## ACMAC's PrePrint Repository

## Finite element approximations for a linear fourth-order parabolic SPDE in two and three dimensions with additive space-time white noise

## Georgios T. Kossioris and Georgios E. Zouraris

## Original Citation:

Kossioris, Georgios T. and Zouraris, Georgios E.
(2011)

Finite element approximations for a linear fourth-order parabolic SPDE in two and three dimensions with additive space-time white noise.
(Submitted)
This version is available at: http://preprints.acmac.uoc.gr/76/
Available in ACMAC's PrePrint Repository: February 2012
ACMAC's PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

# Finite element approximations for a linear fourth-order parabolic SPDE in two and three space dimensions with additive space-time white noise ${ }^{\text {Th }}$ 

Georgios T. Kossioris ${ }^{\text {a }}$, Georgios E. Zouraris ${ }^{\mathrm{a}, *}$<br>${ }^{a}$ Department of Mathematics, University of Crete, GR-714 09 Heraklion, Crete, Greece.


#### Abstract

We consider an initial- and Dirichlet boundary- value problem for a linear fourth-order stochastic parabolic equation, in two or three space dimensions, forced by an additive space-time white noise. Discretizing the space-time white noise a modeling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a standard Galerkin finite element method based on $H^{2}$-piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a priori estimates for the modeling error and for the approximation error to the solution of the regularized problem.


Keywords: finite element method, space-time white noise, Backward Euler time-stepping, fully-discrete approximations, a priori error estimates, fourth order parabolic equation, two and three space dimensions
2000 MSC: $65 \mathrm{M} 60,65 \mathrm{M} 15,65 \mathrm{C} 20$

## 1. Introduction

### 1.1. Formulation of the problem

Let $d=2$ or $3, T>0, D=(0,1)^{d} \subset \mathbb{R}^{d}$ and $(\Omega, \mathcal{F}, P)$ be a complete probability space. Then we consider an initial- and Dirichlet boundary- value problem for a fourth-order linear stochastic parabolic equation formulated, typically, as follows: find a stochastic function $u:[0, T] \times \bar{D} \rightarrow \mathbb{R}$ such that

$$
\begin{gather*}
\partial_{t} u+\Delta^{2} u=\dot{W}(t, x) \quad \forall(t, x) \in(0, T] \times D \\
\left.\Delta^{m} u(t, \cdot)\right|_{\partial D}=0 \quad \forall t \in(0, T], \quad m=0,1  \tag{1.1}\\
u(0, x)=0 \quad \forall x \in D
\end{gather*}
$$

a.s. in $\Omega$, where $\dot{W}$ denotes a space-time white noise on $[0, T] \times D$ (see, e.g., [27], [16]). The stochastic partial differential equation in (1.1) is the linear diffusive part of the stochastic Cahn-Hilliard equation (cf. [5], [10]) which was introduced for the investigation of phase separation in spinodal decomposition (see, e.g., 6], [17, [12]).

The mild solution of the problem above (cf. [5], [10]), known as 'stochastic convolution', is given by

$$
\begin{equation*}
u(t, x)=\int_{0}^{t} \int_{D} G(t-s ; x, y) d W(s, y) \tag{1.2}
\end{equation*}
$$

[^0]Here, $G(t ; x, y)$ is the space-time Green kernel of the corresponding deterministic parabolic problem: find a deterministic function $w:[0, T] \times \bar{D} \rightarrow \mathbb{R}$ such that

$$
\begin{gather*}
\partial_{t} w+\Delta^{2} w=0 \quad \forall(t, x) \in(0, T] \times D \\
\left.\Delta^{m} w(t, \cdot)\right|_{\partial D}=0 \quad \forall t \in(0, T], \quad m=0,1  \tag{1.3}\\
w(0, x)=w_{0}(x) \quad \forall x \in D
\end{gather*}
$$

where $w_{0}$ is a deterministic initial condition. In particular, we have

$$
w(t, x)=\int_{D} G(t ; x, y) w_{0}(y) d y \quad \forall(t, x) \in(0, T] \times \bar{D}
$$

and

$$
\begin{equation*}
G(t ; x, y)=\sum_{\alpha \in \mathbb{N}^{d}} e^{-\lambda_{\alpha}^{2} t} \varepsilon_{\alpha}(x) \varepsilon_{\alpha}(y) \quad \forall(t, x, y) \in(0, T] \times \bar{D} \times \bar{D} \tag{1.4}
\end{equation*}
$$

where $\lambda_{\alpha}:=\pi^{2}|\alpha|_{\mathbb{N}^{d}}^{2},|\alpha|_{\mathbb{N}^{d}}:=\left(\sum_{i=1}^{d} \alpha_{i}^{2}\right)^{\frac{1}{2}}$ and $\varepsilon_{\alpha}(z):=2^{\frac{d}{2}} \prod_{i=1}^{d} \sin \left(\alpha_{i} \pi z_{i}\right)$ for all $z \in \bar{D}$ and $\alpha \in \mathbb{N}^{d}$.

### 1.2. The regularized problem

Extending the approach proposed in [1] for a second order one-dimensional linear stochastic parabolic equation with additive space-time white noise, we construct below an approximate initial and boundary value problem:

For $N_{\star}, J_{\star} \in \mathbb{N}$, define the mesh-lengths $\Delta t:=\frac{T}{N_{\star}}, \Delta x:=\frac{1}{J_{\star}}$, and the nodes $t_{n}:=n \Delta t$ for $n=0, \ldots, N_{\star}$ and $x_{j}:=j \Delta x$ for $j=0, \ldots, J_{\star}$. Then, we define the sets $\mathcal{N}_{\star}:=\left\{1, \ldots, N_{\star}\right\}$, $\mathcal{J}_{\star}:=\left\{1, \ldots, J_{\star}\right\}, T_{n}:=\left(t_{n-1}, t_{n}\right)$ for $n \in \mathcal{N}_{\star}, D_{j}:=\left(x_{j-1}, x_{j}\right)$ for $j \in \mathcal{J}_{\star}, D_{\mu}:=\prod_{i=1}^{d} D_{\mu_{i}}$ for $\mu \in \mathcal{J}_{\star}^{d}$, and $S_{n, \mu}:=T_{n} \times D_{\mu}$ for $n \in \mathcal{N}_{\star}$ and $\mu \in \mathcal{J}_{\star}^{d}$. Next, consider the fourth-order linear stochastic parabolic problem:

$$
\begin{gather*}
\partial_{t} \widehat{u}+\Delta^{2} \widehat{u}=\widehat{W} \quad \text { in } \quad(0, T] \times D \\
\left.\Delta^{m} \widehat{u}(t, \cdot)\right|_{\partial D}=0 \quad \forall t \in(0, T], \quad m=0,1  \tag{1.5}\\
\widehat{u}(0, x)=0 \quad \forall x \in D
\end{gather*}
$$

a.e. in $\Omega$, where

$$
\begin{gathered}
\widehat{W}(t, x):=\frac{1}{\Delta t(\Delta x)^{d}} \sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}} \mathcal{X}_{S_{n, \mu}}(t, x) R^{n, \mu} \quad \forall(t, x) \in[0, T] \times \bar{D} \\
R^{n, \mu}:=\int_{S_{n, \mu}} 1 d W \quad, \forall n \in \mathcal{N}_{\star}, \quad \forall \mu \in \mathcal{J}_{\star}^{d},
\end{gathered}
$$

and $\mathcal{X}_{S}$ is the index function of $S \subset[0, T] \times \bar{D}$.
The solution of the problem (1.5), according to the standard theory for parabolic problems (see, e.g, [22]), has the integral representation

$$
\begin{equation*}
\widehat{u}(t, x)=\int_{0}^{t} \int_{D} G(t-s ; x, y) \widehat{W}(s, y) d s d y \quad \forall(t, x) \in[0, T] \times \bar{D} \tag{1.6}
\end{equation*}
$$

Remark 1. The properties of the stochastic integral (see, e.g., [27), yield that $R^{n, \mu} \sim \mathcal{N}\left(0, \Delta t(\Delta x)^{d}\right)$ for all $(n, \mu) \in \mathcal{N}_{\star} \times \mathcal{J}_{\star}^{d}$. Also, we observe that $\mathbb{E}\left[R^{n, \mu} R^{n^{\prime}, \mu^{\prime}}\right]=0$ for $(n, \mu) \neq\left(n^{\prime}, \mu^{\prime}\right)$. Thus, the random variables $\left(R^{n, \mu}\right)_{(n, \mu) \in \mathcal{N}_{\star} \times \mathcal{J}_{\star}^{d}}$ are independent.

### 1.3. The numerical approximations

In order to construct fully-discrete approximations to $\widehat{u}$, we let $M \in \mathbb{N},\left(\tau_{m}\right)_{m=0}^{M}$ be the nodes of a uniform partition of $[0, T]$ with stepsize $\Delta \tau$, i.e. $\tau_{m}:=m \Delta \tau$ for $m=0, \ldots, M$, and define $\Delta_{m}:=$ $\left(\tau_{m-1}, \tau_{m}\right)$ for $m=1, \ldots, M$. Also, we let $M_{h} \subset H_{0}^{1}(D) \cap H^{2}(D)$ be a finite element space consisting of functions which are piecewise polynomials over a partition of $D$ in triangles or rectangulars with maximum diameter $h$, and define a discrete biharmonic operator $B_{h}: M_{h} \rightarrow M_{h}$ by

$$
\int_{D} B_{h} \varphi \chi d x=\int_{D} \Delta \varphi \Delta \chi d x, \quad \forall \varphi, \chi \in M_{h}
$$

and the usual $L^{2}(D)$-projection operator $P_{h}: L^{2}(D) \rightarrow M_{h}$ by

$$
\int_{D} P_{h} f \chi d x=\int_{D} f \chi d x, \quad \forall \chi \in M_{h}, \quad \forall f \in L^{2}(D)
$$

The approximations to $\widehat{u}$ we consider follow by employing the Backward Euler finite element method which begins by setting

$$
\begin{equation*}
\widehat{U}_{h}^{0}:=0 \tag{1.7}
\end{equation*}
$$

and, then for $m=1, \ldots, M$, finds $\widehat{U}_{h}^{m} \in M_{h}$ such that

$$
\begin{equation*}
\widehat{U}_{h}^{m}-\widehat{U}_{h}^{m-1}+\Delta \tau B_{h} \widehat{U}_{h}^{m}=\int_{\Delta_{m}} P_{h} \widehat{W} d s \tag{1.8}
\end{equation*}
$$

### 1.4. Main results of the paper

In the rest of the paper we investigate the convergence of the fully discrete approximations to the solution $\widehat{u}$ of 1.5 to the mild solution $u$ of (1.1). That error of approximating $u$ splits in two parts: the modeling error which is the error of approximating $u$ by $\widehat{u}$, and the numerical approximation error which is the error of approximating $\widehat{u}$ by the numerical method defined in (1.7)- 1.8 ).

An $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ estimate of the modeling error is achieved, in Theorem 5, by obtaining the bound

$$
\max _{t \in[0, T]}\left\{\int_{\Omega}\left(\int_{D}|u(t, x)-\widehat{u}(t, x)|^{2} d x\right) d P\right\}^{\frac{1}{2}} \leq C\left[\epsilon^{-\frac{1}{2}} \Delta x^{\frac{4-d}{2}-\epsilon}+\Delta t^{\frac{4-d}{8}}\right], \quad \forall \epsilon \in\left(0, \frac{4-d}{2}\right]
$$

without imposing conditions on $\Delta t$ and $\Delta x$ as happens in 1] and 2]. For the numerical approximation error, we derive, in Theorem 11, the following discrete in time $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ estimate:

$$
\begin{equation*}
\max _{0 \leq m \leq M}\left\{\int_{\Omega}\left(\int_{D}\left|\widehat{U}_{h}^{m}(x)-\widehat{u}\left(\tau_{m}, x\right)\right|^{2} d x\right) d P\right\}^{\frac{1}{2}} \leq C\left[\epsilon_{1}^{-\frac{1}{2}} \Delta \tau^{\frac{4-d}{8}-\epsilon_{1}}+\epsilon_{2}^{-\frac{1}{2}} h^{\nu_{\star}-\epsilon_{2}}\right] \tag{1.9}
\end{equation*}
$$

for $\epsilon_{1} \in\left(0, \frac{4-d}{8}\right]$ and $\epsilon_{2} \in\left(0, \nu_{\star}\right]$, where $\nu_{\star}=\nu_{\star}(r, d)$ is given in 5.26$)$ and depends on the space dimension $d$ and a parameter $r \in\{2,3,4\}$ which is related to the approximation properties of the finite element spaces $M_{h}$ (see 2.19). To get the estimate 1.9 , first we introduce the Backward-Euler time-discrete approximations of $\widehat{u}$ and analyze their convergence in the discrete in time $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ norm above (see Theorem 7 ); then, we derive an estimate for the error of approximating the Backward-Euler time-discrete approximations of $\widehat{u}$ by the Backward-Euler fully-discrete approximation of $\widehat{u}$ (see Proposition 10). This procedure allows us to estimate separately the space and the time discretization error in constrast to the technique used in [26] and [2] for second order problems.

For approximation methods for fourth-order stochastic parabolic problems driven by a space-time white noise, we refer the reader: to [4] which considers a finite difference method for the stochastic Cahn-Hilliard equation, and to [24], [14] and [15] which consider time-stepping methods for a wide family of evolution problems that includes (1.1), while the finite element method is not among the spacediscretization techniques considered in [14] and [15]. Our previous paper [20] analyzes Backward Euler finite element approximations for the 1D space dimensional case where the space regularity of the solution
is higher and thus a different regularized problem is proposed as a basis for developing the numerical method. We also refer to [21] for the analysis of a Backward Euler finite element method for problem 1.1], where the biharmonic operator $\Delta^{2}$ is discretized by $\Delta_{h}^{2}, \Delta_{h}$ being the discrete Laplacian operator (see, e.g., [25]). In the present paper we use the discrete operator $B_{h}$ for the discretization of the biharmonic operator which is different from $\Delta_{h}^{2}$. Also, we refer the reader to [8], [1], 18, [26, [28] and [2] for the analysis of the finite element method for second order stochastic parabolic problems.

We close the section by an overview of the paper. Section 2 introduces notation, and recalls or prove several results often used in the paper. Section 3 is dedicated to the estimation of the modeling error. Section 4 defines the Backward Euler time-discrete approximations of $\widehat{u}$ and analyzes its convergence. Section 5 contains the error analysis for the Backward Euler fully-discrete approximations of $\widehat{u}$.

## 2. Notation and preliminaries

### 2.1. Function spaces and operators

We denote by $L^{2}(D)$ the space of the Lebesgue measurable functions which are square integrable on $D$ with respect to Lebesgue's measure $d x$, provided with the standard norm $\|g\|_{0, D}:=\left\{\int_{D}|g(x)|^{2} d x\right\}^{\frac{1}{2}}$ for $g \in L^{2}(D)$. The standard inner product in $L^{2}(D)$ that produces the norm $\|\cdot\|_{0, D}$ is written as $(\cdot, \cdot)_{0, D}$, i.e., $\left(g_{1}, g_{2}\right)_{0, D}:=\int_{D} g_{1}(x) g_{2}(x) d x$ for $g_{1}, g_{2} \in L^{2}(D)$. For $s \in \mathbb{N}_{0}, H^{s}(D)$ will be the Sobolev space of functions having generalized derivatives up to order $s$ in the space $L^{2}(D)$, and by $\|\cdot\|_{s, D}$ its usual norm, i.e. $\|g\|_{s, D}:=\left\{\sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha|_{\mathbb{N}^{d}} \leq s}\left\|\partial_{x}^{\alpha} g\right\|_{0, D}^{2}\right\}^{\frac{1}{2}}$ for $g \in H^{s}(D)$. Also, by $H_{0}^{1}(D)$ we denote the subspace of $H^{1}(D)$ consisting of functions which vanish at the boundary $\partial D$ of $D$ in the sense of trace. We note that in $H_{0}^{1}(D)$ the, well-known, Poincaré-Friedrichs inequality holds, i.e.,

$$
\begin{equation*}
\|g\|_{0, D} \leq C_{P F}\|\nabla g\|_{0, D} \quad \forall g \in H_{0}^{1}(D) \tag{2.1}
\end{equation*}
$$

where $\|\nabla v\|_{0, D}:=\left(\sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha|_{\mathbb{N}^{d}}=1}\left\|\partial_{x}^{\alpha} v\right\|_{0, D}^{2}\right)^{\frac{1}{2}}$ for $v \in H^{1}(D)$.
The sequence of pairs $\left\{\left(\lambda_{\alpha}, \varepsilon_{\alpha}\right)\right\}_{\alpha \in \mathbb{N}^{d}}$ is a solution to the eigenvalue/eigenfunction problem: find nonzero $\varphi \in H^{2}(D) \cap H_{0}^{1}(D)$ and $\sigma \in \mathbb{R}$ such that $-\Delta \varphi=\sigma \varphi$ in $D$. Since $\left(\varepsilon_{\alpha}\right)_{\alpha \in \mathbb{N}^{d}}$ is a complete $(\cdot, \cdot)_{0, D}$-orthonormal system in $L^{2}(D)$, for $s \in \mathbb{R}$, a subspace $\dot{\mathbf{H}}^{s}(D)$ of $L^{2}(D)$ (see [25]) is defined by

$$
\dot{\mathbf{H}}^{s}(D):=\left\{v \in L^{2}(D): \quad \sum_{\alpha \in \mathbb{N}^{d}} \lambda_{\alpha}^{s}\left(v, \varepsilon_{\alpha}\right)_{0, D}^{2}<\infty\right\}
$$

and provided with the norm $\|v\|_{\dot{\mathbf{H}}^{s}}:=\left(\sum_{\alpha \in \mathbb{N}^{d}} \lambda_{\alpha}^{s}\left(v, \varepsilon_{\alpha}\right)_{0, D}^{2}\right)^{\frac{1}{2}} \quad \forall v \in \dot{\mathbf{H}}^{s}(D)$. Let $m \in \mathbb{N}_{0}$. It is wellknown (see [25]) that

$$
\begin{equation*}
\dot{\mathbf{H}}^{m}(D)=\left\{v \in H^{m}(D):\left.\quad \Delta^{i} v\right|_{\partial D}=0 \quad \text { if } \quad 0 \leq i<\frac{m}{2}\right\} \tag{2.2}
\end{equation*}
$$

and there exist constants $C_{m, A}$ and $C_{m, B}$ such that

$$
\begin{equation*}
C_{m, A}\|v\|_{m, D} \leq\|v\|_{\dot{\mathbf{H}}^{m}} \leq C_{m, B}\|v\|_{m, D} \quad \forall v \in \dot{\mathbf{H}}^{m}(D) \tag{2.3}
\end{equation*}
$$

Also, we define on $L^{2}(D)$ the negative norm $\|\cdot\|_{-m, D}$ by

$$
\|v\|_{-m, D}:=\sup \left\{\frac{(v, \varphi)_{0, D}}{\|\varphi\|_{m, D}}: \quad \varphi \in \dot{\mathbf{H}}^{m}(D) \text { and } \varphi \neq 0\right\} \quad \forall v \in L^{2}(D)
$$

for which, using (2.3), it is easy to conclude that there exists a constant $C_{-m}>0$ such that

$$
\begin{equation*}
\|v\|_{-m, D} \leq C_{-m}\|v\|_{\dot{\mathbf{H}}^{-m}} \quad \forall v \in L^{2}(D) \tag{2.4}
\end{equation*}
$$

Let $\mathbb{L}_{2}=\left(L^{2}(D),(\cdot, \cdot)_{0, D}\right)$ and $\mathcal{L}\left(\mathbb{L}_{2}\right)$ be the space of linear, bounded operators from $\mathbb{L}_{2}$ to $\mathbb{L}_{2}$. We say that, an operator $\Gamma \in \mathcal{L}\left(\mathbb{L}_{2}\right)$ is Hilbert-Schmidt, when $\|\Gamma\|_{\text {HS }}:=\left(\sum_{k=1}^{\infty}\left\|\Gamma \varepsilon_{k}\right\|_{0, D}^{2}\right)^{\frac{1}{2}}<+\infty$, where $\|\Gamma\|_{\text {HS }}$ is the so called Hilbert-Schmidt norm of $\Gamma$. We note that the quantity $\|\Gamma\|_{\text {HS }}$ does not change when we replace $\left(\varepsilon_{k}\right)_{k=1}^{\infty}$ by another complete orthonormal system of $\mathbb{L}_{2}$. It is well known (see, e.g., [11]) that an operator $\Gamma \in \mathcal{L}\left(\mathbb{L}_{2}\right)$ is Hilbert-Schmidt iff there exists a measurable function $g: D \times D \rightarrow \mathbb{R}$ such that $\Gamma[v](\cdot)=\int_{D} g(\cdot, y) v(y) d y$ for $v \in L^{2}(D)$, and then, it holds that

$$
\begin{equation*}
\|\Gamma\|_{\mathrm{HS}}=\left(\int_{D} \int_{D} g^{2}(x, y) d x d y\right)^{\frac{1}{2}} \tag{2.5}
\end{equation*}
$$

Let $\mathcal{L}_{\mathrm{HS}}\left(\mathbb{L}_{2}\right)$ be the set of Hilbert Schmidt operators of $\mathcal{L}\left(\mathbb{L}^{2}\right)$ and $\Phi:[0, T] \rightarrow \mathcal{L}_{\mathrm{HS}}\left(\mathbb{L}_{2}\right)$. Also, for a random variable $X$, let $\mathbb{E}[X]$ be its expected value, i.e., $\mathbb{E}[X]:=\int_{\Omega} X d P$. Then, the Itô isometry property for stochastic integrals, which we will use often in the paper, reads

$$
\begin{equation*}
\mathbb{E}\left[\left\|\int_{0}^{T} \Phi d W\right\|_{0, D}^{2}\right]=\int_{0}^{T}\|\Phi(t)\|_{\mathrm{HS}}^{2} d t \tag{2.6}
\end{equation*}
$$

For later use, we introduce the projection operator $\widehat{\Pi}: L^{2}((0, T) \times D) \rightarrow L^{2}((0, T) \times D)$ defined by

$$
\begin{equation*}
\left.\widehat{\Pi}(g ; \cdot)\right|_{S_{n, \mu}}:=\frac{1}{\Delta t \Delta x^{d}} \int_{S_{n, \mu}} g(t, x) d t d x, \quad \forall n \in \mathcal{N}_{\star}, \quad \forall \mu \in \mathcal{J}_{\star}^{d} \tag{2.7}
\end{equation*}
$$

for $g \in L^{2}((0, T) \times D)$, which obviously satisfies that

$$
\begin{equation*}
\left(\int_{0}^{T} \int_{D}(\widehat{\Pi} g)^{2} d x d t\right)^{\frac{1}{2}} \leq\left(\int_{0}^{T} \int_{D} g^{2} d x d t\right)^{\frac{1}{2}} \quad \forall g \in L^{2}((0, T) \times D) \tag{2.8}
\end{equation*}
$$

and has the following property:
Lemma 1. For $g \in L^{2}((0, T) \times D)$, it holds that

$$
\begin{equation*}
\int_{0}^{T} \int_{D} \widehat{\Pi}(g ; s, y) d W(s, y)=\int_{0}^{T} \int_{D} \widehat{W}(t, x) g(t, x) d t d x \tag{2.9}
\end{equation*}
$$

Proof. To obtain (2.9 we work, using 2.7) and the properties of $W$, as follows:

$$
\begin{aligned}
\int_{0}^{T} \int_{D} \widehat{\Pi}(g ; s, y) d W(s, y) & =\frac{1}{\Delta t(\Delta x)^{d}} \sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}^{d}}\left(\int_{S_{n, \mu}} g d t d x\right)\left(\int_{0}^{T} \int_{D} \mathcal{X}_{S_{n, \mu}}(s, y) d W(s, y)\right) \\
& =\frac{1}{\Delta t(\Delta x)^{d}} \sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}^{d}}\left(\int_{S_{n, \mu}} g(t, x) d t d x\right) R^{n, \mu} \\
& =\frac{1}{\Delta t(\Delta x)^{d}} \sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}^{d}} \int_{0}^{T} \int_{D} g(t, x) \mathcal{X}_{S_{n, \mu}}(t, x) R^{n, \mu} d t d x \\
& =\int_{0}^{T} \int_{D} g(t, x) \widehat{W}(t, x) d t d x .
\end{aligned}
$$

We close this section, by stating some asymptotic bounds for series that will often appear in the rest of the paper and for a proof of them we refer the reader to [19].
Lemma 2. Let $d \in\{1,2,3\}$ and $c_{\star}>0$. Then, there exists a constant $C>0$ that depends on $c_{\star}$ and $d$, such that

$$
\begin{equation*}
\sum_{\alpha \in \mathbb{N}^{d}}|\alpha|_{\mathbb{N}^{d}}^{-\left(d+c_{\star} \epsilon\right)} \leq C \epsilon^{-1} \quad \forall \epsilon \in(0,2] \tag{2.10}
\end{equation*}
$$

Lemma 3. Let $d \in\{2,3\}$ and $\delta>0$. Then there exists a constant $C>0$ which is independent of $\delta$, such that

$$
\begin{equation*}
\sum_{\alpha \in \mathbb{N}^{d}} \frac{1-e^{-\lambda_{\alpha}^{2} \delta}}{\lambda_{\alpha}^{2}} \leq C p_{d}\left(\delta^{\frac{1}{4}}\right) \delta^{\frac{4-d}{4}} \tag{2.11}
\end{equation*}
$$

where $p_{d}(s):=1+\sum_{i=1}^{d} s^{i}$.

### 2.2. Linear elliptic and parabolic operators

For given $f \in L^{2}(D)$ let $v_{E} \in H^{2}(D) \cap H_{0}^{1}(D)$ be the solution of the boundary value problem

$$
\begin{equation*}
\Delta v_{E}=f \quad \text { in } D \tag{2.12}
\end{equation*}
$$

and $T_{E}: L^{2}(D) \rightarrow H^{2}(D) \cap H_{0}^{1}(D)$ be its solution operator, i.e. $T_{E} f:=v_{E}$, which has the property

$$
\begin{equation*}
\left\|T_{E} f\right\|_{m, D} \leq C_{E, m}\|f\|_{m-2, D}, \quad \forall f \in H^{\max \{0, m-2\}}(D), \quad \forall m \in \mathbb{N}_{0} \tag{2.13}
\end{equation*}
$$

Also, for $f \in L^{2}(D)$ let $v_{B} \in H^{4}(D)$ be the solution of the following biharmonic boundary value problem

$$
\begin{align*}
\Delta^{2} v_{B} & =f \quad \text { in } D \\
\left.\Delta^{m} v_{B}\right|_{\partial D} & =0, \quad m=0,1 \tag{2.14}
\end{align*}
$$

and $T_{B}: L^{2}(D) \rightarrow \dot{\mathbf{H}}^{4}(D)$ be the solution operator of 2.14 , i.e. $T_{B} f:=v_{B}$, which satisfies

$$
\begin{equation*}
\left\|T_{B} f\right\|_{m, D} \leq C_{B, m}\|f\|_{m-4, D}, \quad \forall f \in H^{\max \{0, m-4\}}(D), \quad \forall m \in \mathbb{N}_{0} \tag{2.15}
\end{equation*}
$$

Due to the type of boundary conditions of 2.14 , we conclude that

$$
\begin{equation*}
T_{B} f=T_{E}^{2} f, \quad \forall f \in L^{2}(D) \tag{2.16}
\end{equation*}
$$

which, easily, yields

$$
\begin{equation*}
\left(T_{B} v_{1}, v_{2}\right)_{0, D}=\left(T_{E} v_{1}, T_{E} v_{2}\right)_{0, D} \quad \forall v_{1}, v_{2} \in L^{2}(D) \tag{2.17}
\end{equation*}
$$

Letting $\left(\mathcal{S}(t) w_{0}\right)_{t \in[0, T]}$ be the standard semigroup notation for the solution $w$ of (1.3), we can easily establish the following property (see, e.g., [25], [23]): for $\ell \in \mathbb{N}_{0}, \beta, p \in \mathbb{R}_{0}^{+}$and $q \in[0, p+4 \ell]$ there exists a constant $C>0$ such that:

$$
\begin{equation*}
\int_{t_{a}}^{t_{b}}\left(t-t_{a}\right)^{\beta}\left\|\partial_{t}^{\ell} \mathcal{S}(t) w_{0}\right\|_{\dot{\mathbf{H}}^{p}}^{2} d t \leq C\left\|w_{0}\right\|_{\dot{\mathbf{H}}^{p+4 \ell-2 \beta-2}}^{2} \quad \forall t_{b}>t_{a} \geq 0, \quad \forall w_{0} \in \dot{\mathbf{H}}^{p+4 \ell-2 \beta-2}(D) \tag{2.18}
\end{equation*}
$$

### 2.3. Discrete spaces and operators

For $r \in\{2,3,4\}$, we consider a finite element space $M_{h} \subset H_{0}^{1}(D) \cap H^{2}(D)$ consisting of functions which are piecewise polynomials over a partition of $D$ in triangles or rectangles with maximum mesh-length $h$. We assume that the space $M_{h}$ has the following approximation property

$$
\begin{equation*}
\inf _{\chi \in M_{h}}\|v-\chi\|_{2, D} \leq C h^{r-1}\|v\|_{r+1, D} \quad \forall v \in H^{r+1}(D) \cap H_{0}^{1}(D) \tag{2.19}
\end{equation*}
$$

which covers several classes of $H^{2}$ finite element spaces, for example the tensor products of $C^{1}$ splines, the Argyris triangle elements, the Hsieh-Clough-Tocher triangle elements and the Bell triangle (cf. [7, [3]).

A finite element approximation $v_{B, h} \in M_{h}$ of the solution $v_{B}$ of 2.14 is defined by the requirement

$$
\begin{equation*}
B_{h} v_{B, h}=P_{h} f \tag{2.20}
\end{equation*}
$$

Then, we denote by $T_{B, h}: L^{2}(D) \rightarrow M_{h}$ the solution operator of 2.20), i.e. $T_{B, h} f:=v_{B, h}=B_{h}^{-1} P_{h} f$ for $f \in L^{2}(D)$, which satisfies that

$$
\begin{equation*}
\left(T_{B, h} f, g\right)_{0, D}=\left(\Delta T_{B, h} f, \Delta T_{B, h} g\right)_{0, D}=\left(f, T_{B, h} g\right)_{0, D} \quad \forall f, g \in L^{2}(D) \tag{2.21}
\end{equation*}
$$

Also, using 2.20, 2.14 and 2.15 we conclude that

$$
\begin{align*}
\left\|\Delta T_{B, h} f\right\|_{0, D} & \leq\left\|\Delta T_{B} f\right\|_{0, D} \\
& \leq C\|f\|_{-2, D} \quad \forall f \in L^{2}(D) . \tag{2.22}
\end{align*}
$$

Applying the standard theory of the finite element method (see, e.g., [7], [3]) and using (2.15), we get

$$
\begin{equation*}
\left\|\Delta\left(T_{B} f-T_{B, h} f\right)\right\|_{0, D} \leq C h^{r-1}\|f\|_{r-3, D}, \quad \forall f \in H^{\max \{r-3,0\}}(D) \tag{2.23}
\end{equation*}
$$

while error estimates in the $L^{2}(D)$ norm are obtained in the proposition below.
Proposition 4. Let $r \in\{2,3,4\}$. Then, it holds that:

$$
\left\|T_{B} f-T_{B, h} f\right\|_{0, D} \leq C\left\{\begin{array}{ll}
h^{5}\|f\|_{1, D}, & r=4  \tag{2.24}\\
h^{4}\|f\|_{0, D}, & r=3, \\
h^{2}\|f\|_{-1, D}, & r=2
\end{array} \quad \forall f \in H^{\max \{r-3,0\}}(D)\right.
$$

Proof. Let $f \in H^{\max \{0, r-3\}}(D)$ and $e=T_{B} f-T_{B, h} f$. Also, we define a bilinear form $\gamma: H^{2}(D) \times$ $H^{2}(D) \rightarrow \mathbb{R}$ by $\gamma\left(v_{1}, v_{2}\right):=\left(\Delta v_{1}, \Delta v_{2}\right)_{0, D}$ for $v_{1}, v_{2} \in H^{2}(D)$. Now, let $w_{A}, w_{B} \in \dot{\mathbf{H}}^{4}(D)$ be defined by $T_{B} \Delta e=w_{A}$ and $T_{B} e=w_{B}$. Then, using Galerkin orthogonality, we have:

$$
\begin{align*}
\|\nabla e\|_{0, D}^{2} & =-\gamma\left(w_{A}, e\right)_{0, D} \\
& \leq\|\Delta e\|_{0, D} \inf _{\chi \in M_{h}}\left\|w_{A}-\chi\right\|_{2, D} \tag{2.25}
\end{align*}
$$

and

$$
\begin{align*}
\|e\|_{0, D}^{2} & =\gamma\left(w_{B}, e\right)_{0, D} \\
& \leq\|\Delta e\|_{0, D} \inf _{\chi \in M_{h}}\left\|w_{B}-\chi\right\|_{2, D} \tag{2.26}
\end{align*}
$$

Case 1: Let $r \in\{2,3\}$. Then, using (2.26), 2.23), 2.19) and 2.22, we obtain

$$
\begin{aligned}
\|e\|_{0, D}^{2} & \leq C h^{r-1}\|f\|_{r-3, D} h^{r-1}\left\|w_{B}\right\|_{r+1, D} \\
& \leq C h^{2(r-1)}\|f\|_{r-3, D}\|e\|_{r-3, D}
\end{aligned}
$$

which, obviously, yields 2.24.
Case 2: Let $r=4$. Then, combining, 2.26, 2.19, 2.15 and 2.1, we get

$$
\begin{align*}
\|e\|_{0, D}^{2} & \leq C\|\Delta e\|_{0, D} h^{3}\left\|T_{B} e\right\|_{5, D} \\
& \leq C\|\Delta e\|_{0, D} h^{3}\|e\|_{1, D}  \tag{2.27}\\
& \leq C\|\Delta e\|_{0, D} h^{3}\|\nabla e\|_{0, D} .
\end{align*}
$$

Also, we observe that 2.25 and 2.15 yield

$$
\begin{align*}
\|\nabla e\|_{0, D} & \leq\|\Delta e\|_{0, D}^{\frac{1}{2}}\left\|\Delta\left(T_{B} \Delta e\right)\right\|_{0, D}^{\frac{1}{2}}  \tag{2.28}\\
& \leq\|\Delta e\|_{0, D}^{\frac{1}{2}}\|e\|_{0, D}^{\frac{1}{2}} .
\end{align*}
$$

Now, we combine 2.27, 2.28 and 2.23 to have

$$
\begin{aligned}
\|e\|_{0, D}^{\frac{3}{2}} & \leq C h^{3}\|\Delta e\|_{0, D}^{\frac{3}{2}} \\
& \leq C h^{\frac{15}{2}}\|f\|_{1, D}^{\frac{3}{2}}
\end{aligned}
$$

which obviously leads to 2.24 for $r=4$.

Remark 2. In the estimate 2.24 we observe that the order of convergence is equal to $r+1$ except in the case $r=2$. Note that this is not in contradiction to the results in 13] where only the case $r \geq 3$ is considered.

## 3. An estimate for the modeling error

Here, we derive an $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ bound for the modeling error $u-\widehat{u}$, in terms of $\Delta t$ and $\Delta x$.
Theorem 5. Let $u$ and $\widehat{u}$ be defined, respectively, by 1.2 and 1.6. Then, there exists a real constant $C>0$, independent of $T, \Delta t$ and $\Delta x$, such that

$$
\begin{equation*}
\max _{[0, T]}\left\{\mathbb{E}\left[\|u-\widehat{u}\|_{0, D}^{2}\right]\right\}^{\frac{1}{2}} \leq C\left[\left(p_{d}\left(\Delta t^{\frac{1}{4}}\right)\right)^{\frac{1}{2}} \Delta t^{\frac{4-d}{8}}+\epsilon^{-\frac{1}{2}} \Delta x^{\frac{4-d}{2}-\epsilon}\right] \quad \forall \epsilon \in\left(0, \frac{4-d}{2}\right] \tag{3.1}
\end{equation*}
$$

where $p_{d}$ is the polynomial defined in Lemma 3.
Proof. Using 1.2 and 1.6, we conclude that

$$
\begin{equation*}
u(t, x)-\widehat{u}(t, x)=\int_{0}^{T} \int_{D}\left[\mathcal{X}_{(0, t)}(s) G(t-s ; x, y)-\widetilde{G}(t, x ; s, y)\right] d W(s, y) \quad \forall(t, x) \in[0, T] \times \bar{D} \tag{3.2}
\end{equation*}
$$

where $\widetilde{G}:(0, T) \times D \rightarrow L^{2}((0, T) \times D)$ given by

$$
\begin{equation*}
\left.\widetilde{G}(t, x ; \cdot)\right|_{S_{n, \mu}} \equiv \frac{1}{\Delta t(\Delta x)^{d}} \int_{S_{n, \mu}} \mathcal{X}_{(0, t)}\left(s^{\prime}\right) G\left(t-s^{\prime} ; x, y^{\prime}\right) d s^{\prime} d y^{\prime} \tag{3.3}
\end{equation*}
$$

for $n \in \mathcal{N}_{\star}$ and $\mu \in \mathcal{J}_{\star}^{d}$.
Let $\Theta:=\left(\mathbb{E}\left[\|u-\widehat{u}\|_{0, D}^{2}\right]\right)^{\frac{1}{2}}$ and $t \in(0, T]$. Using (3.2), the Itô isometry (2.6) and 2.5), we obtain

$$
\Theta^{2}(t)=\int_{0}^{T}\left(\int_{D} \int_{D}\left[\mathcal{X}_{(0, t)}(s) G(t-s ; x, y)-\widetilde{G}(t, x ; s, y)\right]^{2} d x d y\right) d s
$$

from which, using (3.3), follows that

$$
\begin{aligned}
\Theta(t)=\frac{1}{\Delta t(\Delta x)^{d}}\left\{\sum _ { n \in \mathcal { N } _ { \star } } \sum _ { \mu \in \mathcal { J } _ { \star } ^ { d } } \int _ { D } \left\{\int_{S_{n, \mu}}\right.\right. & {\left[\int _ { S _ { n , \mu } } \left[\mathcal{X}_{(0, t)}(s) G(t-s ; x, y)\right.\right.} \\
& \left.\left.\left.\left.-\mathcal{X}_{(0, t)}\left(s^{\prime}\right) G\left(t-s^{\prime} ; x, y^{\prime}\right)\right] d s^{\prime} d y^{\prime}\right]^{2} d s d y\right\} d x\right\}^{\frac{1}{2}}
\end{aligned}
$$

Now, we introduce the splitting

$$
\begin{equation*}
\Theta(t) \leq \Theta_{A}(t)+\Theta_{B}(t) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Theta_{A}(t):=\frac{1}{\Delta t(\Delta x)^{d}}\left\{\sum _ { n \in \mathcal { N } _ { \star } } \sum _ { \mu \in \mathcal { J } _ { \star } ^ { d } } \int _ { D } \left\{\int _ { S _ { n , \mu } } \left[\int_{S_{n, \mu}} \mathcal{X}_{(0, t)}(s)[G(t-s ; x, y)\right.\right.\right. \\
&\left.\left.\left.\left.-G\left(t-s ; x, y^{\prime}\right)\right] d s^{\prime} d y^{\prime}\right]^{2} d s d y\right\} d x\right\}^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\Theta_{B}(t)=\frac{1}{\Delta t(\Delta x)^{d}}\left\{\sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}^{d}} \int_{D}\right. & \left\{\int _ { S _ { n , \mu } } \left[\int _ { S _ { n , \mu } } \left[\mathcal{X}_{(0, t)}(s) G\left(t-s ; x, y^{\prime}\right)\right.\right.\right. \\
& \left.\left.\left.\left.-\mathcal{X}_{(0, t)}\left(s^{\prime}\right) G\left(t-s^{\prime} ; x, y^{\prime}\right)\right] d s^{\prime} d y^{\prime}\right]^{2} d s d y\right\} d x\right\}^{\frac{1}{2}}
\end{aligned}
$$

Estimation of $\Theta_{A}(t)$ : Using (1.4) and the $(\cdot, \cdot)_{0, D}$-orthogonality of $\left(\varepsilon_{\alpha}\right)_{\alpha \in \mathbb{N}^{d}}$, we have

$$
\begin{aligned}
\Theta_{A}^{2}(t) & =\frac{1}{(\Delta x)^{2 d}} \sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}^{d}} \int_{D}\left\{\int_{S_{n, \mu}}\left[\int_{D_{\mu}} \mathcal{X}_{(0, t)}(s)\left[G(t-s ; x, y)-G\left(t-s ; x, y^{\prime}\right)\right] d y^{\prime}\right]^{2} d s d y\right\} d x \\
& =\frac{1}{(\Delta x)^{2 d}} \sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}^{d}}\left\{\int_{S_{n, \mu}}\left[\sum_{\alpha \in \mathbb{N}^{d}} \mathcal{X}_{(0, t)}(s) e^{-2 \lambda_{\alpha}^{2}(t-s)}\left(\int_{D_{\mu}}\left(\varepsilon_{\alpha}(y)-\varepsilon_{\alpha}\left(y^{\prime}\right)\right) d y^{\prime}\right)^{2}\right] d s d y\right\} \\
& =\frac{1}{(\Delta x)^{2 d}} \sum_{\alpha \in \mathbb{N}^{d}}\left\{\sum_{n \in \mathcal{N}_{\star}} \int_{T_{n}} \mathcal{X}_{(0, t)}(s) e^{-2 \lambda_{\alpha}^{2}(t-s)} d s\right\}\left\{\sum_{\mu \in \mathcal{J}_{\star}^{d}} \int_{D_{\mu}}\left(\int_{D_{\mu}}\left(\varepsilon_{\alpha}(y)-\varepsilon_{\alpha}\left(y^{\prime}\right)\right) d y^{\prime}\right)^{2} d y\right\} \\
& =\frac{1}{(\Delta x)^{2 d}} \sum_{\alpha \in \mathbb{N}^{d}}\left\{\int_{0}^{t} e^{-2 \lambda_{\alpha}^{2}(t-s)} d s\right\}\left\{\sum_{\mu \in \mathcal{J}_{\star}^{d}} \int_{D_{\mu}}\left(\int_{D_{\mu}}\left(\varepsilon_{\alpha}(y)-\varepsilon_{\alpha}\left(y^{\prime}\right)\right) d y^{\prime}\right)^{2} d y\right\}
\end{aligned}
$$

from which, using the Cauchy-Schwarz inequality, follows that

$$
\begin{equation*}
\Theta_{A}^{2}(t) \leq \sum_{\alpha \in \mathbb{N}^{d}}\left(\int_{0}^{t} e^{-2 \lambda_{\alpha}^{2}(t-s)} d s\right)\left[\frac{1}{(\Delta x)^{d}} \sum_{\mu \in \mathcal{J}_{\star}^{d}} \int_{D_{\mu} \times D_{\mu}}\left|\varepsilon_{\alpha}(y)-\varepsilon_{\alpha}\left(y^{\prime}\right)\right|^{2} d y^{\prime} d y\right] \tag{3.5}
\end{equation*}
$$

Observing that $\int_{0}^{t} e^{-2 \lambda_{\alpha}^{2}(t-s)} d s \leq \frac{1}{2} \lambda_{\alpha}^{-2}$ for $\alpha \in \mathbb{N}^{d}$, and that

$$
\begin{aligned}
\sup _{y, y^{\prime} \in D_{\mu}}\left|\varepsilon_{\alpha}(y)-\varepsilon_{\alpha}\left(y^{\prime}\right)\right| & \leq 2^{\frac{d}{2}+1} \min \left\{1, \frac{\pi}{2} d^{\frac{1}{2}} \Delta x|\alpha|_{\mathbb{N}^{d}}\right\} \\
& \leq 2^{\frac{d}{2}+1-\gamma} \pi^{\gamma} d^{\frac{\gamma}{2}} \Delta x^{\gamma}|\alpha|_{\mathbb{N}^{d}}^{\gamma}, \quad \forall \gamma \in[0,1], \quad \forall \alpha \in \mathbb{N}^{d}, \quad \forall \mu \in \mathcal{J}_{\star}^{d},
\end{aligned}
$$

(3.5) yields

$$
\begin{equation*}
\Theta_{A}^{2}(t) \leq 2^{d+1-2 \gamma} d^{\gamma} \pi^{2 \gamma-4}(\Delta x)^{2 \gamma} \sum_{\alpha \in \mathbb{N}^{d}} \frac{1}{|\alpha|_{\mathbb{N}^{d}}^{2(2-\gamma)}} \tag{3.6}
\end{equation*}
$$

The series in 3.6 converges when $2(2-\gamma)>d$ or equivalently $\gamma<\frac{4-d}{2}$. Thus, combining (3.6) and 2.10, we, finally, conclude that

$$
\begin{equation*}
\Theta_{A}(t) \leq C \epsilon^{-\frac{1}{2}} \Delta x^{\frac{4-d}{2}-\epsilon} \quad \forall \epsilon \in\left(0, \frac{4-d}{2}\right] \tag{3.7}
\end{equation*}
$$

Estimation of $\Theta_{B}(t)$ : For $t \in(0, T]$, let $\widehat{N}(t):=\min \left\{\ell \in \mathbb{N}: 1 \leq \ell \leq N_{\star}\right.$ and $\left.t \leq t_{\ell}\right\}$ and

$$
\widehat{T}_{n}(t):=T_{n} \cap(0, t)=\left\{\begin{array}{ll}
T_{n}, & \text { if } n<\widehat{N}(t) \\
\left(t_{\widehat{N}(t)-1}, t\right), & \text { if } n=\widehat{N}(t)
\end{array}, \quad n=1, \ldots, \widehat{N}(t)\right.
$$

Now, we use 1.4) and the $(\cdot, \cdot)_{0, D}$-orthogonality of $\left(\varepsilon_{\alpha}\right)_{\alpha \in \mathbb{N}^{d}}$ as follows

$$
\begin{aligned}
& \Theta_{B}^{2}(t)=\frac{(\Delta x)^{d}}{\left(\Delta t(\Delta x)^{d}\right)^{2}} \sum_{n \in \mathcal{N}_{\star}} \sum_{\mu \in \mathcal{J}_{\star}^{d}} \int_{D}\left\{\int _ { T _ { n } } \left[\int _ { S _ { n , \mu } } \left[\mathcal{X}_{(0, t)}(s) G\left(t-s ; x, y^{\prime}\right)\right.\right.\right. \\
&\left.\left.\left.-\mathcal{X}_{(0, t)}\left(s^{\prime}\right) G\left(t-s^{\prime} ; x, y^{\prime}\right)\right] d s^{\prime} d y^{\prime}\right]^{2} d s\right\} d x \\
&=\frac{(\Delta x)^{d}}{\left(\Delta t(\Delta x)^{d}\right)^{2}} \sum_{\alpha \in \mathbb{N}^{d}}\left[\sum_{\mu \in \mathcal{J}_{\star}^{d}}\left(\int_{D_{\mu}} \varepsilon_{\alpha}\left(y^{\prime}\right) d y^{\prime}\right)^{2}\right]\left[\sum _ { n = 1 } ^ { \widehat { N } ( t ) } \int _ { T _ { n } } \left(\int _ { T _ { n } } \left(\mathcal{X}_{(0, t)}(s) e^{-\lambda_{\alpha}^{2}(t-s)}\right.\right.\right. \\
&\left.\left.\left.-\mathcal{X}_{(0, t)}\left(s^{\prime}\right) e^{-\lambda_{\alpha}^{2}\left(t-s^{\prime}\right)}\right) d s^{\prime}\right)^{2} d s\right]
\end{aligned}
$$

which yields that

$$
\begin{equation*}
\Theta_{B}^{2}(t) \leq 2^{d} \sum_{\alpha \in \mathbb{N}^{d}}\left(\frac{1}{(\Delta t)^{2}} \sum_{n=1}^{\widehat{N}(t)} \Psi_{n}^{\alpha}(t)\right), \tag{3.8}
\end{equation*}
$$

where

$$
\Psi_{n}^{\alpha}(t):=\int_{T_{n}}\left(\int_{T_{n}}\left(\mathcal{X}_{(0, t)}(s) e^{-\lambda_{\alpha}^{2}(t-s)}-\mathcal{X}_{(0, t)}\left(s^{\prime}\right) e^{-\lambda_{\alpha}^{2}\left(t-s^{\prime}\right)}\right) d s^{\prime}\right)^{2} d s .
$$

Let $\alpha \in \mathbb{N}^{d}$ and $n \in\{1, \ldots, \widehat{N}(t)-1\}$. Then, we have

$$
\begin{aligned}
\Psi_{n}^{\alpha}(t) & =\int_{T_{n}}\left(\int_{T_{n}} \int_{s}^{s^{\prime}} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}\right)^{2} d s \\
& \leq \int_{T_{n}}\left(\int_{T_{n}} \int_{t_{n-1}}^{\max \left\{s^{\prime}, s\right\}} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}\right)^{2} d s \\
& \leq 2 \int_{T_{n}}\left(\int_{T_{n}} \int_{t_{n-1}}^{s^{\prime}} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}\right)^{2} d s+2 \int_{T_{n}}\left(\int_{T_{n}} \int_{t_{n-1}}^{s} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}\right)^{2} d s \\
& \leq 2 \Delta t\left(\int_{T_{n}} \int_{t_{n-1}}^{s^{\prime}} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}\right)^{2}+2(\Delta t)^{2} \int_{T_{n}}\left(\int_{t_{n-1}}^{s} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau\right)^{2} d s,
\end{aligned}
$$

from which, using the Cauchy-Schwarz inequality, follows that

$$
\Psi_{n}^{\alpha}(t) \leq 4(\Delta t)^{2} \int_{T_{n}}\left(\int_{t_{n-1}}^{s} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau\right)^{2} d s
$$

Now, observing that $\lambda_{\alpha}^{2} e^{\lambda_{\alpha}^{2}(\tau-t)}=\partial_{\tau}\left(e^{\lambda_{\alpha}^{2}(\tau-t)}\right)$, we obtain

$$
\begin{aligned}
\Psi_{n}^{\alpha}(t) & \leq 4(\Delta t)^{2} \int_{T_{n}}\left(e^{-\lambda_{\alpha}^{2}(t-s)}-e^{-\lambda_{\alpha}^{2}\left(t-t_{n-1}\right)}\right)^{2} d s \\
& \leq 4(\Delta t)^{2}\left(1-e^{-\lambda_{\alpha}^{2} \Delta t}\right)^{2} \int_{T_{n}} e^{-2 \lambda_{\alpha}^{2}(t-s)} d s \\
& \leq 2(\Delta t)^{2}\left(1-e^{-\lambda_{\alpha}^{2} \Delta t}\right)^{2} \frac{e^{-2 \lambda_{\alpha}^{2}\left(t-t_{n}\right)}-e^{-2 \lambda_{\alpha}^{2}\left(t-t_{n-1}\right)}}{\lambda_{\alpha}^{2}} .
\end{aligned}
$$

Thus, by summing with respect to $n$, we obtain

$$
\begin{equation*}
\frac{1}{(\Delta t)^{2}} \sum_{n=1}^{\widehat{N}(t)-1} \Psi_{n}^{\alpha}(t) \leq 2 \frac{\left(1-e^{-\lambda_{\alpha}^{2} \Delta t}\right)^{2}}{\lambda_{\alpha}^{2}} . \tag{3.9}
\end{equation*}
$$

Considering, now, the case $n=\widehat{N}(t)$, we have

$$
\begin{equation*}
\Psi_{\tilde{N}(t)}^{\alpha}(t)=\Psi_{A}^{\alpha}(t)+\Psi_{B}^{\alpha}(t) \tag{3.10}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Psi_{A}^{\alpha}(t):=\int_{t_{\widehat{N}(t)-1}}^{t}\left(\int_{t_{\widehat{N}(t)-1}}^{t} \int_{s^{\prime}}^{s} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}+\int_{t}^{t_{\widehat{N}(t)}} e^{-\lambda_{\alpha}^{2}(t-s)} d s^{\prime}\right)^{2} d s \\
& \Psi_{B}^{\alpha}(t):=\int_{t}^{t_{\widehat{N}(t)}}\left(\int_{t_{\widehat{N}(t)}-1}^{t} e^{-\lambda_{\alpha}^{2}\left(t-s^{\prime}\right)} d s^{\prime}\right)^{2} d s .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\Psi_{B}^{\alpha}(t) & \leq \frac{\Delta t}{\lambda_{\alpha}^{4}}\left[1-e^{-\lambda_{\alpha}^{2}\left(t-t_{\widehat{N}(t)-1}\right)}\right]^{2} \\
& \leq \frac{\Delta t}{\lambda_{\alpha}^{4}}\left(1-e^{-\lambda_{\alpha}^{2} \Delta t}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi_{A}^{\alpha}(t) & \leq \int_{t_{\widehat{N}(t)-1}}^{t}\left[\int_{t_{\widehat{N}(t)-1}}^{t} \int_{s^{\prime}}^{s} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}+\Delta t e^{-\lambda_{\alpha}^{2}(t-s)}\right]^{2} d s \\
& \leq 2 \int_{t_{\widehat{N}(t)-1}}^{t}\left[\int_{t_{\widehat{N}(t)-1}}^{t} \int_{s^{\prime}}^{s} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}\right]^{2} d s+\frac{(\Delta t)^{2}}{\lambda_{\alpha}^{2}}\left[1-e^{-2 \lambda_{\alpha}^{2}\left(t-t_{\widehat{N}(t)-1}\right)}\right] \\
& \leq 2 \int_{t_{\widehat{N}(t)-1}}^{t}\left[\int_{t_{\widehat{N}(t)-1}}^{t} \int_{t_{\widehat{N}(t)-1}^{m a x}\left\{s, s^{\prime}\right\}}^{\operatorname{man}} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau d s^{\prime}\right]^{2} d s+\frac{(\Delta t)^{2}}{\lambda_{\alpha}^{2}}\left(1-e^{-2 \lambda_{\alpha}^{2} \Delta t}\right) \\
& \leq 8(\Delta t)^{2} \int_{t_{\widehat{N}(t)-1}}^{t}\left[\int_{t_{\widehat{N}(t)-1}}^{s} \lambda_{\alpha}^{2} e^{-\lambda_{\alpha}^{2}(t-\tau)} d \tau\right]^{2} d s+\frac{(\Delta t)^{2}}{\lambda_{\alpha}^{2}}\left(1-e^{-2 \lambda_{\alpha}^{2} \Delta t}\right) \\
& \leq 8(\Delta t)^{2} \int_{t_{\widehat{N}(t)-1}}^{t}\left[e^{-\lambda_{\alpha}^{2}(t-s)}-e^{-\lambda_{\alpha}^{2}\left(t-t_{\widehat{N}(t)-1}\right)}\right]^{2} d s+\frac{(\Delta t)^{2}}{\lambda_{\alpha}^{2}}\left(1-e^{-2 \lambda_{\alpha}^{2} \Delta t}\right)
\end{aligned}
$$

which, along with (3.10), gives

$$
\Psi_{\widehat{N}(t)}^{\alpha} \leq 5 \frac{(\Delta t)^{2}}{\lambda_{\alpha}^{2}}\left(1-e^{-2 \lambda_{\alpha}^{2} \Delta t}\right)+\frac{\Delta t}{\lambda_{\alpha}^{4}}\left(1-e^{-\lambda_{\alpha}^{2} \Delta t}\right)^{2} .
$$

Since the mean value theorem yields: $1-e^{-\lambda_{\alpha}^{2} \Delta t} \leq \lambda_{\alpha}^{2} \Delta t$, the above inequality takes the form

$$
\begin{equation*}
\frac{1}{(\Delta t)^{2}} \Psi_{\bar{N}(t)}^{\alpha} \leq 6 \frac{1-e^{-2 \lambda_{\alpha}^{2} \Delta t}}{\lambda_{\alpha}^{2}} \tag{3.11}
\end{equation*}
$$

Combining (3.8), 3.9 and (3.11 we obtain

$$
\begin{equation*}
\Theta_{B}^{2}(t) \leq 8 \sum_{\alpha \in \mathbb{N}^{d}} \frac{1-e^{-2 \lambda_{\alpha}^{2} \Delta t}}{\lambda_{\alpha}^{2}} \tag{3.12}
\end{equation*}
$$

Now, combine (3.12 and 2.11 to arrive at

$$
\begin{equation*}
\Theta_{B}(t) \leq C\left(p_{d}\left(\Delta t^{\frac{1}{4}}\right)\right)^{\frac{1}{2}} \Delta t^{\frac{4-d}{8}} \tag{3.13}
\end{equation*}
$$

The error bound (3.1) follows by observing that $\Theta(0)=0$ and combining the bounds (3.4), 3.7) and (3.13).

## 4. Time-discrete approximations

The Backward Euler time-discrete approximations to the solution $\widehat{u}\left(\tau_{m}, \cdot\right)$ of the problem 1.5 are defined as follows: first, set

$$
\begin{equation*}
\widehat{U}^{0}:=0 \tag{4.1}
\end{equation*}
$$

and then, for $m=1, \ldots, M$, find $\widehat{U}^{m} \in \dot{\mathbf{H}}^{4}(D)$ such that

$$
\begin{equation*}
\widehat{U}^{m}-\widehat{U}^{m-1}+\Delta \tau \Delta^{2} \widehat{U}^{m}=\int_{\Delta_{m}} \widehat{W} d s \quad \text { a.s.. } \tag{4.2}
\end{equation*}
$$

To develop an error estimate in a discrete in time $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ norm for the above time-discrete approximations, we need an error estimate in a discrete in time $L_{t}^{2}\left(L_{x}^{2}\right)$ norm for the Backward Euler time-discrete approximations, $\left(W^{m}\right)_{m=0}^{M}$, of the solution $w$ to the deterministic problem (1.3), specified by setting

$$
\begin{equation*}
W^{0}:=w_{0} \tag{4.3}
\end{equation*}
$$

and then, for $m=1, \ldots, M$, by finding $W^{m} \in \dot{\mathbf{H}}^{4}(D)$ such that

$$
\begin{equation*}
W^{m}-W^{m-1}+\Delta \tau \Delta^{2} W^{m}=0 \tag{4.4}
\end{equation*}
$$

Proposition 6. Let $\left(W^{m}\right)_{m=0}^{M}$ be the Backward Euler time-discrete approximations of the solution $w$ of the problem (1.3) defined in (4.3)-4.4. If $w_{0} \in \dot{\mathbf{H}}^{2}(D)$, then, there exists a constant $C>0$, independent of $T$ and $\Delta \tau$, such that

$$
\begin{equation*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|W^{m}-w\left(\tau_{m}, \cdot\right)\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \leq C(\Delta \tau)^{\theta}\left\|w_{0}\right\|_{\dot{\mathbf{H}}^{4 \theta-2}} \quad \forall \theta \in[0,1] \tag{4.5}
\end{equation*}
$$

Proof. It is analogous to the proof of Proposition 4.1 in [20], and thus is omitted.
Theorem 7. Let $\widehat{u}$ be the solution of (1.5) and $\left(\widehat{U}^{m}\right)_{m=0}^{M}$ be the Backward Euler time-discrete approximations specified in (4.1--4.2). Then there exists a constant $C>0$, independent of $T, \Delta t, \Delta x$ and $\Delta \tau$, such that

$$
\begin{equation*}
\max _{1 \leq m \leq M}\left\{\mathbb{E}\left[\left\|\widehat{U}^{m}-\widehat{u}\left(\tau_{m}, \cdot\right)\right\|_{0, D}^{2}\right]\right\}^{\frac{1}{2}} \leq C \widetilde{\omega}(\Delta \tau, \epsilon) \Delta \tau^{\frac{4-d}{8}-\epsilon}, \quad \forall \epsilon \in\left(0, \frac{4-d}{8}\right] \tag{4.6}
\end{equation*}
$$

where $\widetilde{\omega}(\Delta \tau, \epsilon):=\left[\epsilon^{-\frac{1}{2}}+(\Delta \tau)^{\epsilon}\left(p_{d}\left(\Delta \tau^{\frac{1}{4}}\right)\right)^{\frac{1}{2}}\right]$ and $p_{d}$ is the polynomial defined in Lemma 3 .
Proof. Let $I: L^{2}(D) \rightarrow L^{2}(D)$ be the identity operator, $\Lambda: L^{2}(D) \rightarrow \dot{\mathbf{H}}^{4}(D)$ be the inverse elliptic operator $\Lambda:=\left(I+\Delta \tau \Delta^{2}\right)^{-1}$ which has Green function $G_{\Lambda}(x, y)=\sum_{\alpha \in \mathbb{N}^{d}} \frac{\varepsilon_{\alpha}(x) \varepsilon_{\alpha}(y)}{1+\Delta \tau \lambda_{\alpha}^{2}}$, i.e. $\Lambda f(x)=$ $\int_{D} G_{\Lambda}(x, y) f(y) d y$ for $x \in \bar{D}$ and $f \in L^{2}(D)$. Obviously, $G_{\Lambda}(x, y)=G_{\Lambda}(y, x)$ for $x, y \in D$, and $G \in$ $L^{2}(D \times D)$. Also, for $m \in \mathbb{N}$, we denote by $G_{\Lambda, m}$ the Green function of $\Lambda^{m}$. Thus, from 4.2, using an induction argument, we conclude that $\widehat{U}^{m}=\sum_{j=1}^{m} \int_{\Delta_{j}} \Lambda^{m-j+1} \widehat{W}(\tau, \cdot) d \tau$ for $m=1, \ldots, M$, which is written, equivalently, as follows:

$$
\begin{equation*}
\widehat{U}^{m}(x)=\int_{0}^{\tau_{m}} \int_{D} \widehat{\mathcal{K}}_{m}(\tau ; x, y) \widehat{W}(\tau, y) d y d \tau \quad \forall x \in \bar{D}, \quad m=1, \ldots, M \tag{4.7}
\end{equation*}
$$

where $\widehat{\mathcal{K}}_{m}(\tau ; x, y):=\sum_{j=1}^{m} \mathcal{X}_{\Delta_{j}}(\tau) G_{\Lambda, m-j+1}(x, y) \quad \forall \tau \in[0, T], \quad \forall x, y \in D$.
Let $m \in\{1, \ldots, M\}$ and $\mathcal{E}^{m}:=\mathbb{E}\left[\left\|\widehat{U}^{m}-\widehat{u}\left(\tau_{m}, \cdot\right)\right\|_{0, D}^{2}\right]$. First, we use (4.7), (1.6), (2.9), (2.6), 2.5) and 2.8 , to obtain

$$
\begin{align*}
\mathcal{E}^{m} & =\mathbb{E}\left[\int_{D}\left(\int_{0}^{T} \int_{D} \mathcal{X}_{\left(0, \tau_{m}\right)}(\tau)\left[\widehat{\mathcal{K}}_{m}(\tau ; x, y)-G\left(\tau_{m}-\tau ; x, y\right)\right] \widehat{W}(\tau, y) d y d \tau\right)^{2} d x\right] \\
& \leq \int_{0}^{\tau_{m}}\left(\int_{D} \int_{D}\left[\widehat{\mathcal{K}}_{m}(\tau ; x, y)-G\left(\tau_{m}-\tau ; x, y\right)\right]^{2} d y d x\right) d \tau \\
& \leq \sum_{\ell=1}^{m} \int_{\Delta_{\ell}}\left(\int_{D} \int_{D}\left[G_{\Lambda, m-\ell+1}(x, y)-G\left(\tau_{m}-\tau ; x, y\right)\right]^{2} d y d x\right) d \tau  \tag{4.8}\\
& \leq \sum_{\ell=1}^{m} \int_{\Delta_{\ell}}\left\|\Lambda^{m-\ell+1}-\mathcal{S}\left(\tau_{m}-\tau\right)\right\|_{\mathrm{HS}}^{2} d \tau \\
& \leq \mathcal{B}_{A}^{m}+\mathcal{B}_{B}^{m}
\end{align*}
$$

where

$$
\begin{aligned}
\mathcal{B}_{A}^{m} & :=2 \sum_{\ell=1}^{m} \int_{\Delta_{\ell}}\left\|\Lambda^{m-\ell+1}-\mathcal{S}\left(\tau_{m}-\tau_{\ell-1}\right)\right\|_{\mathrm{HS}}^{2} d \tau \\
\mathcal{B}_{B}^{m} & :=2 \sum_{\ell=1}^{m} \int_{\Delta_{\ell}}\left\|\mathcal{S}\left(\tau_{m}-\tau_{\ell-1}\right)-\mathcal{S}\left(\tau_{m}-\tau\right)\right\|_{\mathrm{HS}}^{2} d \tau .
\end{aligned}
$$

Estimation of $\mathcal{B}_{A}^{m}$ : By the definition of the Hilbert-Schmidt norm, we have

$$
\begin{aligned}
\mathcal{B}_{A}^{m} & \leq 2 \Delta \tau \sum_{\ell=1}^{m}\left(\sum_{\alpha \in \mathbb{N}^{d}}\left\|\Lambda^{m-\ell+1} \varepsilon_{\alpha}-\mathcal{S}\left(\tau_{m}-\tau_{\ell-1}\right) \varepsilon_{\alpha}\right\|_{0, D}^{2}\right) \\
& \leq 2 \sum_{\alpha \in \mathbb{N}^{d}}\left(\sum_{\ell=1}^{m} \Delta \tau\left\|\Lambda^{m-\ell+1} \varepsilon_{\alpha}-\mathcal{S}\left(\tau_{m}-\tau_{\ell-1}\right) \varepsilon_{\alpha}\right\|_{0, D}^{2}\right) \\
& \leq 2 \sum_{\alpha \in \mathbb{N}^{d}}\left(\sum_{\ell=1}^{m} \Delta \tau\left\|\Lambda^{\ell} \varepsilon_{\alpha}-\mathcal{S}\left(\tau_{\ell}\right) \varepsilon_{\alpha}\right\|_{0, D}^{2}\right) .
\end{aligned}
$$

Let $\theta \in\left[0, \frac{4-d}{8}\right)$ and $\epsilon=\frac{4-d}{8}-\theta$. Using the deterministic error estimate 4.5 and 2.10, we obtain

$$
\begin{align*}
\mathcal{B}_{A}^{m} & \leq C \Delta \tau^{2 \theta} \sum_{\alpha \in \mathbb{N}^{d}}\left\|\varepsilon_{\alpha}\right\|_{\mathbf{H}^{4 \theta-2}}^{2} \\
& \leq C \Delta \tau^{2 \theta} \sum_{\alpha \in \mathbb{N}^{d}} \lambda_{\alpha}^{4 \theta-2} \\
& \leq C \Delta \tau^{2 \theta} \sum_{\alpha \in \mathbb{N}^{d}} \frac{1}{|\alpha|_{\mathbb{N}^{d}}^{4(1-2 \theta)}}  \tag{4.9}\\
& \leq C \Delta \tau^{2 \theta} \sum_{\alpha \in \mathbb{N}^{d}} \frac{1}{|\alpha|_{\mathbb{N}^{d}}^{d+8 \epsilon}} \\
& \leq C \epsilon^{-1} \Delta \tau^{2\left(\frac{4-d}{8}-\epsilon\right)}
\end{align*}
$$

Estimation of $\mathcal{B}_{B}^{m}$ : Using, again, the definition of the Hilbert-Schmidt norm we have

$$
\begin{equation*}
\mathcal{B}_{B}^{m}=2 \sum_{\alpha \in \mathbb{N}^{d}}\left(\sum_{\ell=1}^{m} \int_{\Delta_{\ell}}\left\|\mathcal{S}\left(\tau_{m}-\tau_{\ell-1}\right) \varepsilon_{\alpha}-\mathcal{S}\left(\tau_{m}-\tau\right) \varepsilon_{\alpha}\right\|_{0, D}^{2} d \tau\right) \tag{4.10}
\end{equation*}
$$

Since $\mathcal{S}(t) \varepsilon_{\alpha}=e^{-\lambda_{\alpha}^{2} t} \varepsilon_{\alpha}$ for $t \geq 0$, 4.10 yields

$$
\begin{aligned}
\mathcal{B}_{B}^{m} & =2 \sum_{\alpha \in \mathbb{N}^{d}}\left[\sum_{\ell=1}^{m} \int_{\Delta_{\ell}}\left(\int_{D}\left[e^{-\lambda_{\alpha}^{2}\left(\tau_{m}-\tau_{\ell-1}\right)}-e^{-\lambda_{\alpha}^{2}\left(\tau_{m}-\tau\right)}\right]^{2} \varepsilon_{\alpha}^{2}(x) d x\right) d \tau\right] \\
& =2 \sum_{\alpha \in \mathbb{N}^{d}}\left[\sum_{\ell=1}^{m} \int_{\Delta_{\ell}} e^{-2 \lambda_{\alpha}^{2}\left(\tau_{m}-\tau\right)}\left[1-e^{-\lambda_{\alpha}^{2}\left(\tau-\tau_{\ell-1}\right)}\right]^{2} d \tau\right] \\
& \leq 2 \sum_{\alpha \in \mathbb{N}^{d}}\left(1-e^{-\lambda_{\alpha}^{2} \Delta \tau}\right)^{2}\left[\int_{0}^{\tau_{m}} e^{-2 \lambda_{\alpha}^{2}\left(\tau_{m}-\tau\right)} d \tau\right] \\
& \leq \sum_{\alpha \in \mathbb{N}^{d}} \frac{1-e^{-2 \lambda_{\alpha}^{2} \Delta \tau}}{\lambda_{\alpha}^{2}}
\end{aligned}
$$

from which, applying 2.11, we obtain

$$
\begin{equation*}
\mathcal{B}_{B}^{m} \leq C p_{d}\left(\Delta \tau^{\frac{1}{4}}\right) \Delta \tau^{\frac{4-d}{4}} \tag{4.11}
\end{equation*}
$$

Thus, we obtain the estimate (4.6) as a conclusion of (4.8, 4.9) and 4.11.

## 5. Convergence of the fully-discrete approximations

In this section, our goal is to derive a discrete in time $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ error estimate for the Backward Euler fully-discrete approximations of $\widehat{u}$ given in 1.7 - 1.8 . For that, we follow the way to compare them to the Backward Euler time-discrete approximations of $\widehat{u}$ defined in $(4.1)-(4.2)$, under the light of the error estimate obtained in Theorem 7

Our first step, is to derive a discrete in time $L_{t}^{2}\left(L_{x}^{2}\right)$ error estimate between the Backward Euler timediscrete and the Backward Euler fully discrete approximations of the solution $w$ of 1.3 given below: Set

$$
\begin{equation*}
W_{h}^{0}:=P_{h} w_{0} \tag{5.1}
\end{equation*}
$$

and then, for $m=1, \ldots, M$, find $W_{h}^{m} \in M_{h}$ such that

$$
\begin{equation*}
W_{h}^{m}-W_{h}^{m-1}+\Delta \tau B_{h} W_{h}^{m}=0 \tag{5.2}
\end{equation*}
$$

Proposition 8. Let $r \in\{2,3,4\}, w$ be the solution of the problem 1.3$),\left(W^{m}\right)_{m=0}^{M}$ be the Backward Euler time-discrete approximations of $w$ defined in (4.3)-4.4, and $\left(W_{h}^{m}\right)_{m=0}^{M}$ be the Backward Euler fully-discrete approximations of $w$ specified in 5.1)-(5.2). If $w_{0} \in \dot{\mathbf{H}}^{3}(D)$, then, there exists a constant $C>0$, independent of $T, h$ and $\Delta \tau$, such that

$$
\begin{equation*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|W^{m}-W_{h}^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \leq C h^{\nu(r, \theta)}\left\|w_{0}\right\|_{\dot{\mathbf{H}}}{ }^{\xi(r, \theta)} \quad \forall \theta \in[0,1], \tag{5.3}
\end{equation*}
$$

where

$$
\nu(r, \theta):=\left\{\begin{array}{ll}
2 \theta & \text { if } r=2  \tag{5.4}\\
4 \theta & \text { if } r=3 \\
5 \theta & \text { if } r=4
\end{array} \quad \text { and } \quad \xi(r, \theta):= \begin{cases}3 \theta-2 & \text { if } r=2 \\
4 \theta-2 & \text { if } r=3 \\
5 \theta-2 & \text { if } r=4\end{cases}\right.
$$

Proof. Let $E^{m}:=W^{m}-W_{h}^{m}$ for $m=0, \ldots, M$. We will get 5.3) by interpolation, showing it for $\theta=0$ and $\theta=1$.

We use (4.4) and (5.2), to obtain: $T_{B, h}\left(E^{m}-E^{m-1}\right)+\Delta \tau E^{m}=\Delta \tau\left(T_{B}-T_{B, h}\right) \Delta^{2} W^{m}$ for $m=$ $1, \ldots, M$. Taking the $L^{2}(D)$-inner product of both sides of the latter equation by $E^{m}$ and using 2.21, we arrive at

$$
\begin{align*}
\left\|\Delta\left(T_{B, h} E^{m}\right)\right\|_{0, D}^{2}- & \left(\Delta\left(T_{B, h} E^{m-1}\right), \Delta\left(T_{B, h} E^{m}\right)\right)_{0, D} \\
& +\Delta \tau\left\|E^{m}\right\|_{0, D}^{2}=\Delta \tau\left(\left(T_{B}-T_{B, h}\right) \Delta^{2} W^{m}, E^{m}\right)_{0, D} \tag{5.5}
\end{align*}
$$

for $m=1, \ldots, M$. Now, using the Cauchy-Schwartz inequality and the geometric mean inequality we obtain

$$
\begin{equation*}
-2\left(\Delta\left(T_{B, h} E^{m-1}\right), \Delta\left(T_{B, h} E^{m}\right)\right)_{0, D} \geq-\left(\left\|\Delta\left(T_{B, h} E^{m-1}\right)\right\|_{0, D}^{2}+\left\|\Delta\left(T_{B, h} E^{m}\right)\right\|_{0, D}^{2}\right) \tag{5.6}
\end{equation*}
$$

for $m=1, \ldots, M$. Next, we combine (5.5) and (5.6) to conclude

$$
\left\|\Delta\left(T_{B, h} E^{m}\right)\right\|_{0, D}^{2}-\left\|\Delta\left(T_{B, h} E^{m-1}\right)\right\|_{0, D}^{2}+2 \Delta \tau\left\|E^{m}\right\|_{0, D}^{2} \leq 2 \Delta \tau\left(\left(T_{B}-T_{B, h}\right) \Delta^{2} W^{m}, E^{m}\right)_{0, D}
$$

for $m=1, \ldots, M$. Summing with respect to $m$ from 1 up to $M$, applying the Cauchy-Schwarz inequality and using that $T_{B, h} E^{0}=0$, we obtain

$$
\begin{equation*}
\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2} \leq \sum_{m=1}^{M} \Delta \tau\left\|\left(T_{B}-T_{B, h}\right) \Delta^{2} W^{m}\right\|_{0, D}^{2} \tag{5.7}
\end{equation*}
$$

Let $r=3$. Then, by (2.24) and (5.7), we obtain

$$
\begin{equation*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \leq C h^{4}\left(\sum_{m=1}^{M} \Delta \tau\left\|\Delta^{2} W^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \tag{5.8}
\end{equation*}
$$

Taking the $(\cdot, \cdot)_{0, D}$-inner product of (4.4) with $\Delta^{2} W^{m}$, and then integrating by parts and summing with respect to $m$ from 1 up to $M$, it follows that

$$
\begin{equation*}
\sum_{m=1}^{M}\left(\Delta W^{m}-\Delta W^{m-1}, \Delta W^{m}\right)_{0, D}+\sum_{m=1}^{M} \Delta \tau\left\|\Delta^{2} W^{m}\right\|_{0, D}^{2}=0 \tag{5.9}
\end{equation*}
$$

Since $\sum_{m=1}^{M}\left(\Delta W^{m}-\Delta W^{m-1}, \Delta W^{m}\right)_{0, D} \geq \frac{1}{2}\left(\left\|\Delta W^{M}\right\|_{0, D}^{2}-\left\|\Delta W^{0}\right\|_{0, D}^{2}\right)$, 5.9. yields

$$
\begin{equation*}
\sum_{m=1}^{M} \Delta \tau\left\|\Delta^{2} W^{m}\right\|_{0, D}^{2} \leq \frac{1}{2}\left\|w_{0}\right\|_{2, D}^{2} \tag{5.10}
\end{equation*}
$$

Combining, now, 5.8, 5.10 and (2.3), we obtain

$$
\begin{equation*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \leq C h^{4}\left\|w_{0}\right\|_{\dot{\mathbf{H}}^{2}} \tag{5.11}
\end{equation*}
$$

Let $r=2$. Then, by (2.24), 2.4) and (5.7), we obtain

$$
\begin{align*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} & \leq C h^{2}\left(\sum_{m=1}^{M} \Delta \tau\left\|\Delta^{2} W^{m}\right\|_{\dot{H}^{-1}}^{2}\right)^{\frac{1}{2}} \\
& \leq C h^{2}\left[-\sum_{m=1}^{M} \Delta \tau\left(T_{E} \Delta^{2} W^{m}, \Delta^{2} W^{m}\right)_{0, D}\right]^{\frac{1}{2}}  \tag{5.12}\\
& \leq C h^{2}\left[-\sum_{m=1}^{M} \Delta \tau\left(\Delta W^{m}, \Delta^{2} W^{m}\right)_{0, D}\right]^{\frac{1}{2}}
\end{align*}
$$

Taking the $(\cdot, \cdot)_{0, D}$-inner product of (4.4) with $\Delta W^{m}$, integrating by parts and summing with respect to $m$ from 1 up to $M$, it follows that

$$
\begin{equation*}
\sum_{m=1}^{M}\left(\nabla W^{m}-\nabla W^{m-1}, \nabla W^{m}\right)_{0, D}-\sum_{m=1}^{M} \Delta \tau\left(\Delta^{2} W^{m}, \Delta W^{m}\right)_{0, D}=0 \tag{5.13}
\end{equation*}
$$

Since $\sum_{m=1}^{M}\left(\nabla W^{m}-\nabla W^{m-1}, \nabla W^{m}\right)_{0, D} \geq \frac{1}{2}\left[\left\|\nabla W^{M}\right\|_{0, D}^{2}-\left\|\nabla W^{0}\right\|_{0, D}^{2}\right]$, 5.13 yields

$$
\begin{equation*}
-\sum_{m=1}^{M} \Delta \tau\left(\Delta^{2} W^{m}, \Delta W^{m}\right)_{0, D} \leq \frac{1}{2}\left\|w_{0}\right\|_{1, D}^{2} \tag{5.14}
\end{equation*}
$$

Combining (5.12), 5.14 and 2.3) we get

$$
\begin{equation*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \leq C h^{2}\left\|w_{0}\right\|_{\dot{\mathbf{H}}^{1}} \tag{5.15}
\end{equation*}
$$

Let $r=4$. Then, observing that $\Delta^{2} W^{m} \in \dot{\mathbf{H}}^{2}(D)$ and using the relations (2.24, (2.4) and (5.7), we
obtain

$$
\begin{align*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} & \leq C h^{5}\left(\sum_{m=1}^{M} \Delta \tau\left\|\Delta^{2} W^{m}\right\|_{\dot{\mathbf{H}}^{1}}^{2}\right)^{\frac{1}{2}} \\
& \leq C h^{5}\left(\sum_{m=1}^{M} \Delta \tau\left\|\Delta^{3} W^{m}\right\|_{\dot{\mathbf{H}}^{-1}}^{2}\right)^{\frac{1}{2}} \\
& \leq C h^{5}\left[-\sum_{m=1}^{M} \Delta \tau\left(T_{E} \Delta^{3} W^{m}, \Delta^{3} W^{m}\right)_{0, D}\right]^{\frac{1}{2}}  \tag{5.16}\\
& \leq C h^{5}\left[-\sum_{m=1}^{M} \Delta \tau\left(\Delta^{2} W^{m}, \Delta^{3} W^{m}\right)_{0, D}\right]^{\frac{1}{2}}
\end{align*}
$$

After, applying the operator $\Delta$ on (4.4), take the $(\cdot, \cdot)_{0_{, D}}$-inner product of the obtained relation with $\Delta^{2} W^{m}$, integrate by parts and sum with respect to $m$ from 1 up to $M$, to get

$$
\begin{equation*}
-\sum_{m=1}^{M}\left(\Delta W^{m}-\Delta W^{m-1}, \Delta^{2} W^{m}\right)_{0, D}-\sum_{m=1}^{M} \Delta \tau\left(\Delta^{3} W^{m}, \Delta^{2} W^{m}\right)_{0, D}=0 \tag{5.17}
\end{equation*}
$$

Also, we have

$$
\begin{align*}
-\sum_{m=1}^{M}\left(\Delta W^{m}-\Delta W^{m-1}, \Delta^{2} W^{m}\right)_{0, D} & \geq \sum_{m=1}^{M}\left(\left\|\Delta W^{m}\right\|_{\dot{\mathbf{H}}^{1}}^{2}-\left\|\Delta W^{m}\right\|_{\dot{\mathbf{H}}^{1}}\left\|\Delta W^{m-1}\right\|_{\dot{\mathbf{H}}^{1}}\right) \\
& \geq \frac{1}{2} \sum_{m=1}^{M}\left(\left\|\Delta W^{m}\right\|_{\dot{\mathbf{H}}^{1}}^{2}-\left\|\Delta W^{m-1}\right\|_{\dot{\mathbf{H}}^{1}}^{2}\right)  \tag{5.18}\\
& \geq \frac{1}{2}\left(\left\|\Delta W^{M}\right\|_{\dot{\mathbf{H}}^{1}}^{2}-\left\|\Delta W^{0}\right\|_{\dot{\mathbf{H}}^{1}}\right)
\end{align*}
$$

Thus, (5.17) and 5.18 yield

$$
\begin{equation*}
-\sum_{m=1}^{M} \Delta \tau\left(\Delta^{3} W^{m}, \Delta^{2} W^{m}\right)_{0, D} \leq \frac{1}{2}\left\|w_{0}\right\|_{\dot{H}^{3}}^{2} \tag{5.19}
\end{equation*}
$$

Combining (5.16) and 5.19 we get

$$
\begin{equation*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \leq C h^{5}\left\|w_{0}\right\|_{\dot{\mathbf{H}}^{3}} . \tag{5.20}
\end{equation*}
$$

Thus, the relations (5.11), (5.15) and (5.20) yield (5.3) for $\theta=1$.
Since $T_{B, h}\left(W_{h}^{m}-W_{h}^{m-1}\right)+\Delta \tau W_{h}^{m}=0$ for $m=1, \ldots, M$, we obtain

$$
\frac{1}{2} \sum_{m=1}^{M}\left[\left\|\Delta\left(T_{B, h} W_{h}^{m}\right)\right\|_{0, D}^{2}-\left\|\Delta\left(T_{B, h} W_{h}^{m-1}\right)\right\|_{0, D}^{2}\right]+\sum_{m=1}^{M} \Delta \tau\left\|W_{h}^{m}\right\|_{0, D}^{2} \leq 0
$$

which, along with 2.22 and $(2.4$, yields

$$
\begin{align*}
\left(\sum_{m=1}^{M} \Delta \tau\left\|W_{h}^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} & \leq \frac{1}{\sqrt{2}}\left\|\Delta\left(T_{B, h} w_{0}\right)\right\|_{0, D}  \tag{5.21}\\
& \leq C\left\|w_{0}\right\|_{\dot{\mathrm{H}}^{-2}}
\end{align*}
$$

Now, using (4.4) and 2.17), we obtain $\left(T_{E} W^{m}-T_{E} W^{m-1}, T_{E} W^{m}\right)_{0, D}+\Delta \tau\left\|W^{m}\right\|_{0, D}^{2}=0$ for $m=$ $1, \ldots, M$, which yields $\left\|T_{E} W^{m}\right\|_{0, D}^{2}-\left\|T_{E} W^{m-1}\right\|_{0, D}^{2}+2 \Delta \tau\left\|W^{m}\right\|_{0, D}^{2} \leq 0$ for $m=1, \ldots, M$. Then, summing with respect to $m$ from 1 up to $M$, and using (2.13) and (2.4) we obtain

$$
\begin{align*}
\left(\sum_{k=1}^{M} \Delta \tau\left\|W^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} & \leq \frac{1}{\sqrt{2}}\left\|T_{E} w^{0}\right\|_{0, D}  \tag{5.22}\\
& \leq C\left\|w_{0}\right\|_{-2, D} \\
& \leq C\left\|w_{0}\right\|_{\dot{H}^{-2}}
\end{align*}
$$

Finally, combine 5.21 with 5.22 to get $\left(\sum_{m=1}^{M} \Delta \tau\left\|E^{m}\right\|_{0, D}^{2}\right)^{\frac{1}{2}} \leq C\left\|w_{0}\right\|_{\dot{H}^{-2}}$, which is equivalent to (5.3) for $\theta=0$.

The following lemma ensures the existence of a continuous Green function for the solution operator of a discrete elliptic problem.
Lemma 9. Let $r \in\{2,3,4\}, \epsilon>0, f \in L^{2}(D)$ and $\psi_{h} \in M_{h}$ such that

$$
\begin{equation*}
\epsilon B_{h} \psi_{h}+\psi_{h}=P_{h} f \tag{5.23}
\end{equation*}
$$

Then there exists a function $G_{h, \epsilon} \in C(\overline{D \times D})$ such that

$$
\begin{equation*}
\psi_{h}(x)=\int_{D} G_{h, \epsilon}(x, y) f(y) d y \quad \forall x \in \bar{D} \tag{5.24}
\end{equation*}
$$

and $G_{h, \epsilon}(x, y)=G_{h, \epsilon}(y, x)$ for $x, y \in \bar{D}$.
Proof. Let $\operatorname{dim}\left(M_{h}\right)=n_{h}$ and $\gamma_{h}: M_{h} \times M_{h} \rightarrow \mathbb{R}$ be an inner product on $M_{h}$ given by $\gamma_{h}\left(\chi_{A}, \chi_{B}\right):=$ $\left(\Delta \chi_{A}, \Delta \chi_{B}\right)_{0, D}$ for $\chi_{A}, \chi_{B} \in M_{h}$. We can construct a basis $\left(\chi_{j}\right)_{j=1}^{n_{h}}$ of $M_{h}$ which is $L^{2}(D)$-orthonormal, i.e., $\left(\chi_{i}, \chi_{j}\right)_{0, D}=\delta_{i j}$ for $i, j=1, \ldots, n_{h}$, and $\gamma_{h}-$ orthogonal, i.e., there are $\left(\lambda_{h, \ell}\right)_{\ell=1}^{n_{h}} \subset(0,+\infty)$ such that $\gamma_{h}\left(\chi_{i}, \chi_{j}\right)=\lambda_{h, i} \delta_{i j}$ for $i, j=1, \ldots, n_{h}$ (see Section 8.7 in [9]). Thus, there are $\left(\mu_{j}\right)_{j=1}^{n_{h}} \subset \mathbb{R}$ such that $\psi_{h}=\sum_{j=1}^{n_{h}} \mu_{j} \chi_{j}$, and 5.23) is equivalent to $\mu_{i}=\frac{1}{1+\epsilon \lambda_{h, i}}\left(f, \chi_{i}\right)_{0, D}$ for $i=1, \ldots, n_{h}$. Finally, we obtain 5.24 with $G_{h, \epsilon}(x, y)=\sum_{j=1}^{n_{h}} \frac{\chi_{j}(x) \chi_{j}(y)}{1+\epsilon \lambda_{h, j}}$.

We are ready to compare, in the discrete in time $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ norm, the time-discrete with the fully-discrete Backward Euler approximations of $\widehat{u}$.
Proposition 10. Let $r \in\{2,3,4\}, \widehat{u}$ be the solution of the problem 1.5), $\left(\widehat{U}_{h}^{m}\right)_{m=0}^{M}$ be the Backward Euler fully-discrete approximations of $\widehat{u}$ specified in (1.7)- 1.8), and $\left(\widehat{U}^{m}\right)_{m=0}^{M}$ be the Backward Euler timediscrete approximations of $\widehat{u}$ specified in 4.1-4.2. Then, there exists a constant $C>0$, independent of $\Delta x, \Delta t, h$ and $\Delta \tau$, such that

$$
\begin{equation*}
\max _{1 \leq m \leq M}\left\{\mathbb{E}\left[\left\|\widehat{U}_{h}^{m}-\widehat{U}^{m}\right\|_{0, D}^{2}\right]\right\}^{\frac{1}{2}} \leq C \epsilon^{-\frac{1}{2}} h^{\nu_{\star}(r, d)-\epsilon}, \quad \forall \epsilon \in\left(0, \nu_{\star}(r, d)\right] \tag{5.25}
\end{equation*}
$$

where

$$
\nu_{\star}(r, d):=\left\{\begin{array}{lll}
\frac{4-d}{3} & \text { if } & r=2  \tag{5.26}\\
\frac{4-d}{2} & \text { if } & r=3,4
\end{array} .\right.
$$

Proof. Let $I: L^{2}(D) \rightarrow L^{2}(D)$ be the identity operator and $\Lambda_{h}: L^{2}(D) \rightarrow S_{h}^{r}$ be the inverse discrete elliptic operator given by $\Lambda_{h}:=\left(I+\Delta \tau B_{h}\right)^{-1} P_{h}$ and having a Green function $G_{h, \Delta \tau}$ (cf. Lemma 9). Also, for $\ell \in \mathbb{N}$, we denote by $G_{h, \Delta \tau, \ell}$ the Green function of $\Lambda_{h}^{\ell}$. Using, now, an induction argument, from 1.8 we conclude that $\widehat{U}_{h}^{m}=\sum_{j=1}^{m} \int_{\Delta_{j}} \Lambda_{h}^{m-j+1} \widehat{W}(\tau, \cdot) d \tau, m=1, \ldots, M$, which is written, equivalently, as follows:

$$
\begin{equation*}
\widehat{U}_{h}^{m}(x)=\int_{0}^{\tau_{m}} \int_{D} \widehat{\mathcal{D}}_{h, m}(\tau ; x, y) \widehat{W}(\tau, y) d y d \tau \quad \forall x \in \bar{D}, \quad m=1, \ldots, M \tag{5.27}
\end{equation*}
$$

where

$$
\widehat{\mathcal{D}}_{h, m}(\tau ; x, y):=\sum_{j=1}^{m} \mathcal{X}_{\Delta_{j}}(\tau) G_{h, \Delta \tau, m-j+1}(x, y) \quad \forall \tau \in[0, T], \quad \forall x, y \in D
$$

Using (4.7), (5.27), the Itô-isometry property of the stochastic integral 2.6, 2.5) and 2.8, we get

$$
\begin{aligned}
\mathbb{E}\left[\left\|\widehat{U}^{m}-\widehat{U}_{h}^{m}\right\|_{0, D}^{2}\right] & \leq \int_{0}^{\tau_{m}}\left(\int_{D} \int_{D}\left[\widehat{\mathcal{K}}_{m}(\tau ; x, y)-\widehat{\mathcal{D}}_{h, m}(\tau ; x, y)\right]^{2} d y d x\right) d \tau \\
& \leq \sum_{j=1}^{m} \int_{\Delta_{j}}\left\|\Lambda^{m-j+1}-\Lambda_{h}^{m-j+1}\right\|_{\mathrm{HS}}^{2} d \tau, \quad m=1, \ldots, M
\end{aligned}
$$

where $\Lambda$ is the inverse elliptic operator defined in the proof of Theorem 7. Now, we use the definition of the Hilbert-Schmidt norm and the deterministic error estimate 5.3, to have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\widehat{U}^{m}-\widehat{U}_{h}^{m}\right\|_{0, D}^{2}\right] & \leq \sum_{j=1}^{m} \Delta \tau\left[\sum_{\alpha \in \mathbb{N}^{d}}\left\|\Lambda^{m-j+1} \varepsilon_{\alpha}-\Lambda_{h}^{m-j+1} \varepsilon_{\alpha}\right\|_{0, D}^{2}\right] \\
& \leq \sum_{\alpha \in \mathbb{N}^{d}}\left[\sum_{j=1}^{m} \Delta \tau\left\|\Lambda^{j} \varepsilon_{\alpha}-\Lambda_{h}^{j} \varepsilon_{\alpha}\right\|_{0, D}^{2}\right] \\
& \leq C h^{2 \nu(r, \theta)} \sum_{\alpha \in \mathbb{N}^{d}}\left\|\varepsilon_{\alpha}\right\|_{\dot{\mathbf{H}} \xi(r, \theta)}^{2}, \quad m=1, \ldots, M, \quad \forall \theta \in[0,1]
\end{aligned}
$$

Thus, we arrive at

$$
\max _{1 \leq m \leq M}\left(\mathbb{E}\left[\left\|\widehat{U}^{m}-\widehat{U}_{h}^{m}\right\|_{0, D}^{2}\right]\right)^{\frac{1}{2}} \leq C h^{\nu(r, \theta)}\left(\sum_{\alpha \in \mathbb{N}^{d}}|\alpha|_{\mathbb{N}^{d}}^{2 \xi(r, \theta)}\right)^{\frac{1}{2}}, \quad \forall \theta \in[0,1]
$$

from which, requiring $-2 \xi(r, \theta)>d$ and using (2.10), 5.25, easily, follows.
The available error estimates allow us to conclude a discrete in time $L_{t}^{\infty}\left(L_{P}^{2}\left(L_{x}^{2}\right)\right)$ convergence of the Backward Euler fully-discrete approximations of $\widehat{u}$, over a uniform partition of $[0, T]$.

Theorem 11. Let $r \in\{2,3,4\}, \nu_{\star}(r, d)$ be defined by (5.26), $\widehat{u}$ be the solution of problem (1.5), and $\left(\widehat{U}_{h}^{m}\right)_{m=0}^{M}$ be the Backward Euler fully-discrete approximations of $\widehat{u}$ constructed by (1.7)-(1.8). Then, there exists a constant $C>0$, independent of $T, h, \Delta \tau, \Delta t$ and $\Delta x$, such that

$$
\begin{equation*}
\max _{0 \leq m \leq M}\left\{\mathbb{E}\left[\left\|\widehat{U}_{h}^{m}-\widehat{u}\left(\tau_{m}, \cdot\right)\right\|_{0, D}^{2}\right]\right\}^{\frac{1}{2}} \leq C\left[\widetilde{\omega}\left(\Delta \tau, \epsilon_{1}\right) \Delta \tau^{\frac{4-d}{8}-\epsilon_{1}}+\epsilon_{2}^{-\frac{1}{2}} h^{\nu_{\star}(r, d)-\epsilon_{2}}\right] \tag{5.28}
\end{equation*}
$$

for $\epsilon_{1} \in\left(0, \frac{4-d}{8}\right]$ and $\epsilon_{2} \in\left(0, \nu_{\star}(r, d)\right]$ where $\widetilde{\omega}\left(\Delta \tau, \epsilon_{1}\right):=\epsilon_{1}^{-\frac{1}{2}}+(\Delta \tau)^{\epsilon_{1}}\left(p_{d}\left(\Delta \tau^{\frac{1}{4}}\right)\right)^{\frac{1}{2}}$.
Proof. The estimate is a simple consequence of the error bounds 5.25 and 4.6 .
Remark 3. Let us find the optimal value for the parameters $\epsilon_{1}$ and $\epsilon_{2}$ in 5.28) and for parameter $\epsilon$ in 3.1. Let $g(\epsilon)=\epsilon^{-\frac{1}{2}} \delta^{-\epsilon}$ for $\epsilon \in(0, \gamma]$ where $\gamma, \delta \in(0,1)$. Then, a simple calculation yields

$$
g^{\prime}(\epsilon)=\epsilon^{-\frac{3}{2}} \delta^{-\epsilon}(\epsilon-\widetilde{\epsilon}(\delta))(\epsilon+\widetilde{\epsilon}(\delta)), \quad \forall \epsilon \in(0, \gamma]
$$

where $\widetilde{\epsilon}(\delta):=2^{-\frac{1}{2}}|\log (\delta)|^{-\frac{1}{2}}$. Since $\lim _{\delta \rightarrow 0} \widetilde{\epsilon}(\delta)=0$, there exists $\delta_{\gamma} \in(0,1)$ such that $\widetilde{\epsilon}(\delta) \in(0, \gamma)$ for $\delta \in\left(0, \delta_{\gamma}\right]$. Now, assuming that $\delta \in\left(0, \delta_{\gamma}\right]$, we conclude that

$$
\min _{\epsilon \in(0, \gamma]} g(\epsilon)=g(\widetilde{\epsilon}(\delta))=2^{\frac{1}{4}}|\log (\delta)|^{\frac{1}{4}} \delta^{-\frac{1}{\sqrt{2} \sqrt{|\log (\delta)|}}} .
$$

Thus, assuming that $h$ and $\Delta \tau$ are small enough, and setting $\epsilon_{1}=\widetilde{\epsilon}(\Delta \tau)$ and $\epsilon_{2}=\widetilde{\epsilon}(h)$, the error estimate (5.28) is written in the form

$$
O\left(\Delta \tau^{\frac{4-d}{8}-\frac{1}{\sqrt{2} \sqrt{|\log (\Delta \tau)|}}}|\log (\Delta \tau)|^{\frac{1}{4}}+h^{\nu_{\star}(r, d)-\frac{1}{\sqrt{2} \sqrt{|\log (h)|}}}|\log (h)|^{\frac{1}{4}}\right)
$$

Proceeding in a similar way, the error bound (3.1) is written as

$$
O\left(\Delta t^{\frac{4-d}{8}}+\Delta x^{\left.\frac{4-d}{2}-\frac{1}{\sqrt{2} \sqrt{|\log (\Delta x)|}}|\log (\Delta x)|^{\frac{1}{4}}\right) . . . . . . .}\right.
$$

Remark 4. The solution $u$ of (1.1) is $\beta$-Hölder in $t$ and $\beta^{\prime}-$ Hölder in $x$ with $\beta<\frac{4-d}{8}$ and $\beta^{\prime}<\frac{4-d}{2}$ (see, e.g., [5], [10]). This is the reason why the expected order of convergence in time and space, are respectively $\beta$ and $\beta^{\prime}$. According to Theorem 11, the expected order of convergence in time is achieved and the expected order of convergence in space is also achieved when $r=3,4$. For $r=2$, the order of convergence in space is lower and an explanation for that is the fact that the order of convergence in the $L^{2}(D)$-norm of the finite element method for the biharmonic problem is equal to 2 and not equal to $r+1=3$ as it is for $r=3,4$ (see Proposition 4). The expected order of convergence in time and in space are also obtained in [4] and [21] for other type of numerical methods.

## References

[1] E.J. Allen, S.J. Novosel and Z. Zhang. Finite element and difference approximation of some linear stochastic partial differential equations, Stoch. Stoch. Rep., 64(1-2):117-142, 1998.
[2] L. Bin. Numerical method for a parabolic stochastic partial differential equation, Master Thesis 2004-03, Chalmers University of Technology, Göteborg, Sweden, June 2004.
[3] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, SpringerVerlag, New York, 1994.
[4] C. Cardon-Weber. Implicit approximation scheme for the Cahn-Hilliard stochastic equation, PMA 613, Laboratoire de Probabilités et Modèles Alétoires, CNRS U.M.R. 7599, Universtités Paris VI et VII, Paris, France, 2000.
[5] C. Cardon-Weber. Cahn-Hilliard equation: existence of the solution and of its density, Bernoulli, 7(5):777-816, 2001.
[6] H. Cook. Browian motion in spinodal decomposition, Acta Metall., 18(3):297-306, 1970.
[7] P.G. Ciarlet. The finite element methods for elliptic problems, North-Holland, New York, 1987.
[8] W. Grecksch and P.E. Kloeden. Time-discretised Galerkin approximations of parabolic stochastic PDEs, Bull. Austral. Math. Soc., 54(1):79-85, 1996.
[9] G. H. Colub and C. F. Van Loan. Matrix Computations, Second Edition, The John Hopkins University Press, Baltimore, 1989.
[10] G. Da Prato and A. Debussche. Stochastic Cahn-Hilliard equation, Nonlinear Anal., 26(2):241-263, 1996.
[11] N. Dunford and J.T. Schwartz. Linear Operators. Part II. Spectral Theory. Self Adjoint Operators in Hilbert Space, Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1988.
[12] K.R. Elder, T.M. Rogers and R.C. Desai. Numerical study of the late stages of spinodal decomposition, Phys. Rev. B, 37(16):9638-9649, 1987.
[13] C.M. Elliott and Z. Songmu. On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96(4):339357, 1986.
[14] E. Hausenblas. Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147(2):485-516, 2002.
[15] E. Hausenblas. Approximation for Semilinear Stochastic Evolution Equations, Potential Anal., 18(2):141-186, 2003.
[16] G. Kallianpur and J. Xiong. Stochastic Differential Equations in Infinite Dimensional Spaces, Institute of Mathematical Statistics, Lecture Notes-Monograph Series vol. 26, Hayward, California, 1995.
[17] L. Kielhorn and M. Muthukumar. Spinodal decomposition of symmetric diblock copolymer homopolymer blends at the lifshitz point, J. Chem. Phys., 110(8):4079-4089, 1999.
[18] P.E. Kloeden and S. Shot. Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs, J. Appl. Math. Stoch. Anal., 14(1):47-53, 2001.
[19] G.T. Kossioris and G.E. Zouraris. Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise: II. 2D and 3D Case, arXiv:0906.1828.
[20] G.T. Kossioris and G.E. Zouraris. Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise, ESAIM: M2AN, 44(2):289322, 2010.
[21] S. Larsson and A. Mesforush. Finite element approximation of the linearized Cahn-Hilliard-Cook equation, Preprint 2009:20, Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden, 2009.
[22] J.L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications Vol. I, Springer-Verlag, Berlin - Heidelberg, 1972.
[23] A. Pazy. Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983.
[24] J. Printems. On the discretization in time of parabolic stochastic partial differential equations, ESAIM: M2AN, 35(6):1055-1078, 2001.
[25] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics 25, Springer-Verlag, Berlin Heidelberg, 1997.
[26] Y. Yan. Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43(4):1363-1384, 2005.
[27] J.B. Walsh. An introduction to stochastic partial differential equations, in Lecture Notes in Mathematics no. 1180, 265-439, Springer Verlag, Berlin Heidelberg, 1986.
[28] J.B. Walsh. Finite element methods for parabolic stochastic PDEs, Potential Anal., 23(1):1-43, 2005.


[^0]:    ${ }^{\star}$ Partially supported by the FP7-REGPOT-2009-1 project 'Archimedes Center for Modeling, Analysis and Computation'

    * Corresponding author

    Email addresses: kosioris@math.uoc.gr (Georgios T. Kossioris), zouraris@math.uoc.gr (Georgios E. Zouraris)

