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Abstract 

Reflection and refraction of a finite-power Airy beam at the interface between two dielectric 

media are investigated analytically and numerically. The formulation takes into account the 

paraxial nature of the optical beams to derive convenient field evolution equations in 

coordinate frames moving along Snell‟s refraction and reflection axes. Through numerical 

simulations, the self-accelerating dynamics of the Airy-like refracted and reflected beams are 

observed. Of special interest are the cases of critical incidence at Brewster and total-internal-

reflection (TIR) angles. In the former case, we find that the reflected beam achieves to self-

heal despite the severe supression of a part of its spectrum, while, in the latter case, the beam 

remains nearly unaffected except for the Goos-Hänchen shift. The self-accelerating quality 

persists even if the beam is trapped by multiple TIRs inside a dielectric film. Grazing 

incidence of an Airy beam at the interface between two media with close refractive indices  

is also investigated revealing that the interface can act as a filter cepending on the beam scale 

and tilt. We finally consider reverse refraction and perfect imaging of an Airy beam into a 

left-handed medium.  
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1. Introduction 

The optics of Airy light beams are currently attracting increasing research interest. 

The Airy wavepacket was first conceived in 1979 in the context of quantum mechanics as a 

non-spreading solution to the potential-free Schrödinger‟s equation [1]. Its salient property is 

the ability to freely accelerate in the absence of external forces. However, despite the striking 

similarity of the free-particle Schrödinger‟s equation ( 2t xxi / m   , m being the mass) 

with the paraxial approximation of light diffraction ( 02z xxu iu / k ,  0k  being the 

wavenumber), it was only until 2007 that the feasibility of optical Airy wavepackets, i.e. 

light beams with an Airy wavefront, was conceived [2]. These new light waves have two 

remarkable properties: diffraction-free propagation and transverse self-acceleration. As first 

predicted theoretically and later observed experimentally [3], the self-accelerating property 

is manifested by a parabolic, ballistic-like trajectory that the beam‟s local intensity features 

follow in space, giving the impression of a projectile moving under the influence of gravity 

[4]. This peculiar behavior of light bending in the absence of refractive index gradients is 

due to the inherent chirped phase modulation of the Airy function, that causes the constituent 

beam rays to form a parabolic caustic in space [5]. 

 As happens with other known diffraction-free beams, such as Bessel [6], Mathieu [7] 

or parabolic [8] beams, an ideal Airy beam carries infinite power and hence is not physically 

realizable. Hopefully, it has been shown that exponentially modulated (finite-power) Airy 

beams maintain the remarkable features of ideal Airy beams over several diffraction lengths 

before they are significantly distorted, thus lending themselves to practical use [2],[3]. It 

should be here emphasized that, although the self-bending behavior of finite-power Airy 

beams may provoke one‟s notion of light traveling along straight paths, a careful analysis 

reveals that the beam’s centroid still follows a straight path. Hence Ehrenfest‟s momentum 

theorem is by no means violated [9].  



Another remarkable feature of Airy beams is their robustness against scattering or 

turbulent environments as well as their ability to self-heal and reproduce their wavefront 

even after they are severely perturbed or obstructed [10],[11]. Other works have also shown 

the persistence of their features inside self-defocusing nonlinear media [12]. All these unique 

properties have already been utilized to open a number of application fields, such as beam 

trajectory control [13], optical micromanipulation [14],[15], vacuum electron acceleration 

[16], curved plasma filaments [17], Airy plasmon-polaritons [18], abruptly autofocusing 

waves [19] and others. 

Additionally, the analogy between diffraction of optical beams in space and 

dispersion of optical pulses in time has also motivated the realization of Airy wavepackets in 

time domain [2]. The resulting Airy pulses can propapagate with acceleration and minimum 

shape distortion over several dispersion lengths in media with quadratic or cubic dispersion 

[20]. These unique waveforms have so far found application for generating dispersion- and 

diffraction-resisting optical bullets [21], optical solitons [22] and supercontinua [23].  

In the present work, phenomena associated with the refraction and reflection of a 

finite-power Airy beam at a dielectric interface are investigated analytically and numerically 

for the first time to our knowledge. The problem is of interest in optical settings where Airy 

beams are targeted into dielectric media, exit the medium in which they have been generated, 

or propapate through layers, such as biological tissues. For the sake of simplicity and in 

order to focus on the essentials, we here restrict ourselves to one-dimensional (1D) Airy 

beams, hence to 2D scattering configurations. The extention to 2D Airy beams and 3D 

scattering is immediate. The analytical formulation takes into account the paraxial nature of 

an Airy beam to derive the evolution of the field amplitude in convenient coordinate frames 

that move along Snell‟s refraction and reflection beam axes. 



Through numerical simulations, we find that, away from critical angles, the reflected 

and refracted beams have a much Airy-like amplitude profile, thus retaining the self-

accelerating and diffraction-resisting qualities of the incident wave. The acceleration and 

diffraction rate of the transmitted beam is however reduced or increased if the second 

medium is optically denser or thinner, respectively. Of special interest are the cases of 

critical incidence at Brewster and total-internal-reflection (TIR) angles. In the Brewster case, 

we find that the p-polarized reflected beam achieves to self-heal and reconstruct its Airy 

profile, despite the severe filtering of its spectrum, which is a unique feature. In the TIR 

case, the beam remains nearly unaffected experiencing only a slight lateral shift due to the 

Goos-Hänchen effect. Subsequently and assuming that the beam undergoes multiple TIRs 

inside a thin dielectric slab, we also find that the self-accelerating character persists, however 

at the cost of increased diffraction. Another interesting case is that of two media whose 

refractive indices are very close. In this case the TIR phenomenon occurs at grazing angles 

and a paraxial propagation formulation must be adopted. It is found that the interface can act 

as a selective filter depending on the transverse scale and initial tilt of the impinging Airy 

beam. Moreover, in TIR the interference between the incident and reflected beams creates an 

interesting interference pattern similar to that observed with abrupt autofocusing waves. We 

finally consider the interface to a left-haned medium (LHM). In this case the transmitted 

beam refracts along the reversed Snell‟s direction and creates a perfect image of itself at a 

certain depth inside the LHM medium, while still accelerating toward the same direction 

with the incident beam. 

 

2. Analysis 

Consider the 2D problem of Fig. 1 where a monochromatic optical beam with time 

dependence  exp i t   impinges at an angle 1  on the plane interface between two 



dielectric half-spaces. The two media are characterized by dielectric constants 1 2, ,   

magnetic permeabilities 1 2, ,   and wavenumbers  
1 2

1 1 1

/
k ,     

1 2

2 2 2

/
k .     Let 

also z h   be the depth inside medium 1, at which the beam axis intersects its input plane. 

For convenience in expressing the incident, reflected and refracted beams, we also introduce 

the following coordinate systems: 

    i ix ,z x s,z h   , 1s htan .   This system follows from a translation of the 

„interface‟ system  x,z  to the point  s,h  where the beam axis intersects its input plane.  

    1 1 1 1i i i i i ix ,z x cos z sin ,x sin z cos .          This system follows from a clockwise 

rotation of system  i ix ,z  by 1  and is aligned with the incident beam axis. 

    r rx ,z x, z .   This is system  x,z  with reversed z axis in order to follow the 

dynamics of the reflected beam toward positive rz . 

    1 1 1 1r r r r r rx ,z x cos z sin ,x sin z cos .          This system follows from a 

anticlockwise rotation of system  r rx ,z  by 1  and is aligned with the reflected beam axis. 

    2 2 2 2t tx ,z xcos z sin ,x sin z cos .        This system follows from a clockwise 

rotation of system  x,z  by 2 ,  i.e. Snell‟s angle of refraction, and is aligned with the 

refracted beam axis. This is helpful only when 2  exists. In other cases the interface system 

is used.  

Now let i r t, ,    be, respectively, the incident, reflected and refracted field 

amplitudes, representing the y-directed electric or magnetic field, in case of a s- (TE) or p- 

(TM) polarized wave, respectively. To solve the scattering problem one needs to define the 

input field at z h,   or equivalently 0iz .  In general, this can be expressed as an arbitrary 



function  if x . For a paraxial beam wave, however, whose axis is at an angle 1  with the 

interface, it is convenient to write 

     0 00i i i i ix ,z u x exp i x ,     (1) 

where  0 iu x  is a slowly varying, with respect to the wavelength  1 12 / k ,    envelope 

and 0 1 1k sin    can be viewed as the projection of the average (or central) beam 

wavenumber on the x axis.  

To determine the envelope function,one notices that, in coordinates  i ix ,z ,   the 

amplitude of the paraxial beam is written      0 1i i i i i ix ,z f x ,z exp ik z .       Then on plane 

0iz ,  one substitutes i ix x cos ,   1i iz x sin    to obtain    0 0 1 1i i iu x f x cos ,x sin .  

However, thanks to paraxiality, the variations of 0f  with respect to iz  occur on a much 

larger length scale than variations with respect to ix .  This allows one to approximate  

   0 0 1 0i iu x f x cos ,   (2) 

which is valid when 1  is not too close to 90
0
. Specifically, Eq. (2) can be used with 

confidence when 1 0 1 1k x cot ,   0x
 
being the scale of variations of  0 0if x , .  

Through a Fourier transform (FT) in coordinates  x,z , the incident field is 

decomposed into plane waves. Subsequently each reflected or transmitted plane wave 

component is weighted according to the corresponding Fresnel coefficients. Taking the 

inverse FT, the incident, reflected and transmitted waves read  

      1
1

2
i x,z k exp ikx iq z h dk





    
 

 (3.1) 

        1
1

2
r x,z k R k exp ikx iq z h dk





    
 

 (3.2) 



       2 1
1

2
t x,z k T k exp ikx iq z iq h dk





    
 

 (3.3) 

where  k  is the FT of the input wave and  
1 22 2

1 1

/
q k k ,   

1 22 2
2 2

/
q k k   are the z-

wavenumbers of the Fourier components in the two media. Radiation conditions require that 

the square root signs are chosen so that  1 2 0,Re q ,  1 2 0,Im q .  By applying boundary 

conditions at the interface, i.e. continuity of the tangential electric and magnetic field 

components, the Fresnel reflection and refraction coefficients are expressed by 

    2 1 1 2 2 1

2 1 1 2 2 1 1 2

2q q q
R k , k

q q q q

   
  
     

 (4) 

for p-polarized waves. For s-polarized waves, the same expressions hold but with 

permitivities 1 2,  replaced by permeabilities 1 2, .  Now from Eqs. (1), (2) and ix x s  , the 

FT of the input wave is given by 

     
  0

0
1 1

i

kexp iks
k x, h exp ikx dk U

cos cos





 
       

  
  (5) 

where  0U k  is the FT of  0 0if x , .  Subsequently, Eq. (5) is substituted into Eqs. (3) and 

the integration variable is changed to 0k .  
 
For a paraxial incident beam, the length 

scale 0x  is much larger than the optical wavelength; hence the width of the spectrum     

is sufficiently narrow to motivate the Taylor expansion 

   
22

2 0 0 112 2 3
1 1 0 10 3 5

10 10 102 2

kk
q k q ...

q q q

 
              (6) 



where  
1 22 2

10 1 0 1 1

/
q k k cos .     Now if 2

0 10q    (which is equivalent to the 

previously mentioned condition 1 0 1 1k x cot , 
 
since   is of the order 1

0 1x cos  ), one may 

keep only terms up to second order and obtain for the reflected beam 

        1 0 10r r r r r r r r rx ,z u x z tan ,z exp i x s iq h z         (7) 

where the envelope function is given by the Fourier integral 

   
 2 2

1
0 0 3

1 1 10

1

2 2

r
r r r r

k z h
u ,z U R exp i i d

cos cos q





   
         

       
  (8) 

In the latter equation, 1r r rx z tan     is the reduced x coordinate centered at the line 

1r rx z tan ,   namely the reflected beam axis predicted by Snell‟s law and it is the 

counterpart of the retarded time frame moving at the group velocity of an optical pulse. 

The interpretation of Eqs. (7) and (8) is obvious. The reflected beam aplitude is 

concentrated around the axis predicted by Snell‟s law and its spectrum has been modulated 

by the Fresnel reflection coefficient. With increasing rz ,  the beam experiences diffraction, 

due to the quadratic phase  2  acquired by its spectrum. The quadratic phase term is 

proportional to rz h,  thus accounting for the diffraction of the incident beam along the 

entire path from the input to the observation plane. In addition, as shown by the exponential 

factor in Eq. (7), the beam acquires a phase equal to    
1 22 2

1

/

r rk x s z h ,   
  

 i.e. 1k  

times the path propagated along the beam axis from the input to the observation plane.  

Turning to the wave transmitted through the interface, one needs to consider two 

regimes. When the angle of incidence is below the critical TIR angle  1
2 1c sin k / k ,   

then there is a well-defined refracted beam at the angle 2  predicted by Snell‟s law: 



1 1 2 2k sin k sin .    If additionally, 20 2| | q cot   , where  
1 22 2

20 2 0 2 2

/
q k k cos ,   

one approximates  2q   similar to  1q   in Eq. (6), and substitutes in Eq. (3.3) to obtain 

      2 0 20 10t tx,z u x z tan ,z exp i x s iq z iq h         (9) 

with 

   
2 22
2 1

0 0 3 3
1 1 20 10

1

2 2
t t t

k z k h
u ,z U T exp i i d ,

cos cos q q





    
           

        
  (10) 

2t x z tan     being the reduced x-coordinate. The interpretation of Eqs. (9) and (10) is 

similar to that for the reflected beam. Note in Eq. (10) that the quadratic (diffracting) phase 

is the sum of two components because the wave has propagated through two different media. 

If the second medium is left-handed, i.e. of negative refractive index, then the second term is 

of opposite sign thus tending to eliminate the diffraction accumulated in the first medium. At 

a certain depth inside the medium the two terms cancel exactly and perfect imaging is 

accomplished. An example will be investigated in Section 3. 

In the TIR regime on the other hand, there does not exist a refraction angle 2 , and 

 2q   becomes imaginary in a part of the spectrum. Then, by approximating only 

wavenumber  1q   according to Eq. (6), we obtain  

      0 10t tx,z u x,z exp i x s iq h      (11) 

where 

   
2
1 2

0 0 2 3
1 1 10

1

2 2
t

k h
u x,z U T exp i x iq z i d ,

cos cos q





  
          

     
  (12) 

It is interesting to notice that Eqs. (8) and (10) are solution to the paraxial equation of 

light diffraction for the reflected and refracted beams in coordinates  r r,z ,  t ,z , 



respectively, under the appropriate initial conditions. For example, for the reflected beam the 

paraxial equation 
22

2
3 2
202

t t

t

u uk
i

z q

 


 
 is implied, subject to the initial condition  0t tu , ,  

obtained from Eq. (10). In the TIR regime, such an approximation is not valid and Eq. (12) 

implies the complete Helmholtz equation. 

We close this Section by investigating the case of grazing incidence ( 1  close to 90
0
) 

of an Airy beam at the interface. This is interesting when the refractive indices of the two 

media are very close  1 2 20 n n n    and, consequently, the critical TIR angle is also 

close to 90
0
. In this case the Fourier trasform approach of Eqs. (3) is innefficient because 

both reflected and transmitted rays remain almost parallel to the interface, thus implying the 

applicability of the paraxial approximation to Helmholtz equation. The total field on both 

sides of the interface is then expressed as    1u x,z exp ik x ,  where the slowly varying in x 

envelope u satisfies the parabolic differential equation 

 
2

1 2
2 0 0

u u
i k V z u , x

x z

 
   

 
 (13) 

with the index discontinuity creating the „potential‟      2 2
2 1V z k k H z ,   H  being the 

Heaviside function. The input condition is defined on plane 0x   as  0u ,z , and, for a 

beam impinging from medium 1, must be confined in half-space 0z .  

 

 

3. Numerical results 

Let us now apply the above to numerically investigate the reflection and refraction 

dynamics of Airy beams. In the following simulations the two media are taken to be 

nonmagnetic  1 2 0
      with refractive indices 

1
1 5n . ,

2
1 0n . ,  leading to a critical 



TIR angle 041 81c . .   The vacuum wavelength is fixed at 500nm.   For a finite-power 

Airy beam the transverse input amplitude is  

 0
0 0

0 i i
i i

x x
f x ,z Ai exp a

x x

    
        

   
 (14) 

where a  is the truncation (or, as commonly referred to, apodization) parameter and the   

sign determines the direction toward which the Airy lobes develop and, consequently, the 

direction of acceleration. The FT of this wavefunction is known in closed form to be [2] 

       
3

0 0 0 00
3

i i i i
i

U k f x ,z exp ikx dx x exp kx ia .




         
  

  (15) 

As a first example, consider a p-polarized Airy beam, with 
0

20x m  , 0 08a .  and lobes 

developing toward negative x (positive sign in Eq. (14)) impinging on the interface at an 

angle 0
1 30 .   The diffraction length for this beam in medium 1 is 2

1 1 0
7 5

d
L k x . mm   and 

we also let 
1 1

6 5
d

h L cos . mm,    so that the beam is allowed to propagate for one 

diffraction length before it hits the interface. The reflected and refracted beam amplitudes 

have been computed using Eqs. (8) and (10) and are shown in Figs. 2(a) and (b), 

respectively. As explained in Section 2, reduced coordinates  r r,z ,  t ,z  are used that 

follow the beam axes, which are at angles 0
1 30   for the reflected and 0

2 48 6.   for the 

refracted beam. Both beams are Airy-like and accelerate toward the same direction with the 

incident beam, as a result of the cubic phase modulation of the incident beam spectrum (Eq. 

(15)). The equations of the reflected and refracted caustics can be determined by a 

stationary-phase approach to the Fourier integrals of Eq. (8) and (10). Differentiating the 

phase of the integrand and including the cubic phase of the Airy function FT (Eq. (15)), one 

obtains a quadratic equation. The caustics follow from setting the discriminant equal to zero 

and the equations read  



 
22 3

1 1
2 3 3 2 3 3 3
1 0 1 1 0 1 2 2

1

4 4

r
r t

h z k cos
, h z

k x cos k x cos k cos

  
       

   

 (16) 

for the reflected and refracted caustic, respectively, while   corresponds to the sign of Eq. 

(14). Hence both beams follow a parabolic trajectory, however with a different acceleration 

rate and initial launch angles. It can be shown that the launch angles, i.e. 

1

0r

r

r z

d
tan

dz




 
 
 

 and 1

0

t

z

d
tan

dz




 
 
 

, at which the caustics originate from the 

interface, and the angle at which the incident parabolic caustic hits the interface are 

consistent with Snell‟s law. The split of the incident caustic to the reflected and refraced 

caustic occurs at  2 2 3 3
1 0 14x h / k x cos .    The caustics of Eq. (16) have been superposed 

in Fig. 2. 

Now consider the same p-polarized Airy beam impinging at Brewster‟s angle  

 1 0
2 1 33 69B tan n / n . .    Then the Fresnel reflection coefficient in Eq. (8) has a zero for 

0    0 0R    and, as a result, the spectrum of the reflected beam is severely disturbed 

and attenuated. The distortion of the beam shape is evident in Fig. 3(a), where the 

suppression of the central  0   part of the spectrum is manifested by a dark lobe around 

0r   (beam axis) and by the strongly distorted initial amplitude profile (at 0rz  ), shown 

in Fig. 3(b). However, a part of the Airy spectrum survives and manages to reconstruct the 

caustic as the beam propapagates and, as seen from Fig. 3(b), the features of the Airy profile 

have been recovered by depth 3rz cm.  

For an Airy beam whose lobes develop to negative x, it is the positive spatial 

frequencies  0   that correspond to the rays forming the parabolic caustic [5]. Hence, if 

the angle of incidence 1  is slightly increased beyond Brewster angle, so that the zero of the 



reflection coefficient  0R   occurs at some negative  , then the reflected caustic will be 

essentially unaffected. This is the case of Fig. 4(a), where 0
1 0 25. .     Clearly the 

caustic is unaffected, while the dark lobe manifests Brewster‟s suppression of a negative 

spatial frequency. On the other hand, if  1  is slightly decreased below Brewster angle, then 

a positive spatial frequency window is suppressed and the caustic is disturbed deeper inside 

medium 1, rather than at the interface. This case is shown in Fig. 4(b) for 0
1 0 25. .     

The reflected beam is now significantly distorted with some power diffracted toward 

negative r .  As a result of the missing spatial frequencies, the main lobe near the caustic 

loses is suppressed around 2rz cm  with the corresponding missing ray manifesting itself 

as a dark lobe. Self-healing occurs at 4rz cm,  beyond which a clear main Airy lobe is 

formed and persists.  

Note that the total reflected power ratio at Brewster incidence is very low. Using 

Parseval‟s theorem and Eq. (8), the ratio of reflected power is 

   

 

2
0 1 0

2
0 1

r

U / cos R d

P

U / cos d








     



  





 (17) 

and is around 54 10  for the case of Fig. 3. For lossless dielectrics, the transmitted power 

ratio is found by energy conservation 1r rT P .   

Now let us consider the TIR case. In Fig. 5(a) and (b), the reflected and transmitted 

wave amplitudes are shown when the Airy beam of the previous examples impinges at 

0
1 41 81c . .     Due to TIR, there is no refracted beam but only an evanescent, Airy-like, 

field distribution that dies away a few μm away from the interface. As explained in Section 

2, the interface system  x,z  is used in Fig. 5(b). In reflection, an Airy-like beam is formed, 



with a clear accelerating dynamic with respect to Snell‟s reflection axis  0t .   In Fig. 

5(c) the Gaussian amplitude of the incident beam‟s spectrum  0 1U / cos     is superposed 

on the amplitude and phase transfer functions of the Fresnel reflection coefficient 

  0R   versus the x-wavenumber 0 ,  here 1
0 12 56. m .    The 0   part of the 

spectrum is internally reflected  1R   but experiences a negative phase modulation that 

increases with   approximately as   (lower dashed curve in Fig. 5(c)). This varying phase 

causes a small positive shift to the reflected beam, which is well-known as the Goos-

Hänchen shift [24]. Due to the square root dependence of the phase near the critical 

wavenumber and the relatively wide-spectrum of the Airy beam, the Goos-Hänchen shift 

cannot be determined analytically and one resorts to directly comparing the amplitude 

profiles of the incident and refleted beam on the interface, as shown in Fig. 5(d). From the 

two maxima, the Goos-Hänchen shift is calculated to be 5 6. m or approximately 11 

wavelengths.  

In the previous TIR case, no caustic is created inside medium 2. This is because all 

rays that form the caustic, i.e. the rays corresponding to the positive part of the spectrum, 

impinge on the interface with angles slightly above 1 c    and hence suffer TIR. It is 

however interesting to see what happens when some of the caustic-forming rays, or even all 

of them, escape TIR and are refracted through the interface. For example, in Fig. 6(a), the 

angle of incidence is slightly decreased to 0
1 0 5c . .     Now a part of the positive 

spectrum escapes TIR. The corresponding rays are refracted at grazing angles inside medium 

2 ( 2  below but very close to 90
0
) where they form a grazing caustic with acceleration 

toward the interface. Another interesting case is when 1 c    and the incident Airy beam 

has its lobes developing toward positive x, i.e. when the negative sign is chosen in Eq. (14). 



Then the spectrum is as shown in Fig. 5(c), but now it is the 0   part (or part below 0 ) 

that forms the caustic and this part is partially transmitted  1R .  As shown in Fig. 6(b), a 

clear grazing caustic is now formed with opposite sign of acceleration, i.e. bending away 

from the interface. 

As previously discussed, Airy beams have been found to retain their diffraction-

resisting and accelerating qualities within several adverse scenarios. It is thus here also 

interesting to investigate their behavior in relation with the TIR phenomenon. As shown 

from previous examples however, e.g. Fig. 5(a), a single TIR has little effect on the reflected 

beam apart from the small Goos-Hänchen shift. In order to exagerrate the effect of TIR and 

assess the resulting performance of the Airy beam, we consider the scenario where an Airy 

beam is trapped and propagates through multiple, say N, TIRs inside a thin dielectric layer 

before it finally escapes and freely propagates in air (Fig. 7(a)).  Such configurations have 

been employed in experiments in order to make the Goos-Hänchen shift detectable [25]. 

Referring to Fig. 7(a), the wave amplitude, after the beam exits the dielectric slab and 

propagates freely in the mediu 2k , is expressed in coordinates  b bx ,z  aligned to its axis as 

       
  22

0 0 1
10 2

11

2 2 2

bN
r b b b

zN h
u x ,z U R cos exp i x i i d

q k





  
            

  
  (18) 

where   is the Fresnel transmission coefficient for the final transition from the glass 

(medium 1k ) to the air. The last equation assumes that the beam is launched exactly at the 

lower interface of the dielectric layer; that is why  1N   enters the equation. Propagation 

inside the input and ouput prisms is of little importance and is ignored. Also, the width h of 

the layer should be small compared to the beam‟s diffraction length so that the effect of TIRs 

is isolated from mere diffraction. Note that, after the field envelope ru  is computed, the 

actual field is obtained by an equation similar to Eq. (7), with the phase accordingly 



modified, namely with s  and h  replaced by  1N s  and  1N h,  respectively. Results 

are shown in Fig. 7(b), (c), (d) for the case of  5N ,  15N   and 35N   TIRs 

respectively, and for a slab with index 1.5 and width 0 5h . mm.  It is apparent that the 

accelerating nature of the exiting beam persists. However, due to the N times larger phase 

shift experienced by the positive  0   spectral components, the beam is strongly right-

shifted. As the phase shift behaves like ,  rays with smaller   are shifted more to 

compared to rays with larger ,  resulting in increased diffraction that is manifested by the 

evident lobes spreading radially from different parts of the caustic. 

Let us now turn to the grazing-incidence problem of Eq. (13). The input condition is 

taken to be an Airy beam accelerating toward the interface  0z   

 
0 0 0

0
z z z

u x ,z Ai exp a iv
x x x

    
     

   
 (19) 

where 0x  is a length scale, a  is the apodization parameter,  is a lateral offset and v  

accounts for a possible initial tilt of the beam. For paraxial beams it is convenient to observe 

the propagation dynamics in scaled coordinates 0z / x ,  2
1 0X x / k x .  Then the square 

root of the normalized potential barrier, i.e.  
1 2 1 22 2

01 2 0

/ /k k x V   is equal to the critical 

slope for TIR (with respect to the Z axis) in scaled coordinates  X ,Z . For the Airy input 

wavefront of Eq. (19), the constituent rays propagate with slope 
1 2/

L   [5], hence 

0cZ L V ,    with 0L / x ,  is the exit position on plane 0X   of the first ray that 

escapes TIR. 

Figure 8(a) shows the amplitude evolution for the beam parameters 0 05a . ,

0 6x m   and 30 m.   The fixed parameters are chosen 500nm, 
1

1 001n . ,
2

1 0n . .  

The results were obtained by solving Eq. (13) through a Split-Step Fourier method [26]. In 



this case the normalized potential barrier is 0 11V ,  therefore rays starting from points 

16cZ     on plane 0X   escape TIR and form the clear refracted caustic seen in 

medium 2. By increasing the transverse scale of the beam 0x ,  the potential barrier increases 

and more rays are trapped by TIR. This is shown in Fig. 8(b) where 0 10x m    0 32V 

and the beam is almost completely reflected. Imparting to the beam an input tilt toward the 

interface  0 ,   the potential barrier is lowered and the critical slope for TIR reduces to 

1 2
0

/V v .  An example is shown in Fig. 8(c) where the beam of Fig. 8(b) has an initial tilt 

5v    (approximately 2.2
0
) allowing almost all inward rays escape TIR and form a 

refracted caustic. 

In the examples of Fig. 8, it is also interesting to notice the beam amplitude in 

medium 1. Contrary to the cases of Figs. 2-5, where the incident and reflected beam axes are 

well separated and a clear Airy-like reflected beam is observed, here the total observed field 

in medium 1 is the result of extended interference between the incident and reflected beams, 

which creates a modulated far-field pattern. For large enough potential barriers (e.g. Fig. 

8(b)), the result is similar to having a zero Dirichlet boundary condition on the interface or, 

equivalently, the interference of two mirror Airy beams with phase difference .  Such far-

field patterns are also typical in ubruptly autofocusing waves as a result of interference of a 

continuum of Airy beams [19]. 

We finish by briefly investigating incidence of an Airy beam on an interface to a 

LHM. In a medium of negative refractive index an Airy beam retains its diffraction-resisting 

and accelerating properties, however the phase of the wave advances in opposite direction to 

power flow. This results in the inversion of Snell‟s law of refraction, in the sence that the 

beam is refracted at a negative angle 2 ,  but also in an inverse diffraction process that tends 

to cancel the diffraction that the beam has accumulated inside medium 1. To see this, one 



notices that the amplitude of the beam transmitted in the LHM is given by Eqs. (9),(10) 

however with: 2 2k k   and  
1 22 2

20 2 0

/
q k .    The x-wavenumber in medium 2 

remains the same  0  as dictated by the boundary condition at the interface. The 

Fresnel coefficients remain also the same since now both 2  and 2  are negative. Now 

since 20 0q   in Eq. (10), the quadratic phase that causes the beam to spread initially 

decreases in magnitude. At  2 3 2 3
1 20 2 10k q h / k q   , it is exactly zero and a nearly perfect 

image of the input beam is formed, since the spectrum modulation induced by the Fresnel 

transmission coefficient is very weak   0T ct .     Thereafter the quadratic phase 

increases again and the beam diffracts. Note that distance Z denotes the point on the 

refracted beam axis at which paraxial rays converge inside the LHM, a property that has 

been utilized to design perfect lenses [27]. An example shown in Fig. 8 where the Airy beam 

of previous examples propagates in air for ten diffraction lengths  110 5dh L cm   to 

impinge normally on the interface to a LHM with refractive index 2 1 5n . .   Notice how the 

diffraction process is reversed inside the LHM and the beam gradually reconstructs until it 

creates a nearly perfect image of its input wavefron at height  2 1 7 5n / n h . cm.     

 

4. Conclusions 

We have studied analytically and numerically the reflection and refraction 

phenomena of a finite-power Airy beam at the interface between two dielectric halfspaces. 

Away from critical angles, the reflected and refracted beams retain their accelerating and 

diffraction-resisting properties, appearing as parabolic caustics, whose expressions were 

determined analytically. At Brewster‟s angle, the p-polarized reflected beam exhibits 

remarkable self-healing properties despite the severe filtering of its spectrum by the Fresnel 



coefficient. Incidence near but not exactly at Brewster‟s angle was also examined. On the 

other interesting case, namely the TIR regime, we found that escaping rays can create clear 

and grazing to the interface caustics. We also observed the Goos-Hänchen effect, which 

however cannot be computed analytically for an Airy beam. In order to further investigate 

the TIR phenomenon, we also investigated Airy beams undergoing multiple TIRs inside a 

dielectric film. We found that the accelerating character of the exiting beam persists, 

although at the cost of a large Goos-Hänchen shift and strong diffraction. We also 

considered TIR at grazing incidence to an interface between two media with close refractive 

indices and reverse diffraction and perfect imaging of an Airy beam inside a LHM.  

Airy beams are currently becoming increasingly useful for delivering optical power 

and manipulating particles in various optical settings. The analytical and numerical 

developments of present work will be useful and provide insight in configurations where 

these versatile structured optical waves encounter interfaces or propagate inside layered 

media. 
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Figure Captions 

 

Figure 1: Problem geometry and the different coordinate systems used. Axis rx x  is not 

shown. 

 

Figure 2: (a) Reflected and (b) refracted beam amplitude for a p-polarized finite-power Airy 

beam (
0

20x m  , 0 08a . ) impinging at an angle 0
1 30   on a glass-air interface (

1
1 5n . , 

2
1 0n . ). The incident beam has propagated for one diffraction length before it 

reaches the interface. According to the defined coordinate systems, in (a) 
r

z  is the depth 

inside the dielectric and 
r

  measures horizontal position with respect to Snell‟s reflection 

axis; in (b) z  is the height in the air and 
t

  measures horizontal position with respect to 

Snell‟s refraction axis  0
2 48 6. .   Dotted curves are the caustics of Eqs. (16). 

 

Figure 3: (a) Reflected beam amplitude for the Airy beam of Fig. 2, impinging at Brewster‟s 

angle 0
1 33 69.   on the same glass-air interface. Dotted curve is the caustic. (b) Beam 

amplitude (a.u.) versus position 
t

  from Snell‟s reflection axis at different indicated depths 

inside the glass. 

 

Figure 4: Reflected beam amplitudes for the Airy beam of Fig. 2, impinging at angle (a)  

0 0
1 0 25 33 94. .      and (b) 0 0

1 0 25 33 44. .      on the same dielectric-air 

interface. Dotted curves are the caustics. 

 

Figure 5: (a) Reflected and (b) transmitted wave amplitudes for the Airy beam of Fig. 2, 

impinging at angle 0
1 41 81c . .     (c) The Gaussian amplitude of the incident beam‟s 

spectrum in comparison with the amplitude (upper dashed line) and phase (lower dashed 

line) of the Fresnel reflection coefficient. For the phase curve, the ordinate is in radians, 



while for the amplitude curves in arbitrary units (a.u.). (d) Intensity of the incident (solid) 

and reflected (dashed) beams at the interface, giving evidence to the Goos-Hänchen shift.  

 

Figure 6: Transmitted wave amplitudes for (a) the Airy beam of Fig. 2, impinging at an 

angle 0 0
1 0 5 41 31c . .      and (b) the Airy beam of Fig. 2 with reversed direction of 

lobes (negative sign in Eq. (14)) impinging at an angle 0
1 41 81c . .     

 

Figure 7: (a) Setting in which an optical beam undergoes multiple TIRs inside a dielectric 

layer of width h. (b,c,d) Amplitude of the exiting beam after (b) 5N ,  (c) 15N   and (d) 

35N   TIRs. The index and width of the dielectric slab are taken 1.5 and 0 5. mm,

respectively. 

 

Figure 8: Grazing incidence of an Airy beam at the interface between two media with 

indices 
1

1 001n . ,
2

1 0n . .  The beam parameters are 0 05a . , 30 m   and: (a) 0 6x m, 

0v ,  (b) 0 10x m,  0v ,  (c) 0 10x m,   5v .   The vacuum wavelength is 500nm.   

 

Figure 9: Normal incidence of the Airy beam of Fig. 2 progating in air  1 1n   on the 

interface (white dashed line) to a LHM with refractive index 2 1 5n . .   the beam is nearly 

perfectly images at height inside the LHM. In medium 1, the total field (incident + reflected) 

is depicted. 
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shown. 

 

 

  



 

 

Figure 2: (a) Reflected and (b) refracted beam amplitude for a p-polarized finite-power Airy 

beam (
0

20x m  , 0 08a . ) impinging at an angle 0
1 30   on a glass-air interface (

1
1 5n . , 

2
1 0n . ). The incident beam has propagated for one diffraction length before it 

reaches the interface. According to the defined coordinate systems, in (a) 
r

z  is the depth 

inside the dielectric and 
r

  measures horizontal position with respect to Snell‟s reflection 

axis; in (b) z  is the height in the air and 
t

  measures horizontal position with respect to 

Snell‟s refraction axis  0
2 48 6. .   Dotted curves are the caustics of Eqs. (16). 
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Figure 3: (a) Reflected beam amplitude for the Airy beam of Fig. 2, impinging at Brewster‟s 

angle 0
1 33 69.   on the same glass-air interface. Dotted curve is the caustic. (b) Beam 

amplitude (a.u.) versus position 
t

  from Snell‟s reflection axis at different indicated depths 

inside the glass. 
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Figure 4: Reflected beam amplitudes for the Airy beam of Fig. 2, impinging at angle (a)  

0 0
1 0 25 33 94. .      and (b) 0 0

1 0 25 33 44. .      on the same glass-air interface. 

Dotted curves are the caustics. 
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Figure 5: (a) Reflected and (b) transmitted wave amplitudes for the Airy beam of Fig. 2, 

impinging at angle 0
1 41 81c . .     (c) The Gaussian amplitude of the incident beam‟s 

spectrum in comparison with the amplitude (upper dashed line) and phase (lower dashed 

line) of the Fresnel reflection coefficient. For the phase curve, the ordinate is in radians, 

while for the amplitude curves in arbitrary units (a.u.). (d) Intensity of the incident (solid) 

and reflected (dashed) beams at the interface, giving evidence to the Goos-Hänchen shift.  
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Figure 6: Transmitted wave amplitudes for (a) the Airy beam of Fig. 2, impinging at an 

angle 0 0
1 0 5 41 31c . .      and (b) the Airy beam of Fig. 2 with reversed direction of 

lobes (negative sign in Eq. (14)) impinging at an angle 0
1 41 81c . .     

 

  

x (mm)

z 
(m

m
)

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

x (mm)

z 
(m

m
)

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

(a)

(b)



 

 

Figure 7: (a) Setting in which an optical beam undergoes multiple TIRs inside a dielectric 

layer of width h. (b,c,d) Amplitude of the exiting beam after (b) 5N ,  (c) 15N   and (d) 

35N   TIRs. The index and width of the dielectric slab are taken 1.5 and 0 5. mm , 

respectively. 

 

  



 

 

Figure 8: Grazing incidence of an Airy beam at the interface between two media with 

indices 
1

1 001n . ,
2

1 0n . .  The beam parameters are 0 05a . , 30 m   and: (a) 0 6x m, 

0v ,  (b) 0 10x m,  0v ,  (c) 0 10x m,   5v .   The vacuum wavelength is 500nm.   
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Figure 9: Normal incidence of the Airy beam of Fig. 2 progating in air  1 1n   on the 

interface (white dashed line) to a LHM with refractive index 2 1 5n . .   the beam is nearly 

perfectly images at height inside the LHM. In medium 1, the total field (incident + reflected) 

is depicted. 
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