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CONTROLLED-ERROR APPROXIMATIONS FOR SURFACE
DIFFUSION OF INTERACTING PARTICLES WITH APPLICATIONS

TO PATTERN FORMATION

YANNIS PANTAZIS∗ AND MARKOS KATSOULAKIS†

Abstract. Microscopic processes on surfaces such as adsorption, desorption, diffusion and re-
action of interacting particles can be simulated using kinetic Monte Carlo (kMC) algorithms. Even
though kMC methods are accurate, they are computationally expensive for large-scale systems.
Hence approximation algorithms are necessary for simulating experimentally observed properties
and morphologies. One such approximation method stems from the coarse graining of the lattice
which leads to coarse-grained Monte Carlo (GCMC) methods while Langevin approximations can
further accelerate the simulations. Moreover, sacrificing fine scale (i.e. microscopic) accuracy, meso-
scopic deterministic or stochastic partial differential equations (SPDEs) are efficiently applied for
simulating surface processes. In this paper, we are interested in simulating surface diffusion for pat-
tern formation applications which is achieved by suitably discretizing the mesoscopic SPDE in space.
The proposed discretization schemes which are actually Langevin-type approximation models are
strongly connected with the properties of the underlying interacting particle system. In this direc-
tion, the key feature of our schemes is that controlled-error estimates are provided at three distinct
time-scales. Indeed, (a) weak error analysis of mesoscopic observables, (b) asymptotic equivalence of
action functionals and (c) satisfaction of detailed balance condition, control the error at finite times,
long times and infinite times, respectively. In this sense, the proposed algorithms provide a “bridge”
between continuum (S)PDE models and molecular simulations Numerical simulations, which also
take advantage of acceleration ideas from (S)PDE numerical solutions, validate the theoretical find-
ings and provide insights to the experimentally observed pattern formation through self-assembly.
Such phenomena are characterized by a complex energy landscape where the role of noise is critical
in the emergent behavior of the system. The stochastic fluctuations of the proposed algorithms
are directly derived from the microscopic model allowing us to explore all experimentally observed
pattern morphologies starting from a uniform initial state.

Key words. Interacting particle systems, stochastic (partial) differential equations, Langevin
approximation, surface diffusion, pattern formation.

1. Introduction. Surface diffusion of interacting particles as well absorption,1

desorption, reaction, etc. can be accurately simulated using kinetic Monte Carlo2

(kMC) algorithms [1], [2]. In particular, Ising models are set on a lattice and each3

site of the lattice has an order parameter (spin) that describes the presence or not4

of a particle as well its type (Potts models) [3]. Surface diffusion is characterized by5

spin exchange between neighboring sites (Kawasaki dynamics) and depending on the6

rates of the process, kMC evolves the system towards the equilibrium states. However,7

microscopic simulation is computationally expensive when large spatiotemporal scales8

observed in real-life experiments are studied.9

One approach of accelerating the microscopic simulation was developed in a series10

of papers [4], [5], [6] called coarse-grained Monte Carlo (CGMC) method. In CGMC11

setting, the microscopic lattice was coarse-grained and the spins was grouped into12

cells resulted in smaller number of system parameters. Rigorous error analysis was13

performed in [7] and [8] showing that the finite time error is controlled by the interplay14

of the coarsening factor, the temperature and the smoothness of the interaction po-15

tential. Particularly for surface diffusion, it was shown that coarse-graining resulted16
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not only in the reduction of the number of system parameters but also in time accel-17

eration (square of the coarsening factor faster). In general, CGMC works satisfactory18

for long range and mid range interaction lengths, however, it may produce erroneous19

results especially for short range interactions, nevertheless, recent variations of the20

basic CGMC algorithm have been proposed, trying to overcome this limitation [9].21

Even though CGMC is a powerful tool for accelerating microscopic kMC algorithms,22

we are primarily interested in studying pattern formation on surfaces with the ex-23

pected patterns having relatively small size. Thus, in order not to lose the necessary24

resolution of the patterns, we need to keep the coarsening factor small making CGMC25

method a rather inefficient approach.26

Another approach to accelerate even further the microscopic simulations is to de-27

rive mesoscopic equations by letting the number of interacting particles tend to infin-28

ity. Mesoscopic equations for interacting particles are either deterministic or stochas-29

tic integro-differential equations. Deterministic PDEs have been used to study nucle-30

ation, pattern formation, alloys, etc. [10], [11], [12]. However, thermal fluctuations31

(i.e. noise) are important for studying the dynamics thus, more recently, stochastic32

PDEs (SPDEs) have been used [13], [14], [15], [16], [17]. For instance, Ostwald ripen-33

ing was studied in [17] using an SPDE model. All kinds of numerical schemes such34

as finite differences, finite elements, finite volumes as well (pseudo-)spectral methods35

have been applied for the discretization of the studied (S)PDEs which leads to a sys-36

tem of ODEs in the deterministic case and to a system of SDEs in the stochastic case.37

Another technique to derive a system of SDEs that simulates microscopic processes38

is by a Langevin approximation of the master equation [18], [19]. Such a Langevin39

approximation was derived and studied for surface diffusion and Arrhenius dynamics40

in [20] where it was shown that not only the weak error but also the large deviation41

properties of the model are correctly handled. However, in the above studies few or42

no care was taken about the exact equilibrium (i.e. invariant) measure of the simulat-43

ing process primarily because of the difficulty in satisfying detailed balance condition44

(DBC).45

In this paper, we develop three different systems of SDEs which serve as approx-46

imation models of the microscopic surface diffusion process and additionally satisfy47

DBC. The first model is a second-order space-discretization of the mesoscopic SPDE48

which is also related with the coarse-grained Langevin (CGL) approximation of [20].49

Even though it is a discretization scheme of the SPDE, we refer to this stochas-50

tic model as direct Langevin approximation model (DLM) because its local error is51

asymptotically of the same order as the CGL approximation. Furthermore, large52

deviation computations show that the action functional between DLM and the micro-53

scopic process are asymptotically equivalent thus, rare events and phase transitions54

are correctly represented [21]. However, DLM does not satisfy DBC hence its invari-55

ant measure so important for determining the equilibrium states or for applications56

such as sensitivity analysis of system parameters [22] is not known in general. Nev-57

ertheless, the structure of DLM allows the construction of a variant model which58

satisfy DBC. Indeed, the second system of SDEs named as perturbed Langevin ap-59

proximation model 1 (PLM1) is derived by adding a “correction” term to the drift of60

DLM. Then DBC is satisfied and the invariant measure is easily obtained. However,61

the “correction” term depends on the coarsening factor hence the cost to be paid is62

that the local error is no more as accurate as the local DLM error which results in63

perturbed finite time dynamics.64

The third model which is named PLM2 eliminates the effect of the “correction”65
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term by slightly perturbing the invariant measure in a controlled-error manner. For66

Metropolis dynamics, the “correction” term is of diffusion type thus the perturbation67

of the invariant measure is an additional higher order term to the entropy. The effect68

of this perturbation is that the interacting particle system is simulated at a slightly69

different temperature than the original! Similar but more complex perturbation of70

the invariant measure is also obtained for the Arrhenius dynamics. Overall, in any of71

the proposed models, the error performed either in finite times or in infinite times is72

controllable not only to the asymptotic limit but also for any coarsening factor and73

actually the interconnection between the finite and infinite time errors as highlighted74

by PLM1 and PLM2 models is one of the key findings of this paper.75

Having derived the stochastic models, the final step in order to simulate and76

test them on computers is to discretize the time, too. Since our primal goal is to77

highlight the space-discretization properties, we keep the time-discretization as simple78

as possible. Thus a simple predictor-corrector (PC) Euler scheme which has 1st order79

weak convergence [23] is used. PC Euler which is a two step method can be thought as80

a compromise between an explicit and an implicit scheme. Higher order schemes such81

as Milstein’s or derivative-free Runge-Kutta method could also be applied. However,82

higher order schemes are computationally expensive especially for high dimensional83

systems such as the studied.84

The computational savings of the proposed models compared to the microscopic85

system come from many directions. Except for the computational acceleration due86

to the coarse-graining which as we already mention is rather limited due to the ap-87

plication we are interested in (i.e. pattern formation), there are two other important88

acceleration points. The first acceleration is that while in CGMC algorithms only89

one particle is allowed to hop between neighboring cells in a time step, in Langevin90

approximation more than one “particles” could change their positions on the lattice91

in a single time step. The second acceleration stems from the fact that in order to92

perform a time step the convolution between the interaction potential and the coarse-93

grained lattice configuration is needed to be computed. Convolution can be performed94

in Fourier space which results in huge computational savings especially when the in-95

teraction potential is long range. This feature is primarily an advantage of spectral96

methods which is integrated into our algorithms making eventually the computational97

cost independent of the interaction length.98

Finally, the proposed Langevin approximation models are applied to the study of99

pattern formation phenomena. Such phenomena are characterized by a complex en-100

ergy landscape [24], [25], [26] where the role of noise is critical in the emergent behav-101

ior of the system. The stochastic fluctuations of the proposed algorithms are directly102

derived from the microscopic model, they allow us to systematically explore all exper-103

imentally observed pattern morphologies through a self-assembly mechanism, starting104

from a uniform initial state (non-equilibrium dynamics). Indeed, using Morse-type105

interaction potential, which is an attractive/repulsive potential, at various parameter106

regimes, we were able to reproduce the experimentally observed 2D images shown107

in [27]. Moreover, we study different versions of Morse potential so as to reveal the108

importance of stochastic fluctuations not incorporated in other analysis tools such109

as linear stability analysis or deterministic PDEs which are usually trapped in local110

minima of the complex energy landscape.111

The organization of the paper is as follows. Section 2 discusses the microscopic112

Ising formulation for surface diffusion as well the coarse-grained model for Metropolis113

and Arrhenius dynamics. Langevin approximation and mesoscopic SPDEs for both114
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dynamics are also presented in the same Section. In Section 3, the proposed SDE115

models are presented and their approximation properties are derived while in Section 4116

pattern formation phenomena are observed and studied. Finally, Section 5 concludes117

the paper and suggests further directions of future work.118

2. Background. Let us begin with the presentation of the microscopic model119

and continue with its coarse-grained analog. Two different dynamics namely Metropo-120

lis and Arrhenius are considered. Then the derivation of CGL approximation model is121

reviewed and finally the mesoscopic SPDEs which one way to be obtained is through122

taking the limit of the coarse-grained model [4] are given. Fig. 2.1(a) schematically123

depicts the position in space and time scales of the revised models while Fig. 2.1(b)124

shows the actual lattices of various models discussed in the following Sections. Please125

note that our interest in this paper lies both in microscopic and in mesoscopic scales.126

2.1. Microscopic Model. Consider a finite, periodic, d-dimensional, fine lattice127

(left drawing in Fig. 2.1(b)) defined by LN := 1
NZd

⋂
[0, 1]d where 1

N is the size of the128

lattice site while Nd is the total number of sites of the lattice. At each lattice site129

x ∈ LN , an order parameter –usually referred as spin– is allowed to take two values 0130

describing vacant and 1 describing occupied. On the fine lattice a spin configuration131

is defined as σ := {σ(x) ∈ {0, 1} : x ∈ LN} and it is an element of the configuration132

space Σ := {0, 1}LN .133

The energy of the system evaluated at σ is given by the Hamiltonian134

H(σ) := −1

2

∑
x, y ∈ LN

y 6= x

J(x− y)σ(x)σ(y) +
∑
x∈LN

h(x)σ(x) (2.1)

where J(·) is the interaction potential between the sites while h(·) is the external field135

applied to the system. Note that the interaction potential has radial symmetry and it136

is appropriately scaled so as the derived mesoscopic limit is well-defined. Moreover,137

interaction potential has support in [− L
N ,

L
N ]d, thus, its interaction length is L sites.138

Equilibrium states (i.e. invariant measure) of the model at inverse temperature β is139

described by the Gibbs measure given by140

µN,β(dσ) =
1

ZN,β
e−βH(σ)P (dσ) (2.2)

where ZN,β is the normalization factor that makes µN,β a measure while P (dσ) is the141

prior measure defined as a product of independent Bernoulli random variables one for142

each lattice site.143

Surface diffusion is simulated as spontaneous spin exchange between two neigh-144

boring sites, x, y with the restriction that every site cannot contain more than one145

particle (exclusion principle). Two different spin exchange dynamics which satisfy146

the detailed balance condition are considered. The first surface diffusion dynamics147

is Metropolis and its exchange rate is defined for two by neighboring sites, x, y at148

configuration σ as [6]149

c(x, y, σ) := d0 exp(βmin{0, (σ(x)− σ(y))(U(x, σ)− U(y, σ))}) (2.3)

where d0 is the diffusion rate which depends on physical properties of the surface150

while U(x, σ) is the potential of the site x given that the current configuration is σ151
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(a) Due to wide range of characteristic length scales and characteris-
tic time scales, several models and simulation algorithms have been
developed in the literature. The proposed Langevin models provide a
“bridge” between the continuum models and the microscopic processes.

(b) Various lattices at different scales in space. Notice that both coarse-
grained and Langevin lattices have the same and known spatial scale
while their order parameters take discrete and continuous values, re-
spectively.

Fig. 2.1: Hierarchical modeling at different time and space scales.

defined as152

U(x, σ) :=
∑

y ∈ LN

x 6= y

J(x− y)σ(y)− h(x) (2.4)

Despite using Metropolis dynamics in many studies, a more natural and possibly153

more appropriate description of the finite time surface diffusion dynamics is Arrhenius154

dynamics. In Arrhenius dynamics, a spin exchange is performed when the activation155

energy is above an energy barrier which depends on the properties of the potential en-156

ergy of the surface [28], [29]. Arrhenius dynamics for spin exchange (surface diffusion)157
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between two neighboring sites, x, y is given by158

c(x, y, σ) := d0(1− σ(x))σ(y)e−β(U0+U(x,σ)) + d0σ(x)(1− σ(y))e−β(U0+U(y,σ)) (2.5)

where d0 and U0 are the diffusion rate and the energy barrier of the surface, respec-159

tively, and depend on the physical properties of the diffusion process while U(x, σ) is160

as before the potential of the site x. Thus, a continuous-time jump Markov process161

{σt}t≥0 on L∞(Σ;R) is defined with generator162

d

dt
E[f(σt)|σ] = Lf(σ) =

∑
x, y ∈ LN

x 6= y

c(x, y, σ)
(
f(σ(x,y))− f(σ)

)
(2.6)

for any test function f ∈ L∞(Σ;R). Please note that σ(x,y) denotes the new configu-163

ration of the lattice after one spin exchange between neighboring sites x and y while164

test function f also called observable is typically independent of the size of the lattice.165

A special class of observables called mesoscopic plays a crucial role in the proofs of166

the approximation theorems in [7], [30].167

2.2. Coarse-Grained (GC) Model. The coarse-graining of the microscopic168

system is performed by grouping the sites of the microscopic lattice into cells. Each169

cell is denoted as Ck with size |Ck| = qd where q is the coarsening factor at each170

dimension while k ∈ Lm where Lm := 1
mZd

⋂
[0, 1]d is the CG lattice (middle drawing171

in Fig. 2.1(b)). Obviously, the size of the CG lattice is md with m = N/q. On the172

CG lattice, Lm, a CG variable is defined for the kth cell by173

ηt(k) :=
∑
x∈Ck

σt(x), k ∈ Lm (2.7)

thus a new continuous-time jump Markov process {ηt}t≥0 is defined. In what follows,174

our primal interest is concentrated on the averaged coarse-grained variables defined175

as176

η̄t(k) :=
ηt(k)

qd
, k ∈ Lm (2.8)

which are elements of the configuration space H̄q,m = {0, 1
qd
, ..., 1}Lm .177

As in the microscopic formulation, averaged CG process has Hamiltonian, poten-178

tial, rate (dynamics) and invariant measure which are approximations of the respective179

microscopic quantities. The Hamiltonian of the averaged CG process is given by180

H̄(η̄) := −q
d

2

∑
k,l∈Lm

J̄(k − l)η̄kη̄l +
∑
k∈Lm

(h̄(k) +
J̄(0)

2
)η̄k (2.9)

where J̄(·) is the coarse-grained interaction potential given by181

J̄(k − l) :=

{
1
q2d

∑y∈Ck−l

x∈C0
J(x− y) for k 6= l

1
qd(qd−1)

∑y 6=x
x,y∈C0

J(x− y) for k = l
(2.10)

Equilibrium states of the averaged CG variables at inverse temperature β has invariant182

measure given by183

µq,m,β(dη̄) =
1

Zq,m,β
e−q

dβH̄(η̄)Pq,m(dη̄) (2.11)
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where Zq,m,β is the normalization factor that makes µ(dη̄)q,m,β a measure while184

Pq,m(dη̄) is the prior measure defined as a product of binomial random variables185

one for each coarse cell.186

The rate of the averaged CG process to jump a particle from a cell k to a neigh-187

boring cell l, denoted by c̄k,l(η̄), is given for Metropolis dynamics by [5]188

c̄k,l(η̄) := d0q
dη̄k(1− η̄l) exp

(
βmin{0, Ū(l, η̄)− Ū(k, η̄)}

)
(2.12)

where189

Ū(k, η̄) := qd
∑
l∈Lm

J̄(k − l)η̄(l)− (h̄(k) + J̄(0)) (2.13)

is the CG potential of the kth cell. On the other hand, the exchange rate of a particle190

between two neighboring cells k, l is given for Arrhenius dynamics by [5]191

c̄k,l(η̄) := d0q
dη̄k(1− η̄l)e−β(U0+Ū(k,η̄)) (2.14)

Thus, the generator of the averaged CG variables, {η̄t}t≥0, is192

d

dt
E[f(η̄t)|η̄] = L̄f(η̄) =

∑
k,l∈Lm

c̄k,l(η̄)(f(η̄ +
1

qd
(δl(k)− δk(l)))− f(η̄)) (2.15)

for any test function f ∈ L∞(H̄q,m;R).193

Finally, the weak error analysis between the microscopic process and the CG194

process performed in [7] uses consistency with the backward Kolmogorov equation195

∂tw + L̄w = 0 , t < T

w(·, T ) = f
(2.16)

which corresponds to the master equation for expected values w(z, t) = E[f(η̄T )|η̄t =196

z]. Thus, using observables with bounded derivatives and Kolmogorov consistency, it197

was rigorously shown that the weak error between the microscopic process and the198

CG process is of order O(( q
d

L )2) which is affordable for mid and long range interaction199

potentials (L >> 1).200

Remark: The computational acceleration of the CGMC algorithm for simulating201

surface diffusion processes stems not only from the reduced number of parameters by202

a factor of qd but also from the time acceleration by a factor of q2d [6]. Intuitively, the203

time-acceleration can be understood by the fact that one event in the CG simulation204

is the jump of a particle from a cell to a neighborhood cell while in microscopic205

simulation the same event can be a (possibly long) sequence of jumps.206

2.3. Coarse-Grained Langevin (CGL) Approximation. Generally in Langevin207

methods, the microscopic process is approximated by a process driven by a system208

of SDEs [18], [31]. For surface diffusion particularly, Langevin approximation for209

the coarse-grained model was recently derived in [20]. Concentrating for notational210

simplicity in 1D, the CG Langevin SDE system is given by211

dη̃k = ak(η̃)dt+
∑
l∈Lm

bk,l(η̃)dWl, k ∈ Lm (2.17)

where η̃ = {η̃k : k ∈ Lm} is the SDE process set on the configuration space H̃q,m =212

[0, 1]Lm (see right drawing in Fig. 2.1(b)) while a(η̃) = {ak(η̃) : k ∈ Lm} and b(η̃) =213
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{bk,l(η̃) : k, l ∈ Lm} are the drift vector and the diffusion matrix of the SDE process,214

respectively. The generator of this process is defined for an arbitrary test function215

f ∈ L∞(H̃q,m;R) as216

d

dt
E[f(η̃t)|η̃] = L̃f(η̃) =

∑
k∈Lm

ak(η̃)
∂f

∂η̃k
+

1

2

∑
k,l∈Lm

(bbT )kl(η̃)
∂2f

∂η̃k∂η̃l
(2.18)

In order to estimate the drift and diffusion terms, the weak global error between217

the CG process and CGL process is minimized. Thus, defining for a mesoscopic218

observable1, f , the expected value w(z, t) = E[f(η̃T )|η̃t = z], weak error is written as219

E[f(η̄T )]− E[f(η̃T )] = E[E[f(η̃T )|η̃T = η̄T ]]− E[E[f(η̃T )|η̃0 = η̄0]] =

E[w(η̄T , T )]− E[w(η̄0, 0)] =

∫ T

0

E[L̄w(η̄) + ∂tw(η̄)]dt =∫ T

0

E[L̄w(η̄)− L̃w(η̄)]dt =

∫ T

0

E[eloc(w)]dt

(2.19)

where the third equation is the martingale property while the fourth one uses the220

backward equation for L̃ [30]. Moreover, according to (2.19), the local error for a221

mesoscopic observable f , eloc(f), can be defined on the difference of the generators of222

the two processes as223

eloc(f) = L̄f(η̄)− L̃f(η̄)

=
∑

k,l∈Lm

c̄k,l(η̄)(f(η̄ +
1

q
(δl(k)− δk(l)))− w(η̄))

−
∑
k∈Lm

ak(η̄)
∂f

∂η̄k
− 1

2

∑
k,l∈Lm

(bbT )kl(η̄)
∂2f

∂η̄k∂η̄l

(2.20)

2.3.1. Weak Error Analysis. By applying Taylor series expansion for f(η̄ +224

1
q (δl(k) − δk(l))) and appropriately choosing the drift and diffusion terms so as to225

eliminate the first and second order of the expansion, it was obtained in [20] that the226

kth element of the drift vector is227

ak(η̃) =
1

q
[c̄k+1,k(η̃)− c̄k,k+1(η̃) + c̄k−1,k(η̃)− c̄k,k−1(η̃)] (2.21)

while the non-zero elements of the diffusion matrix are228

bk,k(η̃) =
1

q

√
c̄k+1,k(η̃) + c̄k,k+1(η̃)

bk+1,k(η̃) = −bk,k(η̃)

(2.22)

Thus the formal local error between CG process and CGL approximation process is229

eloc(w) = O(
1

q3
)×O(c̄k,l) = O(

1

q2
) (2.23)

1 A mesoscopic observable is a function whose derivatives –in this particular case up to third
order [30]– are bounded and the bounds are independent of the dimension (i.e. the size of the CG
lattice).
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Therefore, based on the above approximation, finite time global weak error be-230

tween CG process and its CGL approximation could be rigorously obtained for meso-231

scopic observables by using again Kolmogorov consistency of the backward equation232

and Bernstein-type bound estimates for the derivatives of w(z, t). Indeed, it was233

shown in [30] that the weak error for mesoscopic observables is234

E[f(η̄T )]− E[f(η̃T )] = O(
1

q2
) (2.24)

when absorption/desorption processes were considered and we expect the same result235

is true for diffusion processes.236

2.4. Mesoscopic SPDE Limit and LDP. In this Section, we review meso-237

scopic evolution equations arising in surface processes derived from the microscopic238

stochastic models presented above. In general there are two families of mesoscopic239

equations depending on the presence of stochasticity. Here we concentrate on the240

stochastic integro-differential equations for Metropolis and Arrhenius dynamics. Both241

dynamics can be written as a constrained gradient flow equation plus a multiplica-242

tive stochastic term with different mobilities. Indeed, the unified stochastic mass-243

conserved equation (SPDE) is given formally by [11], [15]244

∂tρ = ∇ ·
{
L[ρ]∇δE

δρ

}
+

1√
Nd
∇ ·
{√

2L[ρ]Ẇ
}

(2.25)

where ρ(x, t) is the zero lattice-size limit of the empirical measure of the particles245

which evolves slowly similar to a density while E[·] is the Lyapunov functional (free246

energy functional) of the deterministic mesoscopic equation given by247

E[ρ] = −β
2

∫ ∫
J(x− x′)ρ(x)ρ(x′)dxdx′ + β

∫
h(x)ρ(x)dx+

∫
R(ρ(x))dx (2.26)

where J(·) and h(·) are continuous versions of the interaction potential and external248

field, respectively, while R(·) is the entropy of the system given by249

R(ρ) = ρ log(ρ) + (1− ρ) log(1− ρ) (2.27)

L[ρ] is the mobility of the equation which determines the dynamics of the system250

while Ẇ (x, t) is space-time white noise. The invariant measure for the equilibrium251

states of the solution of (2.25) is given formally by [2]252

µN (dρ) =
1

ZN
e−N

dE(ρ)dρ (2.28)

A formal approach to derive the above invariant measure is to take the zero lattice-253

size limit of the CG invariant measure given by (2.11). Indeed, another way to write254

down (2.11) is to expand the binomial prior distribution using Sterling’s formula [4].255

Then the invariant measure is written as256

µq,m,β(dη̄) =
1

Zq,m,β
e
−qdmd(Ē(η̄)+ 1

2qd
Ḡ(η̄)+O( 1

q2d
))

(2.29)

where257

Ē(η̄) =
1

md
[βH̄(η̄) + R̄(η̄)] (2.30)
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is a discrete version of the Lyapunov functional while H̄(·) and R̄(·) are the Hamilto-258

nian in (2.9) and the discrete entropy of the system (i.e. R̄(η̄) =
∑
k∈Lm

[η̄k log(η̄k) +259

(1− η̄k) log(1− η̄k)]), respectively. The additional term in (2.29) is the primal remain-260

der of the Sterling’s expansion which equals to Ḡ(η̄) = 1
md

∑
k∈Lm

log(η̄k(1 − η̄k)).261

Notice that the additional term, Ḡ(·), may be significant when coarsening factor, q,262

takes small values, however, in the zero lattice-size limit the only term that survives263

is the Lyapunov functional, Ē(·).264

The mobility for Metropolis dynamics equals to L[ρ] = d0ρ(1−ρ), thus, the SPDE265

for Metropolis dynamics is given by266

∂tρ = ∇ · {d0(∇ρ− βρ(1− ρ)∇(J ∗ ρ))}+
1√
Nd
∇ ·
{√

2d0ρ(1− ρ)Ẇ
}

(2.31)

where ∗ denotes convolution. For Arrhenius dynamics, the mobility is more complex267

and it is given by L[ρ] = d0ρ(1− ρ) exp(−β(U0 + J ∗ ρ)), thus, the mesoscopic SPDE268

for this case is269

∂tρ = ∇ · {dβ exp(−βJ ∗ ρ)(∇ρ− βρ(1− ρ)∇(J ∗ ρ))}

+
1√
Nd
∇ ·
{√

2dβρ(1− ρ) exp(−βJ ∗ ρ)Ẇ

}
(2.32)

where dβ = d0e
−βU0 .270

Finally, SPDEs such as (2.25) are generally ill-behaved mathematical objects271

especially in high dimensions and they are usually treated in a formal way as here.272

Nevertheless, an indirect yet rigorous analysis could be carried out for SPDEs using273

the theory of Large Deviations (LD) [32]. Indeed, SPDE (2.25) is related with the274

action functional for the microscopic process obtained by taking the hydrodynamic275

limit. For exchange dynamics with exclusion principle and long range interaction276

potential, it was shown in [33] that the action functional for an absolutely continuous277

function Ψ : [0, 1]d × [0, T ]→ R equals to278

S0T (Ψ) =

∫ T

0

∫ 1

0

L[Ψ](∇H)2dxdt (2.33)

where H solves279

∂tΨ = ∇ ·
{
L[Ψ](

∇Ψ

Ψ(1−Ψ)
− β∇(J ∗Ψ + h))

}
+ 2∇ · {L[Ψ]∇H} (2.34)

which is the second order backward PDE of (2.25). Intuitively, the action functional280

S0T (Ψ) assigns a probability to the event ρ that follows the path Ψ which can be281

formally stated by the following asymptotic formula282

P{ν(ρ,Ψ) ≤ δ} ∼ e−N
−dS0T (Ψ) (2.35)

for suitably chosen δ, ε> 0 where ν is a metric in a proper function space that mea-283

sures the distance between ρ and Ψ. Further details on LD theory can be found in284

Section 3.4.285

Remark: Even though, mesoscopic models –either deterministic or stochastic– are286

computationally tractable compared to microscopic or even CG models they lack of287

some interesting properties. For instance, due to the limiting process, the actual288

length-scale of the system is not obvious. Moreover, the space discretization is not a289

trivial issue especially for the stochastic case since the properties of the discrete and290

the continuous models may be totally different. These facts will be highlighted in the291

following Sections.292
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3. Langevin-type Approximation Models. As it was reviewed in Section 2.3,293

classical Langevin models are derived as approximations of the atomistic processes by294

formally minimizing the local error between the microscopic process and the SDE pro-295

cess. In connection with Fig. 2.1(a), Langevin approximation is an approach which296

translates the atomistic processes from the microscopic level to the coarser mesoscopic297

level. In this Section, we proceed in the opposite direction (i.e. from mesoscopic to298

microscopic level) and derive three Langevin-type models from mesoscopic equations299

for the simulation of surface diffusion processes which additionally to the properties300

of the classical Langevin approximation they satisfy – actually two of them– detailed301

balance condition (DBC). Eventually, our goal is to control the error of the derived302

approximations at three different time-scales which are303

a. Finite times through weak error estimates between the microscopic process304

and the derived models.305

b. Long times and phase transitions through LD theory and asymptotic equiv-306

alence of the rate (action) functionals.307

c. Infinite times through the knowledge of the invariant measure of the derived308

approximation process.309

To begin, the first proposed model is a 2nd order space discretization of the310

mesoscopic SPDE. We refer to it as Direct Langevin approximation model (DLM)311

because the local error between DLM and CGL of [20] is of order O( 1
m2 ) for the drift312

term while it is of order O( 1
qm ) for the diffusion term (see Section 3.1.1) which are313

considered negligible. Yet, as in CGL approximation, the DBC is not satisfied for314

DLM thus the invariant measure of the stochastic process is not known. By adding315

a “correction” term to the drift, the second model referred to as perturbed Langevin316

approximation model 1 (PLM1) is defined. For this variant, DBC is satisfied and317

the invariant measure is a discrete version of the continuous invariant measure given318

by (2.28). However, the finite time dynamics of PLM1 are perturbed due to the319

additional “correction” term. The third model referred to as PLM2 tries to overcome320

the induced error at the dynamics by adding a perturbation term to the invariant321

measure. An appropriate choice of the perturbation term leads to the elimination of322

the “correction” term of PLM1 restoring the accuracy of the finite time dynamics.323

Table 3.1 summarizes the properties of CGL approximation as well the properties of324

the three proposed models which we will derive in the remaining of this Section.325

Weak Error of order O( 1
q2d

) LD Theory Invariant Measure

CGL Yes Yes No
DLM Yes Yes No
PLM1 No Yes Yes
PLM2 Yes Yes Yes

Table 3.1: Summary of the properties of the derived diffusion models at different time
scales. Note that for adsorption/desorption processes the answer to the LD Theory
column is ‘No’ [34], [20].

Before starting presenting the proposed models, we make the following simplifi-326

cations. Without loss of generality we concentrate on the 1D case. We revisit the327

general d-dimensional case in Section 4 where the details of the numerical implemen-328

tation are given. Moreover, external field is assumed to be zero without this being a329

restriction to the final outcome.330
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3.1. Direct Langevin Approximation Model (DLM). The first approxima-331

tion model is a straightforward second-order, finite-difference, mass-conserved space-332

discretization of the mesoscopic SPDE. The discretized density vector is denoted by333

ρ = {ρk : k ∈ Lm}. Then for the kth density element, a stochastic differential334

equation is defined by335

dρk = uk(ρ)dt+
∑
l∈Lm

vk,l(ρ)dWl, k ∈ Lm (3.1)

where336

uk(ρ) =
1

2
(Lk+1(ρ) + Lk(ρ))

[
∂Ē(ρ)

∂ρk+1
− ∂Ē(ρ)

∂ρk

]
dt− 1

2
(Lk(ρ) + Lk−1(ρ))

[
∂Ē(ρ)

∂ρk
− ∂Ē(ρ)

∂ρk−1

]
(3.2)

is the kth element of the drift vector. Note that Ē(ρ) is the discrete free energy337

functional given by (2.30) while Lk(ρ) is the discrete version of the mobility. For338

Metropolis dynamics, the mobility is given by339

Lk(ρ) = d0ρk(1− ρk) , (3.3)

which depends only on the kth density parameter ρk while the mobility for Arrhenius340

dynamics is given by341

Lk(ρ) = dβρk(1− ρk)e−βŪ(k,ρ) , (3.4)

which depends not only on ρk but also on the neighboring density variables through342

the potential Ū(k, ρ). The non-zero elements of the diffusion matrix are343

vk,k(ρ) =

√
1

q
(Lk+1(ρ) + Lk(ρ)) ,

vk+1,k(ρ) = −vk,k(ρ) .

(3.5)

Hence the covariance matrix (i.e. square matrix of the diffusion matrix) is a tridiagonal344

matrix with non-zero elements345

(vvT )k,k(ρ) =
1

q
[Lk+1(ρ) + Lk−1(ρ) + 2Lk(ρ)] ,

(vvT )k±1,k(ρ) = −1

q
[Lk±1(ρ) + Lk(ρ)] .

(3.6)

It is noteworthy that the scaling of the noise in (3.5) is 1√
q which is different346

from the scaling 1√
qm of the mesoscopic SPDE (2.25). The reason is that in order to347

relate the process generated from (3.1) with the CG process or the CGL process (i.e348

ρk ≈ η̃k ≈ η̄k) the appropriate scaling for the stochastic term is 1√
q as the following349

subsection reveals. Linked with Fig. 2.1(a), different scalings of the noise result in350

models with different positions at the mesoscopic level. Typically, when zooming into351

the atomistic details is performed, the power of the noise is increased while when352

zoom out is performed the noise is faded out.353

Additionally, the existence of a Lyapunov functional is usually crucial for the354

study of an (S)PDE either theoretically or numerically. In (3.1), if the noise is can-355

celled out then Ē(ρ) is a discrete Lyapunov functional since it is decreasing over time356

(see Appendix B). Of course, when noise is present Lyapunov functional may increase357

due to stochastic fluctuations nevertheless on average it decreases. Next we proceed358

with the properties that relates the process driven by (3.1) with the CG and CGL359

processes.360
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3.1.1. Weak Error Analysis. The estimation of the finite-time weak error be-361

tween the DLM process, ρt, and the CG process, η̄t, uses as an auxiliary intermediate362

step the CGL process, η̃t. Indeed, the weak error for a suitable mesoscopic observable,363

f , can be written as364

E[f(η̄T )]− E[f(ρT )] = E[f(η̄T )]− E[f(η̃T )] + E[f(η̃T )]− E[f(ρT )] (3.7)

and at least formally it was shown in [20] and briefly reviewed in Section 2.3 that365

E[f(η̄T )] − E[f(η̃T )] = O( 1
q2 ). On the other hand, the local error between the CGL366

process and the DLM process defined in (3.1) is given by367

L̃f(ρ)−Mf(ρ) =
∑
k∈Lm

[ak(ρ)− uk(ρ)]
∂f

∂ρk
− 1

2

∑
k,l∈Lm

[(bbT )kl(ρ)− (vvT )kl(ρ)]
∂2f

∂ρk∂ρl

(3.8)
where M is the generator of the process driven by (3.1) given by368

Mf(ρ) =
∑
k∈Lm

uk(ρ)
∂f

∂ρk
+

1

2

∑
k,l∈Lm

(vvT )kl(ρ)
∂2f

∂ρk∂ρl
(3.9)

for any test function f ∈ L∞(H̃q,m;R).369

It is straightforward to compute (see Appendix A) that the drift term has the370

following formal asymptotic expansion371

uk(ρ) =
1

m2
∂x

{
Lk(ρ)

[
∂xρ(xk)

ρ(xk)(1− ρ(xk))
− β∂xŪ(k, ρ)

]}
+O(

1

m4
) (3.10)

where ρ(xk) = ρ(xk, t) is the continuous space density function at position xk =372

k
m , k = 0, ...,m − 1 and it should not be confused with the DLM process, ρk, which373

is discrete in space. Similarly, the weak asymptotic formula for the covariance matrix374

of the diffusion for two test functions φ1(x) and φ2(x) is given by375 〈∑
k,j

vTj,k(ρ)φ1(xj)
dWk

dt
,
∑
l,i

vTi,l(ρ)φ2(xi)
dWl

dt

〉

=
2

qm

∫
L[ρ(x)]∂xφ1(x)∂xφ2(x)dx+O(

1

m4
)

(3.11)

The same asymptotic expressions have been derived for CGL approximation in [20].376

Moreover, applying the time rescaling t → m2t suggested by the above asymptotics377

to both DLM and CGL processes, it is allowed to formally write that378

uk(η̃) = ak(η̃) +O(
1

m2
) (3.12)

where a(·) is the drift vector of the CGL process given by (2.21). Similarly, having379

in mind that Brownian motion scales as Wm2t = 1
mWt, it is straightforward to show380

that381

(vvT )k,k(η̃) = (bbT )k,k(η̃) +O(
1

qm
)

(vvT )k±1,k(η̃) = (bbT )k±1,k(η̃) +O(
1

qm
)

(3.13)
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where b(·) is the diffusion matrix of the CGL process. Thus substituting (3.12) and382

(3.13) into (3.8) we derive at least formally that383

L̃f(ρ)−Mf(ρ) = O(
1

qm
) (3.14)

and using the same arguments presented in [30] and briefly reviewed in Section 2.3,384

the weak error could be rigorously proved to have the same O( 1
qm ) order of error.385

Finally, notice that q << m hence the weak error between the CG process and the386

DLM process is of order O( 1
q2 ).387

3.1.2. Is DBC satisfied?. A guess for the invariant measure of the DLM process388

could be389

µ(dρ) =
1

Z
e−qĒ(ρ)

∏
k∈Lm

dρk (3.15)

which is a discrete version of (2.28). However, this guess is not correct because the390

operator M (i.e. the generator) is not self-adjoint (M 6= M∗) with respect to the391

measure µ. Indeed, we compute (see Appendix B) that392

<Mf, g >L2(µ)=< f,Mg >L2(µ) −
1

2q

∫ ∑
k∈Lm

Ck(ρ)

[
∂g

∂ρk
f − ∂f

∂ρk
g

]
µ(dρ) (3.16)

where < ·, · >L2(µ) denotes the inner product between two functions with respect to393

measure µ while394

Ck(ρ) =

[
∂Lk+1

∂ρk
+
∂Lk−1

∂ρk
+ 2

∂Lk
∂ρk

− ∂Lk+1

∂ρk+1
− ∂Lk
∂ρk+1

− ∂Lk
∂ρk−1

− ∂Lk−1

∂ρk−1

]
(3.17)

is an interference term which depends only on the mobility of the process.395

Remark: For the case where the mobility is constant (additive noise) or even linear396

then Ck(ρ) = 0 for all k thus DBC is satisfied and µ(dρ) is the invariant measure of397

the process. However, the mobility of both Metropolis and Arrhenius dynamics which398

partially reflects the exclusion principle of the microscopic process are more complex399

hence the invariant measure is not known explicitly.400

3.2. Perturbed Langevin Model 1: Satisfying the DBC. The second ap-401

proximation model (PLM1) is obtained by adding a “correction” term to the drift402

which cancels the interference term in (3.16). Thus, the kth element of the density403

vector of PLM1 is given by404

dρ̄k =

(
uk(ρ̄) +

1

2q
Ck(ρ̄)

)
dt+

∑
l∈Lm

vk,l(ρ̄)dWl, k ∈ Lm (3.18)

which is obtained from DML with a perturbation of order O( 1
q ) to the drift.405

Proposition 3.1. The stochastic process driven by (3.18) satisfies the DBC and406

its invariant measure is µ(dρ̄) given in (3.15).407

Proof. The generator of the new process denoted by M̄ is written for a test408

function f as409

M̄f(ρ̄) =Mf(ρ̄) +
1

2q

∑
k∈Lm

Ck(ρ̄)
∂f

∂ρ̄k
(3.19)
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hence using (3.16) which has been derived in Appendix B it is straightforward to show410

that411

< M̄f, g >L2(µ)=< f,M̄g >L2(µ) (3.20)

412

3.2.1. Weak Error Analysis. Due to the “correction” term added to the drift,413

the finite time dynamics of PLM1 are perturbed. Indeed, the local error between the414

PLM1 process and the DLM process for a test function f , which is defined as the415

difference of the two processes’ generators (see Section 2.3), is416

Mf(ρ)− M̄f(ρ) =
∑
k∈Lm

Ck
∂f

∂ρk
= O(

1

q
) (3.21)

Hence, the weak error between the CG process and the PLM1 process is expected417

to be of order O( 1
q ) which is worse than the weak error between the CG process418

and the DML process. Overall, the cost paid for constructing a model with known419

invariant measure is to introduce error at finite times. Thus, in order to gain better420

understanding of the induced error, lets compute explicitly as well asymptotically the421

added “correction” term.422

3.2.2. “Correction” Term Asymptotics. For Metropolis dynamics, the “cor-423

rection” term is twice the discrete Laplacian of the density thus its asymptotic is given424

by425

Ck(ρ) = 2[ρk+1 + ρk−1 − 2ρk] =
2

m2
∂xxρ(xk) +O(

1

m4
) (3.22)

Interestingly, the Laplacian of the density is also obtained asymptotically from the426

entropy term of the free energy functional (see (2.31)). Similarly, the “correction”427

term for the more complex Arrhenius dynamics is given by428

Ck(ρ) = 2

(
1− 2ρk
ρk(1− ρk)

− β(J̄(0) + J̄(1))

)
Lk(ρ)

−
(

1− 2ρk+1

ρk+1(1− ρk+1)
− β(J̄(0) + J̄(1))

)
Lk+1(ρ)−

(
1− 2ρk−1

ρk−1(1− ρk−1)
− β(J̄(0) + J̄(1))

)
Lk−1(ρ)

= − 1

m2
∂xx

{(
1− 2ρ(xk)

ρ(xk)(1− ρ(xk))
− β(J̄(0) + J̄(1))

)
Lk(ρ)

}
+O(

1

m4
)

(3.23)

where the last equation is its asymptotic expansion. However another less accurate429

yet more manageable asymptotic expansion for the Arrhenius “correction” term is430

needed which is given by (see Appendix A)431

Ck(ρ) =
∂x
m2

{
2∂xρ(xk)

ρ(xk)(1− ρ(xk))
Lk(ρ) + β2(J̄(0) + J̄(1))∂xŪ(k, ρ)Lk(ρ)

+ βγ
(1− 2ρ(xk))∂xρ(xk)

ρ(xk)(1− ρ(xk))
Lk(ρ)

}
+O(

L2

q2m4
)

(3.24)

where γ = (
∑
l 6=0,1 J̄(l)) is a constant.432
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3.3. Perturbed Langevin Model 2: Perturbing the invariant measure.433

Previous subsection motivates us to suggest a second variant of DLM with perturbed434

invariant measure which is able to eliminate the “correction” term from the drift.435

Hence, the price to be paid for correcting the finite time dynamics is a controlled-436

error approximation of the invariant measure. To proceed, the third approximation437

model (PLM2) is derived by assuming that the invariant measure of the DLM process438

is a perturbed version of µ(dρ). Indeed, assuming that the (perturbed) invariant439

measure is given by440

µ̃(dρ) =
1

Z̃
e−q(Ē(ρ)+ 1

q P̄ (ρ))
∏
k∈Lm

dρk (3.25)

where P̄ (·) is a function to be specified, then, the following computation similar to441

(3.16) is obtained for the generator M of DLM442

<Mf, g >L2(µ̃)=< f,Mg >L2(µ̃) +
1

2q

∫ ∑
k∈Lm

(Pk(ρ)− Ck(ρ))

[
∂g

∂ρk
f − ∂f

∂ρk
g

]
µ̃(dρ)

(3.26)
where Ck(ρ) is given in (3.17) while443

Pk(ρ) = (Lk+1(ρ) + Lk(ρ))

[
∂P̄

∂ρk+1
− ∂P̄

∂ρk

]
− (Lk(ρ) + Lk−1(ρ))

[
∂P̄

∂ρk
− ∂P̄

∂ρk−1

]
=

2

m2
∂x

{
∂x

{
∂P̄

∂ρ(xk)

}
Lk(ρ)

}
+O(

1

m4
)

(3.27)

is the interference term due to the perturbation of the invariant measure. Then444

PLM2 is defined for the kth density variable by445

dρ̃k =

(
uk(ρ̃) +

1

2q
C̃k(ρ̃)

)
dt+

∑
l∈Lm

vk,l(ρ̃)dWl, k ∈ Lm (3.28)

where C̃k(ρ̃) = Ck(ρ̃)−Pk(ρ̃) is the new “correction” term. Similarly, to the previous446

model, PLM2 was an explicitly known invariant measure.447

Proposition 3.2. The stochastic process driven by (3.28) satisfies the DBC and448

its invariant measure is µ̃(dρ̃) given in (3.25).449

The proof is omitted because it is similar to the proof for PLM1.450

3.3.1. Weak Error Analysis. Choosing appropriately the perturbation term,451

it is possible to make C̃k(ρ) negligible, e.g. (3.30). Eliminating the “correction” term452

implies that the drift term is not anymore perturbed and the finite time dynamics are453

again as accurate as the DLM dynamics. The choice of the appropriate perturbation454

of the invariant measure is inspired by the asymptotic expansions of the interference455

term (3.17) and the invariant measure perturbation (3.27). As already stated, the456

asymptotic of the interference term for Metropolis dynamics is the Laplacian of the457

density hence a suitable choice for the perturbation term is the entropy of the system.458

Indeed, if we set459

P̄ (ρ̃) =
∑
k∈Lm

[ρ̃k log(ρ̃k) + (1− ρ̃k) log(1− ρ̃k)] (3.29)

then it is obtained asymptotically that C̃k(ρ̃) = O( 1
m4 ). Hence the local error between460

the time rescaled DML process and the time rescaled PLM2 process for any test461
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function, f , is462

Mf(ρ)− M̃f(ρ) = O(
1

qm2
) (3.30)

Interestingly, the perturbation term, P̄ (ρ̃), of the invariant measure for Metropolis463

dynamics is the entropy of the system. This implies an increase of the temperature464

of the system at equilibrium from β to β(1 + 1
q )! Moreover, PLM2 can be thought465

as a space discretization of the SPDE (2.25) since it differs from DLM, which is a466

straightforward space discretization of the same SPDE, by a term which has order467

less than the order of the discretization. Consequently, it can be stated that numerical468

simulations of the discretized process –possibly any discretized process– are performed469

at a different (of order O( 1
q )) temperature than they were initially designed.470

For Arrhenius dynamics, the derivation of the perturbed term is more difficult471

since the asymptotic expansion given by (3.24) is more complicated. Nevertheless, if472

we set473

P̄ (ρ) =
∑
k∈Lm

[ρk log(ρk) + (1− ρk) log(1− ρk)]− β2

4
(J̄(0) + J̄(1))H̄(ρ)

− βγ

2

∑
k∈Lm

[ρk log(ρk)− (1− ρk) log(1− ρk)]

(3.31)

then the asymptotic order of the “correction” term becomes C̃k(ρ̃) = O( L2

q2m4 ). Hence474

the local error between the DLM process and the PLM2 process for Arrhenius dy-475

namics is given by476

Mf(ρ)− M̃f(ρ) = O(
L2

q3m2
) (3.32)

where L is the interaction potential length. Finally, notice that for Arrhenius dynam-477

ics both Hamiltonian and entropy terms are perturbed and there is no straightforward478

physical interpretation of the perturbation as there was for the Metropolis case.479

Remark: Comparing the perturbations terms (3.29) for Metropolis dynamics and480

(3.31) for Arrhenius dynamics with the additional term Ḡ(·) in the invariant measure481

of CG process (2.29), we observe that they have the same order, O( 1
q ), but the actual482

functions are different. Of course, this is not a surprise since the former depends on483

the mobility (i.e. dynamics) while the latter depends on the prior distribution of the484

process.485

3.4. Large Deviation and Action Functional. It was shown firstly by Hanggi486

et al. [34] that Langevin approximation may have different behavior2 at long times487

compared to the microscopic process. This is established by showing the asymptotic488

non-equivalence of the large deviations of the derived models and the microscopic489

process as defined by their action functionals. Hence, apart from the local error,490

we are interested in the long time behavior of the derived approximation processes491

including rare events and phase transitions. It was shown in [21], where an action492

functional for the mean field Ising model was derived, that the asymptotic equivalence493

of the action functionals between two processes implies that the processes have similar494

2See the remark at the end of this subsection for such an example.

17



dynamical properties and particularly they have the same probability of rare events495

and exit times.496

In this Section, a time dependent action functional is derived for the DLM. Similar497

computations for the variants of DLM give the same asymptotic behavior thus they498

are omitted. We show that the action functional for DLM is asymptotically equivalent499

to the action functional derived in [33] and briefly revised at the end of the Section 2.4500

where large deviations for a system of long range interactions that models diffusion501

of interacting particles was studied. The results in [33] where an extension of the502

large deviation results in [35] in which Kawasaki dynamics (i.e. diffusion) for short503

range interactions was examined. Since DLM is a space discretization of the SPDE504

(a.k.a. the action functional of the microscopic model) it is straightforward to show505

the asymptotic equivalence of the action functionals. Nevertheless, we present the506

detailed derivation for completeness.507

In order to recover the action functional we have to identify a small parameter508

which will be sent to zero. In our case, the small parameter is the spacing of the509

discretization, 1
m , or, in the context of coarse graining the size of a cell. Then for any510

absolutely continuous functions Ψ : [0, 1] × [0, T ] → R and G : [0, 1] → R the rate511

function is given by512

Sm0T (Ψ) =

∫ T

0

Λm(Ψ,Ψt)dt (3.33)

where513

Λm(Ψ,Ψt) = sup
G

{
< g, ∂tΨ−m2u(ψ) >l2 −

1

2
< g, qm2vvT (ψ)g >l2

}
, (3.34)

while g = {gk = G(xk)} ∈ Rm, similarly ψ(t) = {ψk(t) = Ψ(t, xk) ∈ Rm and < ·, · >l2514

is the usual l2 inner product.515

Using the asymptotic approximations (3.10) and (3.11) (i.e. the drift and the516

diffusion of the SPDE) it is straightforward to show that as m→∞517

< g,Ψt −m2u(ψ), g > =< G,Ψt − ∂x
{
L[Ψ](

∂xΨ

Ψ(1−Ψ)
− β∂x(J ∗Ψ))

}
>l2

→< G,Ψt − ∂x
{
L[Ψ](

∂xΨ

Ψ(1−Ψ)
− β∂x(J ∗Ψ))

}
>L2

(3.35)
and518

< g, qm2(ψ)g >l2→< ∂xG,L[Ψ]∂xG >L2 (3.36)

Thus as m→∞ the asymptotic limit for Λm(Ψ,Ψt) is519

Λ(Ψ,Ψt) = sup
G

{∫ 1

0

G∂x

{
L[Ψ](

∂xΨ

Ψ(1−Ψ)
− β∂x(J ∗Ψ))

}
dx−

∫ 1

0

L[Ψ](∂xG)2dx

}
(3.37)

Using Γ-convergence arguments and the arguments in [33], a rigorous proof of the520

above result could be carried out. In order to establish the equivalence between the521

action functional derived here and the action functional for the microscopic process522

derived in [33] we should think (3.37) as a maximization problem and use the calcu-523

lus of variation theory. Thus denoting H(x, t) the maximizer of (3.37), we have by524
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definition that for any appropriate test function Φ525

0 =
d

dε
{< H + εΦ, ∂tΨ− ∂x{L[Ψ](

∂xΨ

Ψ(1−Ψ)
− β∂x(J ∗Ψ))} >L2

< ∂x{H + εΦ}L[Ψ], ∂x{H + εΦ} >L2}
(3.38)

which can be written as526

∂tΨ = ∂x

{
L[Ψ](

∂xΨ

Ψ(1−Ψ)
− β∂x(J ∗Ψ))

}
+ 2∂x{L[Ψ]∂xH}

= ∂x

{
L[Ψ](

∂xΨ

Ψ(1−Ψ)
− β∂x(J ∗Ψ− 2

β
H))

} (3.39)

Substituting (3.39) into (3.37) follows that527

Λ(Ψ,Ψt) =< ∂xH,L[Ψ]∂xH >L2 (3.40)

and thus the rate function equals in the limit to528

S0T (Ψ) =

∫ T

0

∫ 1

0

L[Ψ](∂xH)2dxdt (3.41)

which is exactly the microscopic action functional given by (2.33).529

Remark: While for exchange (i.e. Kawasaki) dynamics the action functionals be-530

tween the Langevin approximations and the underlying microscopic process are asymp-531

totically equivalent, this is not true for adsorption/desorption (i.e. Glauber) dynam-532

ics. Indeed, both Langevin approximation [30], [20] and Hanggi correction [34] result533

in action functional which are asymptotically different from the action functional of534

the underlying microscopic process derived in [21, p. 146]. Moreover, the action func-535

tionals of an SDE driven process is generally of weighted quadratic form [32] while536

the action functional of the microscopic adsorption/desorption process is far more537

complex. However, using as a starting point for Langevin approximation the dis-538

cretization of the microscopic action functional –similar to what we did in this paper–539

there might be a way to construct accurate Langevin approximations whose action540

functionals are asymptotically equivalent to the microscopic adsorption/desorption541

process.542

4. Numerical Results. The objective of this Section is to study pattern forma-543

tion in surface diffusion using the proposed Langevin-type models. Since the stochastic544

fluctuations of the proposed models are directly derived from the microscopic process,545

the exploration of the pattern morphologies on the complex energy landscape of the546

particle system is well emerged. Moreover, authors consider that it is important to547

promote reproducible research hence the code written for the production of the figures548

as well extended benchmark simulations is available online and it can be found at549

www.math.umass.edu/~pantazis/source/patternFormation_FigsCode.zip550

4.1. Numerical Schemes. In the previous Section space discretization (i.e.551

semi-discretization) was considered in detail. The final step in order to simulate the552

derived models on computers is to discretize the time, too. Since our primal goal553

is to highlight the space discretization, we keep the time discretization as simple554

as possible. Thus, a simple predictor-corrector (PC) Euler scheme which has 1st555

order weak convergence [23] is suggested. Of course implicit schemes or higher order556
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schemes such as Milstein’s or derivative-free Runge-Kutta method could be used,557

however, they are computationally expensive especially for high dimensional systems558

such as the studied.559

In order to highlight the implementation details, we restrict without loss of gen-560

erality only to DLM. Then the PC Euler scheme at n-th iteration is given in matrix561

form by562

X̄n = Xn + u(X̄n+1)∆t+ v(Xn)∆Wn

Xn+1 = Xn + [(1− α)u(Xn) + αu(X̄n)]∆t+ v(Xn)∆Wn

(4.1)

where ∆t is the time-step while ∆Wn is a vector of independent zero-mean Gaussians563

with covariance matrix ∆tI. Initial value of the lattice configuration denoted by X0 is564

also given while α is a weight factor which we set to 0.5 (trapezoidal rule). Since the565

size of the matrix v is md ×md even though only d+ 1 of its diagonals are nonzero,566

it cannot be represented as a matrix in a computer memory hence we rewrite it –567

as well the drift term– in a compact implementable representation. For the general568

d-dimensional case, assume that k = (k1, ..., kd) is a multi-index that denotes the569

position of the k-th variable an ei is the unitary vector with 1 at position i. Then,570

the k-th element of the drift term is given by571

uk(Xn) =

d∑
i=1

[
1

2
(Lk+ei(Xn) + Lk(Xn))(Fk+ei(Xn)− Fk(Xn))

+
1

2
(Lk(Xn) + Lk−ei(Xn))(Fk(Xn)− Fk−ei(Xn))

] (4.2)

where Fk(X) = −βŪ(k,X)+log X(k)
1−X(k) while the k-th element of the stochastic term572

is given by573

∑
l∈Lm

vk,l(Xn)∆Wn(l) =

d∑
i=1

[√
1

qd
(Lk+ei(Xn) + Lk(Xn))∆W i

n(k)

−
√

1

qd
(Lk(Xn) + Lk−ei(Xn))∆W i

n(k − ei)
] (4.3)

where W i
n ∼ N(0,∆tImd) is a zero-mean Gaussian vector while W i

n and W i′

n′ are574

independent random vectors.575

In time discretization, similarly to space discretization, there are issues to be576

resolved. One such crucial issue is the choice of time step, ∆t, which here were chosen577

heuristically using the following rule578

1

md

∑
k∈Lm

|Xn+1 −Xn| ≈ δ (4.4)

which means that the average difference of the process in one step is controlled by579

δ. After many experiments on a large parameter regime, we set δ = 10−3 which580

is a compromise between stability and efficiency of the algorithm. Another artifact581

of time discretization is that the probability of Xn+1 leaving the admissible domain582

[0, 1]m
d

is 1 making the algorithm to diverge. A simple solution to this problem is583

that whenever there is a element of Xn+1 outside [0, 1] then the stochastic term is584

eliminated and only the drift term is considered. This is enough since the drift term585
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“push back” the value in the admissible interval. However, the cost to be paid is that586

we introduce bias which is proportional to the times the process leaves the admissible587

domain which of course depends on the time step, ∆t. In our simulations, due to the588

specific choice of time step, the percentage of hitting the boundary values was less589

than 0.01%.590

4.1.1. Sources of CPU Acceleration. The most time-consuming part of the591

numerical algorithm is the computation of the potential Ū(k,Xn) at each step for592

all k ∈ Lm. This function is actually the convolution between the CG interaction593

potential and the lattice configuration. Thus an efficient method for computing the594

convolution between two function is through Fourier transform. Indeed, it holds that595

596

Ū(Xn) = J̄ ∗Xn = F−1{ ˆ̄J(ξ)X̂n(ξ)} (4.5)

where F−1 denotes the inverse Fourier transform while ˆ̄J(ξ) and X̂n(ξ) are the Fourier597

transforms of J̄ and Xn, respectively.598

Using multiplication in Fourier space instead of convolution in physical space599

makes the proposed method eventually independent of the interaction length. Indeed,600

the computational cost of one step of the numerical SDE solver is dropped from601

O(Md(L/q)d) to O(Md logMd). Thus a huge computational gain is achieved for long602

range or mid range interaction potentials. This computational gain is a tremendous603

difference between the SDE approximations and the null event CGMC method which604

stems from the fact that in an SDE step the potential of all cells is needed while in a605

CGMC step the potential of only one cell is incorporated. Finally, the computation606

of convolution in Fourier space relates the proposed finite-difference method to the607

(pseudo-)spectral methods at least as concerns the computational cost.608

4.2. Linear Stability Analysis. One fast and standard approach to roughly609

explore the behavior of the diffusive particle system at different parameter regimes is610

linear stability analysis of the mesoscopic PDE [36]. In connection with Fig. 2.1(a),611

linearized techniques belong to the mean-field class of models where most of the612

atomistic details have been integrated out. Generally, linear stability analysis identi-613

fies when a spatial perturbation added to a uniform solution of the PDE would either614

eliminate of grow in time [37], [38]. Thus if we disturb a constant solution of the615

mesoscopic PDE616

∂tρ = ∇ ·
{
L[ρ]∇δE

δρ

}
(4.6)

by a spatially periodic perturbation of the form eλteiξx then the dispersion relation617

between the perturbation growth rate, λ, and wavelength or mode, ξ, is given by618

λξ = T0||ξ||2L[c0]

[
βĴ(ξ)− 1

c0(1− c0)

]
(4.7)

where Ĵ(·) is the 2D Fourier transform of the continuous-space interaction potential,619

c0 is the mean coverage and L[c0] is the mobility either of Metropolis or Arrhenius620

dynamics for the constant density function ρ(t, x) = c0.621

In order to observe phase transition phenomena –in our case pattern formation–622

there should exist positive growth rates. From (4.7) we could predict that phase623

transitions occur when there exists at least one wavenumber ξ′ such that βĴ(ξ′) ≥624
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1
c0(1−c0) . Moreover, we could also predict from the same relation the most prominent625

size of the patterns. Indeed, the wavelength with the largest growth rate which is626

the wavelength that maximize the Fourier transform of the interaction potential (i.e.,627

ξmax = argmaxξ Ĵ(ξ)) should dominate. Even though the following Section takes628

into account the information gained from linear stability analysis, it also reveals its629

limitations especially at critical parameter regimes.630

4.3. Pattern Formation Simulations. In order to perform reliable bench-631

mark simulations, it is necessary to utilize medium to large lattice domains. However,632

CGMC algorithm is prohibitively slow for large lattices resulting in the inability of pro-633

viding sufficient statistics for comparison. Thus we perform limited benchmark simu-634

lations and relied on the theoretical results obtained in previous Sections. Neverthe-635

less, we present the CPU time comparisons between CGMC algorithm and Langevin636

approximations. Table 4.1 shows the CPU execution time for null event CGMC algo-637

rithm and PLM2 model for Arrhenius dynamics. We prefer PLM2 model because it638

is the model with the most CPU-demanding (see (3.31)) among the Langevin mod-639

els. It is evident from the Table that PLM2 scales linearly as the size of the lattice640

is increased while CGMC scales super-linearly due to the fact that the time step in641

CGMC is inverse proportional to the lattice size. Moreover, PLM2 is about 10-20642

times faster from CGMC algorithm for relatively large lattices (N = 29) achieving a643

significant time acceleration.644

CGMC PLM2

N = 26, q = 22 1.5× 102 3.3× 101

N = 29, q = 22 3.6× 104 2.5× 103

Table 4.1: CPU execution time in seconds of null event CGMC and PLM2 model for
Arrhenius dynamics. Both algorithms run until final time T = 100. For N = 26 both
algorithms have converge to equilibrium while they have not for N = 29.

Proceeding now to the study of pattern formation phenomena in surface diffu-645

sion, an appropriate interaction potential should be chosen. Following [39] and [36],646

patterns are formed when interaction potential is attractive at short range resulting647

in microphase separation and repulsive at long range so as they do not coalescence.648

A typical choice of attractive/repulsive interaction potential is Morse potential given649

in a general form by650

J1(x− y;χ1, ra,1, rr,1, J1) :=
J1

2πr2
a,1

exp

(
−||x− y||

ra,1

)
− J1χ1

2πr2
r,1

exp

(
−||x− y||

rr,1

)
(4.8)

where J1 is the potential strength while ra,1 and rr,1 are the attractive and repulsive651

length scales. Note that in order to have short range attractive and long range re-652

pulsive interaction potential it should hold rr,1 > ra,1. The ratio between attractive653

and repulsive forces is determined by the repulsion strength, χ1. The 2D Fourier654

transform of Morse potential is655

Ĵ1(ξ) = J1
1

1 + r2
a,1||ξ||2

− J1χ1
1

1 + r2
r,1||ξ||2

(4.9)

hence based on linear stability analysis the most prominent wavelength is the maxi-656
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mum of the Fourier transform of the interaction potential given by657

||ξmax
1 || = 1

ra,1

√ √
χ1R1 − 1

R1 −
√
χ1R1

(4.10)

where R1 =
r2r,1
r2a,1

> 1 and it should hold 1 <
√
χ1R1 < R1 so as a real-valued dominant658

mode is obtained. Moreover, the rate of growth of the dominant pattern size which659

is crucially determined from the value of the interaction potential at mode ξmax
1 (see660

(4.7)) equals661

Ĵ1(ξmax
1 ) = J1

R1 −
√
χ1R1

R1 − 1

(
1− χ1

1−
√
χ1R1

)
(4.11)

However, the decay of the Fourier transform of the interaction potential is of poly-662

nomial order which is slow and under the presence of stochastic fluctuations patterns663

are irregular. In order to obtain nearly periodic configurations another interaction664

potential which is also called Morse potential should be utilized. In recent years,665

this potential had been applied for the study of pattern formation [40], [12] and it is666

defined as the difference of two Gaussian kernels, i.e.667

J2(x− y;χ2, ra,2, rr,2, J2) :=
J2

2πr2
a,2

exp

(
−||x− y||

2

2r2
a,2

)
− J2χ2

2πr2
r,2

exp

(
−||x− y||

2

2r2
r,2

)
(4.12)

where, similar to previous interaction potential, J2 is the potential strength, χ2 is668

the repulsion strength while ra,2 and rr,2 are dimensionless length scales or attraction669

and repulsion, respectively. The 2D Fourier transform of this variant of the Morse670

potential is given by671

Ĵ2(ξ) = J2 exp

(
−
r2
a,2||ξ||2

2

)
− J2χ2 exp

(
−
r2
r,2||ξ||2

2

)
(4.13)

which is again a difference of two Gaussian kernels. Notice that the decay rate of672

the Fourier modes are now exponential. Since our primal interest is to produce con-673

figurations of patterns which are stable and nearly periodic we present most of our674

results using J2(·). Moreover, the most prominent size of the patterns is related to675

the maximum value of the Fourier transform of J2(·) and it is obtained at676

||ξmax
2 || = 1

ra,2

√
2 lnχ2R2

(R2 − 1)
(4.14)

where R2 =
r2r,2
r2a,2

> 1 is the repulsive to attractive ratio while it should hold χ2R2 > 1.677

The growth rate of the dominant wavelength is given by678

Ĵ2(ξmax
2 ) = J2(χR2)

1
1−R2 (1−R−1

2 ) (4.15)

The study of pattern formation is performed using the variant of Morse potential,679

J2(·). Fig. 4.1 shows configurations of the system at equilibrium for various parameter680

values. Specifically, the size of the lattice is N = 29 while the coarsening factor is681

q = 4. Interaction strength is J2 = 1 with inverse temperature is β = 12. Attraction682
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and repulsion length-scales are set to ra,2 = 5 and rr,2 = 10, respectively, while two683

different repulsion strengths, χ2 = 0.4 (left column) and χ2 = 0.8 (right column) are684

applied. Arrhenius dynamics with diffusion rate dβ = 0.27 is used for this simulation685

while the preferred numerical scheme was PLM2 with step size suitably chosen for686

each case such that (4.4) is approximately valid.687

Based on linear stability analysis, we expect that patterns do occur for Fig 4.1(a),(c),688

(d)&(e) but not for Fig 4.1(b)&(f) because the growth rate as it is calculated from the689

dispersion relation (4.7) is negative for all modes. However as it is evident from the690

figure, patterns are formed in any case. Of course, patterns in Fig 4.1(b)&(f) are much691

more noisy exactly due to the fact that the growth rate of the dominant wavelength692

is (positive but) very small. Furthermore, the stochastic fluctuations of the model are693

important since patterns with different sizes are observed in each configuration. This694

result is in accordance with the CGMC runs performed in [36] and it is far from the695

configurations obtained when deterministic models [12] were used where patterns are696

almost uniform. Additionally, changing the mean coverage, c0, dots, labyrinths and697

inverted dots are observed. Similar experimental images were shown in [27] where698

surface diffusion of lead (Pt) on a copper (Cu) layer were studied. A final observation699

is that looking at the two columns of the Figure, the size of the patterns is decreased700

as repulsion strength, χ2, is increased as it is expected from (4.14) since the dom-701

inant size of the patterns is inverse proportional to the wavelength. Intuitively, it702

can be also explained by the fact that strong long range repulsion leads to even less703

coalescence of patterns as time evolves.704

The final numerical experiment of this section is the comparison of the two at-705

tractive/repulsive interaction potentials J1(·) and J2(·). The motivation for this ex-706

periment stems from the fact that even though the prominent size of the patterns707

are chosen to be equal –based on linear stability analysis– for both potentials, the708

behavior of the overall system is expected to be different due to the different decay709

of the modes. As already stated, the decay of the modes for J1(·) is polynomial while710

the decay of the modes for J2(·) is exponential hence we expect that the use of J1(·)711

will produce a richer class of patterns making for instance the control of the size a712

rather difficult task. The configurations obtained at equilibrium using the Morse po-713

tential J1(·) as well its variant J2(·) are shown in Fig. 4.2(a) and (b), respectively.714

The control parameters of the interaction potentials was appropriately chosen so as715

the dominant modes of the Fourier transform be equal (i.e. ξmax
1 = ξmax

2 = 0.15) as716

well their growth rates be equal (i.e. Ĵ1(ξmax
1 ) = Ĵ2(ξmax

2 ) = 1). In order to specify717

all the parameters of the interaction potentials we further set χ1 = χ2 = 0.5 and718

R1 = R2 = 4 while the remaining parameters of the system are set to β = 10 and719

dβ = 0.5.720

By visual inspection of Fig. 4.2, it can be stated that the distribution of the sizes of721

the patterns is more diverse for the original Morse potential compared to its variant.722

Moreover, as the histograms of the radius of the patterns suggest, the prominent723

radius in both potentials is 6 lattice sites which is comparable to the expected radius724

of the patterns being in this case 1
ξmax = 1

0.15 = 6.6 lattice sites. Finally, one simple725

approach to quantify the diversity of the pattern sizes is to compute the standard726

deviation of the radius of the patterns which is 2.4 and 2.0 for the original Morse727

potential and its variant, respectively. Overall, as it was predicted by linear stability728

analysis, original Morse potential produce a larger class of pattern sizes compared to729

its variant.730

24



0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

(a) c0 = 0.2 & χ2 = 0.4
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(b) c0 = 0.2 & χ2 = 0.8
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(c) c0 = 0.5 & χ2 = 0.4
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(d) c0 = 0.5 & χ2 = 0.8
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(e) c0 = 0.8 & χ2 = 0.4
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(f) c0 = 0.8 & χ2 = 0.8

Fig. 4.1: A huge variety of patterns (dots, labyrinths, inverted dots) are produced
at different parameter regimes corresponding to the complex landscape created by
the competing interactions and the various conserved surface coverages, c0. Also,
quantities such as the size of the patterns can be controlled by the system’s parameters.
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(a) Applying J1 of (4.8)
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(b) Applying J2 of (4.12)

Fig. 4.2: Using different attractive/repulsive interaction potentials configurations with
different characteristics are obtained.

5. Conclusions. In this paper, we derived models which served as approxima-731

tions of the CG process for the study of pattern formation on surfaces. Our starting732

point was an appropriate space discretization of the SPDE which lead to a system733

of SDE of Langevin type. Inspired by both the microscopic level and the mesoscopic734

level, the proposed models inherit properties from both levels. Indeed, (a) finite time735

estimates on the weak error between CG process and the process driven by the pro-736

posed models were obtained, (b) we showed that the action functionals between the737

microscopic model and the proposed are asymptotically equivalent which is a direct738

consequence of the fact that the proposed models are a direct discretization of the739

action functional (i.e. of the SPDE) and (c) by a perturbation of order O( 1
qd

) either to740

the drift or the invariant measure, the derived models satisfied DBC hence the invari-741

ant measure of the approximation process is known. Hence the derived approximation742

models control the error at finite, long and infinite time scales.743

Additionally, the knowledge of the invariant measure revealed a very interesting744

observation –to our best knowledge never stated before– which says that the space745
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discretization of the SPDE for Metropolis dynamics lead to a system whose tempera-746

ture was perturbed by a factor of 1
q . This observation asserts that the discretization747

of a SPDE may produce artifacts and bias to the numerical results when q is small.748

Moreover, increasing or decreasing the power of the noise, which is straightforward749

for the suggested models by suitably scaling of the order parameters q and m, we are750

able to zoom in or out to more or less atomistic details of the system. In connec-751

tion with Fig. 2.1(a), increasing or decreasing the power of the noise results in the752

translation of the models to the left towards microscopic level or to the right towards753

mesoscopic level, respectively. The controlled-error approximation and the microscop-754

ically derived fluctuations allow us to view the proposed models as “bridges” between755

molecular and continuum (S)PDE models of diffusion processes. Based on this reli-756

able intermediate models, it may be possible to consider hybrid micro/macro models757

bridging the gap between algorithms with different spatial scales. We also refer to758

recent work in related hybrid models in fluctuation hydrodynamics [41].759

Finally, as concerns the study of pattern formation phenomena through a self-760

assembly mechanism, we efficiently reproduce the sizes and types of patterns ex-761

perimentally observed in previous studies [27]. The role of noise is critical for the762

systematic exploration of the complex energy landscape of the system. As it was763

evident from the Figures, the choice of the interaction potential as well the variation764

of the system’s parameters significantly affects the size and the shape of the patterns.765

Additionally, having the invariant measure of the process, one of our next goals is to766

perform sensitivity analysis using the method developed by Majda and Gershgorin767

[22] which exploits the Fisher information at equilibrium. Furthermore, another im-768

portant application we are interested in is the control of the pattern’s properties. By769

varying the parameters of the system such as the mean concentration or the temper-770

ature or the repulsion strength in a controlled way we will be able to design patterns771

with specified shapes, sizes or even orientations. However, in order to perform op-772

timal control we need appropriate mesoscopic observables for the patterns which is773

also under our research investigation. Particularly, defining appropriate mesoscopic774

observables using tools from image processing (see right column of Fig. 4.2 as a pre-775

liminary example of such tools) and pattern recognition is one of our immediate goals.776
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Appendix A. Asymptotics. In order to compute the formal asymptotics of the
drift term (3.2), diffusion matrix (3.5) and correction term (3.24) for both dynamics
we need the following Taylor series expansions. Mobility is expanding up to the second
order derivative given by

Lk±1(ρ) = Lk(ρ)±
1

m
∂xLk(ρ) +

1

2m2
∂xxLk(ρ) +O(

1

m3
)

while potential is similarly expanded up to third order derivative by

Ū(k ± 1, ρ) = Ū(k, ρ)±
1

m
∂xŪ(k, ρ) +

1

2m2
∂xxŪ(k, ρ)±

1

6m3
∂xxxŪ(k, ρ) +O(

1

m4
)

Finally, the difference of the logarithms which stems from the entropy term is ex-
panded as

log(ρk±1)− log(ρk) = ±
1

m

∂xρ(xk)

ρk
+

1

2m2

[
∂xxρ(xk)

ρ(xk)
−
(
∂xρ(xk)

ρ(xk)

)2
]

±
1

6m3

[
∂xxxρ(xk)

ρ(xk)
− 3

∂xρ(xk)∂xxρ(xk)

ρ(xk)2
+ 2

(
∂xρ(xk)

ρ(xk)

)3
]

+O(
1

m4
)

and similarly for log(1− ρk)− log(1− ρk±1).867

Now, we are able to compute the formal asymptotic for the drift term as868

uk(ρ) =
1

2
(Lk+1(ρ) + Lk(ρ)){−β[Ū(k + 1, ρ)− Ū(k, ρ)] + [log(ρ(xk+1))− log(ρ(xk))]− [log(1− ρ(xk+1))− log(1− ρ(xk))]}

+
1

2
(Lk(ρ) + Lk−1(ρ)){−β[Ū(k − 1, ρ)− Ū(k, ρ)] + [log(ρ(xk−1))− log(ρ(xk))]− [log(1− ρ(xk−1))− log(1− ρ(xk))]}

=
1

2

[
2Lk(ρ) +

1

m
∂xLk(ρ) +

1

2m2
∂xxLk(ρ)

]
×
{
−β
m
∂xŪ(k, ρ) +

−β
2m2
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−β
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1

m
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1
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(
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1

6m3
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∂xρ(xk)∂xxρ(xk)

ρ(xk)2
+ 2

(
∂xρ(xk)

ρ(xk)

)3
]

+
1

m

∂xρ(xk)

1− ρk
+

1

2m2

[
∂xxρ(xk)

1− ρ(xk)
+

(
∂xρ(xk)

1− ρ(xk)

)2
]

+
1

6m3

[
∂xxxρ(xk)

1− ρ(xk)
+ 3

∂xρ(xk)∂xxρ(xk)

(1− ρ(xk))2
+ 2

(
∂xρ(xk)

1− ρ(xk)

)3
]}

+
1

2

[
2Lk(ρ)−

1

m
∂xLk(ρ) +

1

2m2
∂xxLk(ρ)

]
×
{
−
−β
m
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(A.1)
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869

Similarly, the weak form of the diffusion matrix (i.e. covariance matrix) has the870

following formal asymptotic871

〈∑
k,j

bTj,kφ1(xj)
dWk

dt
,
∑
l,i

bTi,lφ2(xi)
dWl

dt

〉
=
∑
k,l

Dk,lφ1(xk)φ2(xl)

=
∑
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[
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]
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∑
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(A.2)

872

Finally, the asymptotic expansion of the “correction” term for Arrhenius dynamics873

can be alternatively written as874

Ck(ρ) =
1

m2
∂xx

{
(1− 2ρ(xk)) exp(−βŪ(k, ρ))− βq(J̄(0) + J̄(1))Lk(ρ)

}
+O(
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=
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(A.3)

875

Appendix B. Detailed Balance Condition and Discrete Free Energy876

Decrease. The computation of the inner products shown in (3.16) is given next.877

After an integration by parts and taking advantage of the periodic boundary condition878
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we obtain that879

Z <Mf, g >L2(µ)
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e−qĒ(ρ) ∂g

∂ρk

− 1

2q

∫ ∑
k∈Lm

Ck(ρ)
∂f

∂ρk
ge−qĒ(ρ)
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(B.1)

880

Discrete free energy functional, Ē(ρ), is decreasing over time. Indeed, taking once881

again advantage of the periodic boundary condition we obtain882

d

dt
Ē(ρ) =
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(B.2)

since mobility is always a non-negative function.883
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