS ,r=1,...,N are related to the noise; they depend on the symmetric

operator Q. and the variance o, and are given by the formula

dAD =" ATHE) |10, BS,) — 3, BY) — (3, ES) | (Qeon(€), ou(€))at

a0,k

+ZA &) D QS 05(€))dt + 3 A E)ES W) .

The quantities Ky are constants introduced by Carr and Pego in [22].

(4.4)

Proof. Recall that as long as @ is near the manifold, then by (3.11)) we obtained for any r =1,..., N
Z A €45), ESYdt + dAD).

Lemma gives that the matrix A~! and therefore the terms >, A_'(&)(Le(af + ), EF) are identical to

those presented in [8, [9] for the deterministic case (i.e. when dA" = 0 for any r). Hence, using (4.32) of [9)
we obtain the result. O

Remark 4.2. Note that using the relation ¢; = hj — hj_1 and the asymptotic formula for a}é%_“ we can
J
derive an analogous system in h; or in ¢; (cf. [9]).

Remark 4.3. In view of the assumptions of Theorem [/.1], and as mentioned throughout our analysis, it is
sufficient that p = * for some small & > 0. In this case ol are exponentially small. So, by stability, for a

sufficiently bounded noise strength, the distance ||0|| will remain small and thus the matriz A~1 will remain
well defined.

‘We observe

(4.5) AT = ADdt+ 37 AN (S, dWe)
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for

AD =Y At [,

a0,k
+ZA Z (Q.Ef;,04(€))

Following Lemma we obtain in the slow channel

(4.7) A < €| Qellp?(pe=2" 2 +£7%/%), forallr=1,...,N.

By — (. E5) = (@, B5) [ (Qeon(€), ou(€)

M‘H

(4.6)

Thus, in case of | Q.| = O(e*T'/%a), since p is at least bounded we can show that AQ = O(ea). It is not
hard to show that we can also neglect the stochastic term from (4.1 , in order to recover the result of Bates
& Xun on metastable slow motion, at least with high probablhty

An interesting case arises, when the additional terms in AL are of the order of O(a). Then we obtain
additional terms in (4.1). Nevertheless, for simplicity of presentation, we refrain from stating details here.

Obviously, for a polynomial noise strength the extra drift Ag)dt coming from stochastic dynamics would
dominate the exponentially small terms involving o/ and a.

4.1. Polynomial noise strength. For the remainder of this section we fix N = 1, which is the case of two
interfaces, and a noise strength 6. = ¢ for some § > 9/2. To be more precise suppose Q. = Qoe® with

Qo =0(1).
Using (4.1)), we notice that the equation of motion for the first interface is given by
dé; = O(a)dt + dAWM |

and the motion of the second interface is fixed due to mass conservation.
Recall that ¢y is the distance between the two interfaces, and fix p = €, which means that the lower
bound on /5 is 7. Let us now first look at (3.12)

o1(6) = Ay EY.
Since @5 = Uy 5 ‘9h2 + @} while ah2 =14 0(e.) and ES = @ + @l + O(e.), it follows that
Ef = a5 + Ole.) ,

and again the error term remains of the same order under differentiation w.r.t. £&1. Secondly, from (4.24)

in [9] there is a constant ¢, such that ||a$||> = 40, + c,e + O(e.), and the error term remains O(e.) under

differentiation. (In our case N = 1 we have that @; used in [9] is up to errors of order O(e.) equal to @S.).

Moreover, by definition
(4.8) An = (@, BY) — (8, Bf) = (|5 ]° + (|8l O(e /%) + Oer)

where we used (5.42)) (cf. also [9], where the same estimate is used, though never presented analytically) for
E§1 = O(s7/?). Recall that in the slow channel I'

(4.9) lolloo < (Be(v))'/? < Ce™ (A:(v))1/? < CeTH(627F) /2 < Cem1H00/2)

Thus we proved
1

3
(4.10) Apy =4l + e+ OSID73) and  oy(€) = a2 2 Ef 4+ O(e.) .
1-x/2 -3

4ly + ce + O(e )

Now we can consider the deterministic drift
AD = ATO[3, B - 3t B — (@, B |(Qeo1(€),01(6)) + ATHN€)(Qe B, 05(6))
= AR [0 )NI5] - 35 IESIP| I QY2ES 12 + AT2L 5% | QY2 ES|I? + O(e.).
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Thus, in the slow channel T' (cf. (4.9)) the equation of motion for the interface is reduced to

déy =ATFO(0 D731 QU2 B |2at — F AT (|1 BE 1) | Q2B |

+ A3 | QP |Pdt + AL EY, dW2) + O(ec)dt .

By (45) of [8] we know that
@ =1—-uf+0() and u§=—uf+0O(e),
)

(as [0,1] = I; U Iy and u®(my) = u*(0) = —1 + O(e.)). Furthermore, the error terms remain O(e.), under
differentiation with respect to £&. Thus, we obtain

|a5]* = 11— us[* + O(ec) = 1 = 2M + [|uf[|* + O(e.).
Differentiation yields

g |15 17 = 2(uf, uf) + O(ee) = —2(uf, uf) + Oes) = u*(0)* — u' (1) + Ofez) = Ofe) -

Thus we verified that
2| EL[* = O(e.).
Therefore, the equation of motion for £ simplifies to:
(4.11) dé = OO N2 dt 4 AP 35| QY B |Pdt + A (Y, dWL) .

Remark 4.4. Let us comment in more detail, what this formula implies for the motion of the interface.
First, A1y is approximately the constant 40y with very small derivatives. Moreover, from @ we see that
ATMES is a normalized tangent vector at M. So the deterministic drift in is an Ito-Stratonovic
correction and the motion of & is approzimately the Wiener-process W projected onto M.

Although this is not covered by our assumptions, as a final example we consider a space-time white noise
with Q. = £%Id. In this case
de = O>72)dt + S AT HES, W),
which is a rescaled equation valid on the timescale O(¢7%). Up to the small deterministic error terms, ¢ is a
stochastic process with mean zero and linear quadratic variation. More specifically,

t t
/ 2 AR (ES, ES)dt = &% / AF Pt + O(e. )t
0 0

t 26
t 5
— 626/ Al_lldt + 0(56—3/2—0—14)72 = _t4+ O(€26+1)t + 0(536—7/2+n)t )
0 62 462
Recalling Levy’s characterization of Brownian motion, in first approximation for times not too large the
interface behaves similar to a Brownian motion with variance £29/(445).

4.2. Conclusions. Let us summarize the results of our analysis:

(1) There exists a slow tube I' (around the slow manifold I"") where the coordinate system (cf. (L.7)) is
well defined and from which solutions with high probability do not exit for long times 7 unless one
of the interfaces breaks down (stochastic stability).

More specifically, according to Theorem this probability is bounded below by

1 — Cy(Te + 1)577

for any p > 0 where §. measures the noise strength (less than £%/2). So if the noise is exponen-
tially small then this probability is large for exponentially long time, while in case the noise being
polynomially small the probability is large for any polynomially long time.

(2) InT the approximate SDE of front motion for the stochastic C-H is given by . Further, the extra
stochastic terms from co-relations of the interfaces motions are important since the deterministic
dynamics are exponentially small.
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5. HIGHER ORDER ESTIMATES

5.1. Preliminaries. This section deals with the estimation of all the following higher order terms that
appear due to stochastic integration when deriving the equations of motion in the slow channel:

<1~}’ Eflk> ) <ﬂil, Ef) and <1~Li7 Efl>

In addition, we bound the quantity (L, ﬂil>, where for a general smooth in space function ¢ the operator
L¢ is defined by

LC¢ = _€2¢$ZE$$ + (f/(uh)gba:)a:

In order to achieve rigorous estimates for all these terms, we investigate the properties of the stationary
problem . Our analysis admits extensive calculations and is based on the ideas and techniques presented
in [8, @, 22], 23] for the deterministic case where analogous terms of lower order have been estimated already.

Note first, that for the construction of the approximate manifold of solutions for the stochastic Cahn-
Hilliard equation we use a local coordinate system when presenting the admissible interface positions. The
hny1 variable depends on h; = &;, i =1,..., N, therefore, when differentiating two times in £ variables and

2
applying the chain rule the second order term %hﬁg}f? appears. More specifically, for a general function f
10N

smooth in space and any ¢,j5 = 1,..., N, we obtain
of _ of n of Ohnia
o0&  Oh;  Ohni1 Ohy
) o’f 0°f +( 0% f L 0% f BhN+1)3hN+1
(5.1) €€, Ohioh; | \Bhxy10h; | 0K, Oh; ) ok

of (82hN+1+ O*hn 1 5hN+1)

+

Ohny1 \ Oh;Oh; = Oh;Ohny1 Oh;
By the next lemma considering p = € for some small x > 0 and thus «, 3 are exponentially small, we estimate
2
‘%h]zggj . As in [8], where the analogous first order estimate has been derived, we use an implicit function

theorem argument combined with the mass conservation constraint. If u" is in the second approximate
manifold M then, by definition, mass conservation holds i.e.

M = M(h) :/0 ul(x)dz.

Differentiating twice with respect to h variables, we get

d? o
M(h) = td.
oM = [ ulas,

ho._ _0%uh _ Oul
where u;; = Dhioh; = ok

Lemma 5.1. For anyi,j =1,..., N the next inequality follows

O*hn 41

< .
Oh;0h; ‘ < Ofe)

Proof. Let £ be a generic positive variable. According to the analysis presented in [22], when comparing the
2 and ¢ derivatives of the solution ¢ of the stationary problem (1.3]), we obtain a residual function w given
by the following relation

(5.2) 2¢0(x, £, £1) = —(sgnz)py(x, £, £1) + 2w(z, £, £1).
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Let us define I; := [m;, mj1], X’ (z) :== X( Ny ) If w’ (x) := w(x —mj, hj —hj_1,(—1)7), then the interval

[hj—1 — €, hjq1 + €] contains the support of uj and

X~ twd for x € I;_4
(5.3) uj(@) = § (1= x9) (=g} +w?) + X (=4 —w/ ™) + x4 (¢ — ¢/ H) forz e
—(1 = hHwi+t for x € I; 11

where xJ = x(x(x_ehj>) and ¢ = ¢, (x — my,l; — lj—1,(—1)7) (cf. [22], p. 561). We note that in I; (cf.
8] p. 430)

i =l (1= Yt =
and thus

ho_ oul
(5.4) 7 oh;
- 5j7inm'wj+1 — Xj (A +1, ﬂU T B4, zwngl)a in I;

(—j,ix3)w! + (1 — x7)(Ajwl + Bjw))

where wi = w, (x —mj,1; —j_1,(~1)7) and w) = w;(x —my,1; —l;_1, (—1)7), with d;,; being the Kronecker
delta. Moreover,

Oz —m;) 0 fori#£j,57—1
Ajii= =g =

- ~1/2 fori=j,j—1
and
0 fori#j,j7—1
Bji=—2-"—=¢1 fori=j
1 fori=j—1.

In a similar way we obtain

(55) U;l j—1 zX;JE 1’LUj —|— Xj_l(Aj7iw‘; + Bj7in), in Ij—l
and
(56) ’LL;LZ =0, 41, X‘;,+1’wj+1 — (1 — Xj+1)(14 i+1, ZU) —|— B; 41, Zw[rl), in Ij+1.

Using now the bounds on w’, w, and w) (cf. [22], or [§] at p.172), we obtain for r > 0 sufficiently small
‘ / w)de| < Ce 2(r™ ' + 1)B(r)K;, + Olec) (-1, + 6j11,) »
1UI]+1

Wlth K:jﬂ‘ = |Aj,'i

+ [Aj41,4| + |Bjil + [ Bjt1,] and

‘ / [(*f%ﬂxfc)wj + (1= x?)(Ajwl + Bjw)) — 850w ™ — ¥ (Aj41wl ™ + B zwfl)}dx’
1;

< Ce?(r '+ 1)B(r)Kji + O(e)dj.
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Therefore, using the estimates for w® it follows that

d? Lo
M(h) = 3
dhsdh; (h) /0 uj;dw

62 h
= —7ud.’L' + 0(8_2(7"_1 + l)ﬂ(T))KJ,Z + 0(65)(5]‘,1’1' + (Sj’i + 5j+1,i)
I 8x3hZ

oul
= [ G+ O+ DB+ Olec) B+ Gy 00)

= —(uf(mjz1) —u!(m;)) + O (r~" + 1)B(r)K;.
+ O(ec)(dj-1,i + 05,0 + 6j41,4)-

Since the support of ufb is ;UL UL D mi—1,mi,miq1, Mo we get that #;M =0ifj#i—1,i,1+
1,42, while for example u/'(m;) = X"~ 10|, = X' Hm,w(0,1;, £1) and ul (mi1) = —(1=x"THw |, =
—(1 = X" |y w(0, L1, £1). But w(0) = O(e 1)y (1), [22] p. 558, since ¢4,(0)~ = &2/ f(¢(0)) and /1
is uniformly bounded, while y is C*°.

Let us now for simplicity consider N =1 then M (h;,y) = constant, when y = hy where hs is a function

of hy, so

oM oMoy _

ohy oy
and thus
FM_ @QM(@f oM &y _
6h18h1 3y2 6h1 8h1 3h% o '
We set y = hy to get, using the estimate %TZ;” =0(1),
0%h
Oec) + 0(e)O(1) + O(1) 5 = 0
Oh?
and thus
0%hs
ah% = 0(65) M
The case N > 1 follows in a similar way. O
5.2. The estimates. We define I, := [—{/2 — £,£/2 + €], then for any = € I it holds that ([9, 22 23])

lw| < e Ba(r),
lwy| < ce™2r 1 Be(r),
(5.7) |we| < e=72B4(r),
|wae| < ce™?r7Be(r),
|wee| < ce™?B(r).
For the purposes of our proof we will need estimates for the terms
lweel, |Wazals |Wazel, |Waee|, |Wazzzzls |Wazae|, and |wege .

It is sufficient to estimate these terms in I := [0,£/2 + ¢] or in (0,¢/2 + £]. We write I = [0,¢/2 —cH] U
[¢/2 —eH,l/2 + €], for a positive H to be defined in the sequel. We set

Iy :=10,¢/2—cH], and J:=[{/2—cH, (/2+ €],

and prove the following lemma bounding the second derivative of w in £ on I.
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Lemma 5.2. For any x € I, it holds
(5.8) |wee ()] < e B (r).
Proof. Motivated by the proof of [23] for the estimate of |wy|, we use that
2Wee = f(d(x))w in (0,£/2+¢) DI,
and differentiate twice with respect to £ to obtain
e (wee)zew — [ (P)wee = F
for F = f"(¢)p3w + f"(¢)peew + 2f" (¢)pew,. By maximum principle it follows that

(5.9) wee(2)] < max{\w“(O)L wer(t/2 ~ <H), - sup ]f/ f/(qs)]} for any = € I

Following Carr and Pego (cf. [22] p. 560), we choose H such that f'(¢(z)) > co > 0for 0 <z < ¢/2—cH.
Since e2¢2 = 2(F(¢)—«), there exists a constant C' > 0 such that I¢%I < &foranyz e J=[(/2—cH, (/2+¢]
(cf. [22] p. 560, and p. 557).

First we estimate |wge(x, ¢, —1)| in J. It holds that (cf. [22] p. 558)

|| ds
5.10 w(z, b, —1) = e 2" (). (|z|, ¢, -1 / _.
(5.10) (.0, 1) Ooullel. 1) | o
Let us define A := ol ___ds __ With a slight abuse of notation and for simplicity of notation, we neglect

2/2 ¢a(s,l,—1)%"
the index ’—” in a— by using «. Differentiation of (5.10)) yields

Weg = 571{(572@/(7‘)%[%«4 + 200720 (1)) e e A+ 206720 (1)) e As
P20 0)bate A+ 220 bae A+ (200 ()6, A}

According to [22 23] it follows that

|/ (r)] < er2a, and | (r)| < er e

(5.11)

Analogously we obtain
| ()] < erSa.

Observing that r = /¢ is bounded, i.e. £=! < ce~!, we derive

(5.12) 10720/ (r)] < ce2a(r), |(672/(r))e| < ce™3a(r), and |(672 (1)) ee] < ce™a(r) .
Obviously since z € J one has |A| < ce?*1. It holds that (cf. [22] p. 552)

(513) 262 = 3(F(9) — a)

while

(5.14) e Gur = ().

Since fZZ |pz|dz < 2 (cf. [22] p. 558), and ¢ satisfies a Dirichlet problem we get by trace inequality that ¢
is uniformly bounded. Therefore, we obtain

|pe| < e, |fue| < ce72, and |prae| < ce™3.
Using now the definition of w, and the fact that |w| + |¢,| < ce™t, we arrive at
|pe| < et
while |¢u1| < €|dur| + clws]. So, using |w,| < ce72, (cf. [9]), we get
|pae| <272

By (5.14)) it follows that

|¢zx£| S 0573~
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Finally, we also need an estimate for the term ¢,¢,. We differentiate (5.13)) twice with respect to £, in order
to obtain

€2 b pure| < ce™? .

Hence using the bound ﬁ < ce valid in J, it holds that

|puee] < g™ in J

In order to compute the derivatives of A in (5.11]), we apply the formulas

d b b
— 5,0)ds = s,0)ds — s (0)g(s(¢), £
it [, o008 = [ oo, 0s = (0600

and

dQ/b (s, 0)ds —/b (5(0), O)ds — ' (0)ge(s(£),£) — 8" (0)g(s(€), ) — 8" (0)*ga(s(0), 1) — 8" (O)ge(s(£), 0)
02 S(Z)g ) - «(0) gee ) 9e 5 g ) 9z 5 ge L)

After tedious calculations, using the estimates above and the fact that the length of the interval is of order
O(e), we arrive at

|Ag| < cg?, | Ape| < cs.
We note that /¢ is bounded i.e. £=! < ce~!. Thus by (5.11) and (5.12)) we obtain

(5.15) lwee| < ce™3a in J.
So by (5.15)), since £/2 —eH € J, it follows that
(5.16) lwee(£/2 — eH)| < ce 3.

By the definition of F, the fact that f' > ¢g > 0 in Iy, and the first and third estimate of (5.7) we get
(using (§ := _) that

sup| 7/ 1'(8)| < e[6e bl +[ouellw| + elhwel] < ez B[I60l” + Iauel + o]
H
In addition, since |w¢| + |pze| < ce™2 22, 9], it follows that

|poo| < ce™?.

Thus as we already proved |¢¢| < ce™!, we derive

(5.17) sup’}"/ f’(qﬁ)’ < e384,

Iy
Let us now turn to the missing estimate on |wg,(0)|. In [23] by using w(0) = —%(a/f), it was demonstrated
that |we(0)| < ce=28. Analogously by differentiation in ¢, it follows that
(5.18) lwee(0)] < ce™?p.
Using now (5.9), (5.15)), (5.16)), (5.17) and (5.18)) we obtain that |w(z)] < ce™38 for any x in I = Iz U J.
By symmetry we prove finally that |we| < ce™38+(r) in I,. |

The next three lemmas present bounds for the third or higher order terms
Lemma 5.3. For any x € I7 — {0} it holds that
(5.19) [Wee ()| < ce™r™1Be(r)
and

(5.20) |wee ()] < ce™ B (r).
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Proof. We consider x € (0,£/2+¢) and £2w,, = f'(¢)w. By differentiation in x, using ((5.7), and the bound
on |¢.|, or by differentiating in ¢, using (5.7)), and the bound on |¢,| we get the following

Wzl < e72[|F(6) lwa] + |£"(&)] ]l

< ce? {06721"*16 + 05715715} <ce 4713

and
[Wasel < 2 (| (@)l wel + 1" (6) el ]
< ce? {66725 + c&:*leflﬁ} < ce4B,
with 8 = G_. Again by symmetry, we obtain the bounds for all z in I? — {0}. O
Lemma 5.4. For any x € I, — {0} it holds that
(5.21) |weee ()] < ce™r1Be(r).

Proof. Consider x € (0,£/2 + €] and write wyee(€/2) — wyee(x) = fe/Q

» Wazee(s)ds, in order to obtain

/2
(5.22) [waee ()] < |weee(€/2)] +/ [wagee(s)|ds.

T
||

We use the definition of w given in (5.10)), set p = e~ 1£?a’, and recall that A = fe/z
first with respect to = and then twice w.r.t. £ yields

Wy e :pll¢mxA + pl¢zm€¢4 + 2pl¢mx¢4€ + pl¢zm€¢4 + p¢szEA
Pepue  (Pueedy = 20%,02) | Do Pedu
e 7 o oo B2

¢, ?ds. Differentiating

+ 2p¢)ww€-’4€ + p(bxw-AN -
Observe that A =0 at = ¢/2, while

A0[2) = ~36u0/2)7 and Au(t/2) = 9u(0/2) 60a(0/2) + Gua(t/2)0(0/2)

We also note £/2 € J, thus by the bounds of Lemma we obtain |¢.¢(¢/2)] < ce™2 and |¢,(£/2)|7! < ce.
Hence, as in Lemma [5.2] for a general z € J, we get e~ 1[Ay(£/2)] + | Aw(£/2)] < ce.

In addition using the third estimate from yvields |pee(€/2)] < ce Pa. Furthermore, as £/2 € J by
the proof of Lemmawe have | ¢, (£/2)] < ce=2 and |¢.00(£/2)| < ce=3. Therefore, we obtain finally (with
a=a_)

(5.23) lweee(£/2)] < ce™ar .

Recall e2w,, = f'(¢)w in (0,£/2 + €). By taking twice the ¢-derivative yields (8 = 5_)
(5.24) [wazee] < ez |[@el o] + Iellwe] + el | < =78

Here, we used the bound |¢| < ce~! from the proof of Lemma the first and third estimate of (5.7)), the
fact that |w| < ce™1f and |wy| < ce =23, and the bound |w| < ce 2 of Lemma

Using r = ¢/ and z € (0,¢/2) we get |z —£/2] < ¢(€/2+¢) < cer!. Therefore, (5.22)), (5.23)), and (5.24)
imply

lwaee(z)| < ce™ 1B, x€(0,0/2+¢].
By symmetry the analogous result holds for any « € [—¢/2 — ¢,0). ]

Analogously the following lemma follows:
Lemma 5.5. For any x € I, — {0} it holds that
(525) |wmmzzz(x)| + ‘wrxz/(z” + ‘wxaﬁl/(w” S 6575T71ﬁ:|:(7‘)'
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In order to estimate Ef , Efj and Efj . we fist need the following lemma for the correction terms @);.

Lemma 5.6. For any i, j, k it follows that
|Qj| < 067357
(5.26) |Qijl < ce™hr71p,
Qijr| < ce™Pr71B.

Proof. We recall that

Xj—le on I;_4
=4 (0= 0) (0 4 w) + (0w ) £l - ) o
—(1 — I THwitt on Ijy;.

Consider the functions on & = 0,1 in the first and last set of their support. Using the bounds on |w|, |wgs|,
we arrive at
|12§L| <ce '8 and thus |w;] < ce™'B,
|12§Lm| <ce 7?3 and thus || < ce 3B
The estimates of |w,| and |we| and of |wg..| and |we.,|, respectively, give
|ﬂ?l| <ce %' and thus |wj;| < ce”2r 14,
|ﬂ?lm| <ce '3 and thus |Wjize| < ce ™ *r !4
Finally, using the estimates of |wyz|, |wyel, and |wee| and of |Werrs|, |[Wezwe|, and |weqee|, Tespectively, we
obtain
|ﬂ?m| <ce '3 and thus |wj;%| < ce™?r 714,
|ﬂ;’zkm| <ce Pr1B and thus |[Wjikee| < ce Pr1p.

Recall also

Wy =l +al,
1, 1., 1 1,5 _ :
Qj(x) := (—gﬂc + 2%~ gx)wjm(O) + 6(3& — L)Wy (1) + 2w (1), j=1,...,N.
This definition of (); combined with the previously obtained bounds on %; imply the result. O
Remark 5.7. By [22] p. 557-556, the following estimates hold true. First,
0 /2
(5.27) Go(2, 0, =1+ | o(@,,+1)* < 7S + E(1),
—2/2 0

where |E| < ce71 and So = fil /2F (u)du. Moreover,

2/2
(5.28) [ Jodds <
—£/2
and
22
(5.29) / | |Pda < ce™3.
—2/2

In addition, there exists a constant ¢ > 0 such that for all x € [hj —e,hj+¢],j=0,...,N +1 we have
(5.30) | (2) = ¢/ (2)] < cla? — a7 H,

(5:31) 64@) - 1+ (2)] < e o — 0?1,
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and
(5.32) |070(2) — ¢05 " (2)] < ce7%|a? — T H,
provided €/¢;,e/lj 11 < 1o for some sufficiently small ro > 0 (cf. [§]).

Now, we are able to bound the terms @" and u”.
Theorem 5.8. For any i, j,k it holds that

@} [loe < O(1) + O(fJw]|o0),

(5.33) ]| < ee™2(1+ 5307 + max(rjad 71 0?THY2) + cl|w| + clfwel,
@5l < ™2 4 cllwa | + ellwell + elwee || + llwael| + cllweel,
lufllso < O™, Jluljlloe <OE™),  lufll < O(e72).

Proof. We use the definition of u? and get by (5.28) that
@1 <c [ loalde + el < ¢+l
0

Also, it follows that |u§’\ = O(|¢.|) = O(e71), and thus

[ufllee < OET1)

By [8] p. 38,
(5.34) u? = —u' + (1 — ! — xTwt! on I .
Combining this with we obtain
O(wy + wy) for x € I;_4
ué‘z(x) = ¢ —ul(z) + O(w, +wy) for x € I
O(w, + wy) for x € Ij4q .
Therefore, we arrive at
. O(wy + wy) for v € I;_4
ﬂ;‘l(x) = / u?i(y)dy = O(ul + w, +wy) forz e l;
0 O(wy + wy) for z € I41.

By [22] (cf. p. 563, (8.6)),
(5.35) ul| < e Y2(SY2% + max(rjaj,rj+1aj+1)1/2) .
Using this estimate we obtain
@] < ce™H2(1+ SY2 + max(rjo 107t Y2) + cfwa| + cflwe]) -

For higher derivatives, observe now that

- (’)(wm + wyp + wze) for z € Ij,l
ﬂ?ik(x) = / u?ik(y)dy = O(“Zi + Wap + Wer + wee) for x € I;
0 O(Wgy + Wep + wep) for v € Ij41.
In addition, since v} = —ult + (1 — x?)w? — xJw/*! on I}, we obtain

il < Nug | + ellwa |l -

The argument of Lemma 8.3 of [22] p. 562 applied to u” on I, using the support of |¢4 — 71| combined

with (5.31)), (5.28)), and ‘ ‘
ug = O|¢a|) + O(|6% — 171)
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finally yields

(5.36) [ul]] < (o]l + /O(e2€) < e 2.

Analogously, differentiating u" twice with respect to x, using the bounds of (5.32) and (5.29)), and the
support of |¢l, — ¢it1| yields

Uye = O|bual) + O(|¢h, — ¢12]) -

[, || < lldeall + VO 1) < ce™3/2.

Thus

So, it follows that
(5.37) lugll < g2 + clfws .
Combining the previous estimates yields
il < ce™/2
Using again we obtain
Jui| < O(ugy) = Ouz,) = Osr) = O(e7%) .

+ cllw || + cllwell + cllwall + cllwaell + ¢fwee]] -

Therefore
lufjlloe < O(2) .
Further, by (5.34) and (5.36)) it follows that
1
lu | < O(luz|l) = O(™2) .
|

Combining now the bound |@/| < O(1) + O(||w]|) with the implicit function theorem, for the change of
variables for h to £, we obtain

(5.38) |i5] < (O(1) + O([w])[O1) + O('B)] -
Moreover, for the second derivative in & variables
5y, < [ |[0(1) + O B + @ |[0(1) + O B)] + | |Oe.) -

So we verified the following lemma:
Lemma 5.9. For all j, k it holds:
(5.39) a1 < (0(1) + O(lwl)[O(1) + O™ 5)]
and
(5.40)  [|@S, || < [O(1) + O(e728%) + O(e ' BO(wx + we) + /% +e7H/2A] + O(e) [0(1) + O([|w]))]
with defined as A = SA* + max;(r;a?, rj 109 T1)1/2,

The following theorem gives the bounds on Ef in the L2-norm.
Theorem 5.10. For all i, j,k the following inequalities hold:
(5.41) 1B || < 441+ O(e72B),

(5.42) IES] < O(2) + 015),

(5.43) |ES, ]l < 0=/ + 0=~ 5).

(3
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Proof. Using the bound ||E$|| < [l ]l + [|Q;l, the estimate of ||w;|| presented in (4.24) on p. 186 of [9], and
our Lemma we obtain (5.41)). Also, observe
ES, =i + 0(Qji) + O(Qija) = Owy + wy) + /O (—ult)dy + O(Qji) + O(Qijz)
< O(ws +we) + O(uf) + O(Qji) -

Hence, by (5.35) and Lemma [5.6] we conclude

IES,| < O(™2) + O 715) .
Furthermore, using (5.34) we obtain

ESy = Wik + O(Qjik) + O(Qjina) = O(wag + wee + war) + /0 (—tar)dy + O(Qjir) + O(Qjira)
< (’)(wm + wypp + wgcg) + O(“Zk) + O(jSk) .

Thus, by (5.37) and Lemma this implies

|Efll < O=/%) + O(=r™15) .

]

Remark 5.11. We note that the bound on ||EfjH presented in theorem coincides in the main order
term with the estimate that was used but not presented analytically in [9).

Using all the results of the previous analysis we are now ready to derive by Cauchy-Schwarz inequality
all the desired estimates for the higher order derivatives. They are presented in the following main theorem
of this section.

Theorem 5.12. These inequalities hold for all i1, k:

(5.44) (5, ES)| < O(™Y2) 4t + O(7B)|,
(5.45) (@, ES) < O(e™1/2) + O(e~ 71 B),
(5.46) (3, Efy)| < [0(™*2) + 0(er ' 8)] - 18]

It remains to analyze (L°0, ﬂiﬁ Here we provide the following main result.
Theorem 5.13. For all k and 1 it holds that
(5.47) (L5, @) < e 2B (0(1) + O(2B(r)) ) 3]l
Proof. Note that by symmetry and definition
(LD, i) = — (0, 0,06, e, L (u))
Recall that we defined £°(¢) = €2¢,.— f(¢). Asin [§] (cf. p. 452-453) for x € [h;—e, hj+e],j =1,2,..., N+1

we write
(5.48) L") = fi+ 2+ G,
where we defined
f1i= X0, (¢ — @), fa:=2x0 (o1 = 9),
X’ 1
(1 5)f"(0)ds},
0 X7

=@ o P{a-0) [ sfds 0 [
with 6 = 0(s) := (1 — s)¢’ () + s¢’*1(x). For all other =, we have no contribution of £°(u").
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In Lemma 5.2 of [§] at p. 454, after differentiating fi1, fo, G with respect to h; it is derived that

‘8h £hut| < e5(r)

Applying the analogous argument to the second differential with respect to h; and h; yields after some
calculations

(5.49)

byh| < oo3 '
6hj(“)hi£u ‘_ce B(r)

Note that in this argument the worst term is |¢7 . () — @21 (z)]. But as e2¢rpr = f/'(¢)ps with f(¢) = ¢>—¢

rrxr

and f’(¢) = 3¢? — 1, using the estimates of ¢, ¢, and the results for the differences presented at p. 453 of
[8], we get
|00 (%) — Ohba (@) = €72 (¢7) 45 (x) — [/ (7Tt ()]

=2 f (@)L (x) = [ ) er (@) — F1(@)et () + F1(@) el ()|
eI (¢N)|95(x) — ¢3 M (@) + 2|l @I £ (@) — (&)
ce?|¢h () — gL (@) + e 2T (@) — (¢
ce 3l — T 4 ce733¢7 (2)? — 1 — 37 ()2 + 1]
ce?lad — ol e TP (x) + |9 () — 7
ce 3l — T 4 ce73ad — oI

ce3|ad — ol T

(/AN VAN VANRN VARSI VAN

IN

Again as in [§] (cf. p. 456), by using that e?w,, = f’(¢(x))w and differentiation in z, we obtain

(5.50) < e B(r).

g 9 h‘

8h]‘ahi ox

Changing now to £ variables, using that the second derivative appears by applying the formula (5.1) to

(5.50), and since (cf. [§] p. 454) it holds that

o 0
—Lbu ‘

(5.51) 8h p

ce T B(r),

we finally obtain

(5.52) 8528& éivﬁb " <e72B8){(0(1) + 7 B + (O(1) + 71 B(r) | + e *B(O(e.)
<e=56(r) (0(1) +72(r)?).
So, the result follows. -
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