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Finite element approximations
for a linear fourth-order parabolic SPDE
in two and three space dimensions

with additive space-time white noise™

Georgios T. Kossioris®, Georgios E. Zouraris®*

% Department of Mathematics, University of Crete, GR—714 09 Heraklion, Crete, Greece.

Abstract

We consider an initial- and Dirichlet boundary- value problem for a linear fourth-order stochastic parabolic
equation, in two or three space dimensions, forced by an additive space-time white noise. Discretizing
the space-time white noise a modeling error is introduced and a regularized fourth-order linear stochastic
parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem
are constructed by using, for discretization in space, a standard Galerkin finite element method based
on H?—piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a
priori estimates for the modeling error and for the approximation error to the solution of the regularized
problem.

Keywords: finite element method, space-time white noise, Backward Euler time-stepping, fully-discrete
approximations, a priori error estimates, fourth order parabolic equation, two and three space
dimensions

2000 MSC: 65M60, 656M15, 65C20

1. Introduction

1.1. Formulation of the problem

Let d =2o0r 3,7 >0, D= (0,1)? ¢ R? and (R, F, P) be a complete probability space. Then we
consider an initial- and Dirichlet boundary- value problem for a fourth-order linear stochastic parabolic
equation formulated, typically, as follows: find a stochastic function u : [0, T] x D — R such that

dyu—+ A%u=W(t,z) VY(t,z)e (0,T] x D,
A™u(t,-)|,, =0 Vte(0,T], m=0,1, (1.1)
u(0,2) =0 VxeD,
a.s. in Q, where W denotes a space-time white noise on [0,7] x D (see, e.g.,[27], [16]). The stochastic
partial differential equation in (1.1} is the linear diffusive part of the stochastic Cahn-Hilliard equation
(cf. [B], [10]) which was introduced for the investigation of phase separation in spinodal decomposition

(see, e.g., 6], [17], [12]).
The mild solution of the problem above (cf. [5], [I0]), known as ‘stochastic convolution’, is given by

u(t, x) / /G —s;x,y) dW (s, y). (1.2)
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Here, G(t; z,y) is the space-time Green kernel of the corresponding deterministic parabolic problem: find
a deterministic function w : [0,7] x D — R such that

Orw + A*w =0 V(tx)€c (0,T]x D,
ATw(t,)|, =0 Vte (0,T], m=0,1, (1.3)
w(0,z) = wo(x) Vax €D,

where wy is a deterministic initial condition. In particular, we have
wta) = [ Gty uly)dy V() € 0.7 x D
D
and

Glt;z,y) = Y e teq(z)ealy) Y(ta,y) € (0,T] x D x D, (1.4)

a€eNd

SIS

where A, := 72 |al?, |l = (Zle a?) and e,(2) = 2% Hle sin(a; mz;) for all z € D and o € N%.

1.2. The reqularized problem

Extending the approach proposed in [I] for a second order one-dimensional linear stochastic parabolic
equation with additive space-time white noise, we construct below an approximate initial and boundary
value problem:

For N,, J, € N, define the mesh-lengths At := -L-, Az := %7 and the nodes t, := n At for

N* *
n=0,...,N,and z; := j Az for j =0, ..., J,. Then, we define the sets N, :={1,..., N, },

To=1{1,..., L.}, Ty i= (tn_1,tn) for n € Ny, Dj := (zj_1, ;) for j € Jp, D, := 1, D,
for p € g2, and S, ,, :== T,, x D,, for n € N, and pu € J&. Next, consider the fourth-order
linear stochastic parabolic problem:

Qi+ A=W in (0,7]x D,
A™(t,-)|,, =0 Vte(0,T), m=0,1, (1.5)
u(0,2)=0 VzeD,

a.e. in {2, where

o~

W(t o) = xrosor D D Asau(t,z) R™* V(t,z) € [0,T] x D,
TLEN* HET

RMH = / 1dW NneN,, YueTl,
Sn,p
and X is the index function of S C [0,T] x D.

The solution of the problem ([1.5)), according to the standard theory for parabolic problems (see, e.g, [22]),
has the integral representation

a(t,x)z/o/G(t—s;x,y)W(s,y)dsdy V(t,z) € [0,T] x D. (1.6)

Remark 1. The properties of the stochastic integral (see, e.g., [27]), yield that R™* ~ N(0, At(Ax)?)
for all (n, u) € Ny x J&. Also, we observe that E[R™* R™ *] = 0 for (n,u) # (n’, '). Thus, the random
variables (R""), ,yen, x7¢ are independent.



1.3. The numerical approximations

In order to construct fully-discrete approximations to u, we let M € N, (7,,,)%_, be the nodes of
a uniform partition of [0,7] with stepsize A7, i.e. 7, := mA7 for m = 0,..., M, and define A,, :=
(Tm—1,7Tm) for m = 1,..., M. Also, we let M), C H}(D) N H?(D) be a finite element space consisting
of functions which are piecewise polynomials over a partition of D in triangles or rectangulars with

maximum diameter h, and define a discrete biharmonic operator By, : My — M}, by

/ Bup x dv = / Ap Ax dz, Yo, x € Mp,
D D
and the usual L?(D)—projection operator Py, : L?(D) — M}, by

/thxdmz/fxdx, Vx €M, VfelL*D).

The approximations to u we consider follow by employing the Backward Euler finite element method
which begins by setting R
U) =0, (1.7)

and, then for m =1,..., M, finds (7,:" € My, such that

Ur — U=t + Ar B U = / PW ds. (1.8)
A

m

1.4. Main results of the paper

In the rest of the paper we investigate the convergence of the fully discrete approximations to the
solution @ of (1.5)) to the mild solution u of (1.1]). That error of approximating w splits in two parts: the
modeling error which is the error of approximating u by @, and the numerical approximation error which

is the error of approximating u by the numerical method defined in (1.7)—(1.8]).
An L°(L%(L?)) estimate of the modeling error is achieved, in Theorem [5, by obtaining the bound

max {/ </ lu(t, z) — u(t, z)|? dac) dP} <C [6_% Ax%_e—&—At%}, Ve e (0,454,
Q D

te[0,7]

without imposing conditions on At and Az as happens in [I] and [2]. For the numerical approximation
error, we derive, in Theorem the following discrete in time L°(L2(L2)) estimate:

max {/ (/ ’ﬁin(.r) —ﬂ(Tm’x)f dm) dP}2 <C {e;% AT%_Q —|—6;% hV*—62j| , (1.9)
o \Up

0<m<m

for ¢; € (0, 4%@] and €3 € (0, v,], where v, = v, (r,d) is given in and depends on the space dimension
d and a parameter r € {2,3,4} which is related to the approximation properties of the finite element
spaces M}, (see ) To get the estimate , first we introduce the Backward-Euler time-discrete
approximations of 7 and analyze their convergence in the discrete in time L (L2 (L2)) norm above (see
Theorem @; then, we derive an estimate for the error of approximating the Backward-Euler time-discrete
approximations of @ by the Backward-Euler fully-discrete approximation of % (see Proposition . This
procedure allows us to estimate separately the space and the time discretization error in constrast to the
technique used in [26] and [2] for second order problems.

For approximation methods for fourth-order stochastic parabolic problems driven by a space-time
white noise, we refer the reader: to [4] which considers a finite difference method for the stochastic
Cahn-Hilliard equation, and to [24], [14] and [15] which consider time-stepping methods for a wide family
of evolution problems that includes , while the finite element method is not among the space-
discretization techniques considered in [14] and [I5]. Our previous paper [20] analyzes Backward Euler
finite element approximations for the 1D space dimensional case where the space regularity of the solution



is higher and thus a different regularized problem is proposed as a basis for developing the numerical
method. We also refer to [21] for the analysis of a Backward Euler finite element method for problem 7
where the biharmonic operator A? is discretized by A2, A}, being the discrete Laplacian operator (see,
e.g., [25]). In the present paper we use the discrete operator By, for the discretization of the biharmonic
operator which is different from A2. Also, we refer the reader to [§], [1], [18], [26], [28] and [2] for the
analysis of the finite element method for second order stochastic parabolic problems.

We close the section by an overview of the paper. Section [2] introduces notation, and recalls or prove
several results often used in the paper. Section [3]|is dedicated to the estimation of the modeling error.
Section [4] defines the Backward Euler time-discrete approximations of 4 and analyzes its convergence.
Section [5| contains the error analysis for the Backward Euler fully-discrete approximations of .

2. Notation and preliminaries

2.1. Function spaces and operators

We denote by L?(D) the space of the Lebesgue measurable functions which are square integrable on
D with respect to Lebesgue’s measure dz, provided with the standard norm ||g|lo » = { [, [g(z)[? dz}?
for g € L?(D). The standard inner product in L?(D) that produces the norm || - ||, is written as (-, ), p,
Le., (91,92)00 = [, g1(x)g2(x) dx for g1, g2 € L*(D). For s € Ny, H*(D) will be the Sobolev space of
functions having generalized derivatives up to order s in the space L?(D), and by || - ||..p its usual norm,
ie. |lgll..p == {ZaeNg,\a|Nd§s ||8x"g||§,D}% for g € H*(D). Also, by H}(D) we denote the subspace of

H'(D) consisting of functions which vanish at the boundary 8D of D in the sense of trace. We note that
in H}(D) the, well-known, Poincaré-Friedrichs inequality holds, i.e.,

lgllo.o < Cer | Vallon Y9 € Hy(D), (2.1)
1
2
where |V, p = (zaeN& ol amt ||agv||§,D) for v € H'(D).
The sequence of pairs {(Aa,€a)}aene 18 a solution to the eigenvalue/eigenfunction problem: find
nonzero ¢ € H?(D) N Hg(D) and o € R such that —Ap = o in D. Since (g4)aene is a complete
(,*)o.o—orthonormal system in L?(D), for s € R, a subspace H’ (D) of L2(D) (see [25]) is defined by

H(D):=quveL*(D): Y A (v,6a)0, <00

a€eNd

N

Yuv € H*(D). Let m € Ny. Tt is well-

and provided with the norm [[v]jg: = (3 enas (v,64)2 )

known (see [25]) that

H™(D)={ve H™(D): Awl|,, =0 if 0<i<2} (2.2)
and there exist constants Cy, 4 and Ci, 5 such that

Conn [0lmn < [0lliem < Cos [0l Vv € (D). (2.3)

Also, we define on L?(D) the negative norm | - ||_,. » by

o]

—m.p = SUp { Weoo e H™(D) and ¢ # 0} Vo € L*(D),

lellm.p
for which, using (2.3)), it is easy to conclude that there exists a constant C_,, > 0 such that

[oll -5 < Com I0llgg-r Vv € L*(D). (2.4)



Let Ly = (L?(D), (+,+)o.p) and L(ILy) be the space of linear, bounded operators from Ly to Ly. We say

that, an operator I' € £L(Ly) is Hilbert-Schmidt, when ||T||us := (3 p; [[Texl|2,)? < +oo, where [|T'[|us
is the so called Hilbert-Schmidt norm of I'. We note that the quantity ||I'||us does not change when we

replace (¢4)72; by another complete orthonormal system of L. It is well known (see, e.g., [II]) that an
operator re L‘(Lg) is Hilbert-Schmidt iff there exists a measurable function g : D x D — R such that
=/ 9( y) dy for v € L?(D), and then, it holds that

it = ([ [ #e) dxdyf . (25)

Let Lys(Lo) be the set of Hilbert Schmidt operators of E(]Lz) and @ : [0,7] — Lyus(L2). Also, for

a random variable X, let E[X] be its expected value, i.e., E[X] := [, X dP. Then, the It isometry

property for stochastic integrals, which we will use often in the paper reads

T 2 T
E {H / @ W | } _ / 1D(8)|2, dt. (2.6)
0 0.D 0
For later use, we introduce the projection operator II : L2((0,T) x D) — L2((0,T) x D) defined by
ﬁ(g; ) |S’n,,“ = m / g(t,x) dtdl‘, Vn e N*, V,LL € j*dv (27)
S,

for g € L?((0,T) x D), which obviously satisfies that

(/OT/Jﬁgmxdt)% = ( /0 / 9 dfvdt); ¥g € L*((0,T) x D). (2.8)

and has the following property:
Lemma 1. For g € L*((0,T) x D), it holds that

/OT/D ﬁ(g;S,Z/) dW (s,y) = /OT/D W(t,x)g(t,x) dtdz. (2.9)

Proof. To obtain ([2.9) we work, using (2.7) and the properties of W, as follows:

// (9:5,9) AW (5,Y) = x7ame Z Z / g dtda) // X, (5,9) AW (s,9) )

Sn,u

=Ar (Az)d Z /S dtdw) Rr

neN, neJg T

A‘t(AﬂC)”! Z // ) Xs,, . (t,z) R™*" dtdx

neN, neJg

- /OT/D g(t,2) W(t, z) dtdz.

We close this section, by stating some asymptotic bounds for series that will often appear in the rest
of the paper and for a proof of them we refer the reader to [19].

O

Lemma 2. Let d € {1,2,3} and ¢, > 0. Then, there exists a constant C' > 0 that depends on ¢, and d,
such that
Sl < ot Vee (0,2]. (2.10)

aeNd



Lemma 3. Let d € {2,3} and 6 > 0. Then there exists a constant C' > 0 which is independent of 8, such
that

4

e 250 o o pa(sh) 615 (2.11)

where pg(s) := 1+ Z?:l st

2.2. Linear elliptic and parabolic operators
For given f € L?(D) let vy € H*(D) N H}(D) be the solution of the boundary value problem

Avg =f in D, (2.12)

and Ty : L?(D) — H?(D) N H(D) be its solution operator, i.e. Ty f := vy, which has the property
ITefllmo < Com | fllmosp, ¥feH™>MOm=2(D) ¥m e N,. (2.13)
Also, for f € L?(D) let v; € H*(D) be the solution of the following biharmonic boundary value problem

A?vy =f in D,

(2.14)
AmvB|6D =0, m=0,1,
and T}, : L2(D) — H*(D) be the solution operator of (2.14)), i.e. T f := vy, which satisfies
15 f o < Com I fllm-sp, ¥ f € HWOm4(D), Vm € No. (2.15)
Due to the type of boundary conditions of (2.14]), we conclude that
Tsf=T:f, VfelL*D), (2.16)
which, easily, yields
(TB’Ul,’Ug)O’D = (TEvl,TEvg)owD VU1,1}2 S LZ(D) (217)

Letting (S(t)wo)¢ejo, 7 be the standard semigroup notation for the solution w of (1.3), we can easily

establish the following property (see, e.g., [25], [23]): for ¢ € Ny, 3, p € Ry and ¢ € [0, p+4/] there exists
a constant C' > 0 such that:

ty
2 . _op_
/ (t —ta)’ |0 S(t)wo | p dt < Cllwollfpsar—zo—2 Vit >ta >0, Vwy € HPFH202(D). (2.18)
2.3. Discrete spaces and operators

For r € {2, 3,4}, we consider a finite element space M}, C H}(D)NH?(D) consisting of functions which
are piecewise polynomials over a partition of D in triangles or rectangles with maximum mesh-length h.
We assume that the space M} has the following approximation property

inf o= x[op < CH 7 [ollcrp Vo€ H(D) N HY(D), (2.19)
X h

which covers several classes of H? finite element spaces, for example the tensor products of C'* splines,
the Argyris triangle elements, the Hsieh-Clough-Tocher triangle elements and the Bell triangle (cf. [7],

3)

A finite element approximation v, € M} of the solution vy of (2.14]) is defined by the requirement

Byvp,, = Pnf. (2.20)



Then, we denote by Ty, : L?(D) — Mj, the solution operator of ([2.20), i.e. Ty, f = vp, = B;lth for
[ € L*(D), which satisfies that

(Tonfs9)oo = (ATsnf, ATu,9)00 = (f. Tong)on ¥ f g€ L*(D), (2:21)
Also, using (2.20)), (2.14) and (2.15) we conclude that
I1AT s, fllo.p < AT fllo,p
<Clfl-2no  VfeL*D).
Applying the standard theory of the finite element method (see, e.g., [7], [3]) and using (2.15)), we get
IATsf = Tosf)lloo < CH | fllicap, ¥ f € H™>=301(D), (2.23)

(2.22)

while error estimates in the L?(D) norm are obtained in the proposition below.
Proposition 4. Let r € {2,3,4}. Then, it holds that:
WAoo, r=4
ITsf = Tonflloo < CF W [ fllon, 7=3,  VfeH™ N 30%(D), (2.24)
h? 1fl-ip, =2,
Proof. Let f € H™07=3}(D) and e = Tpf — Ts.nf. Also, we define a bilinear form ~ : H?(D) x

H2(D) — R by y(v1,v2) := (Avy, Avy)e p for vy, vy € H?(D). Now, let w,, w; € HY(D) be defined by
TzAe =w, and Tze = wg. Then, using Galerkin orthogonality, we have:

||Ve||02,D = - 'Y(wAv e)o,D
<|Aellop inf s = xllzn (2.25)
o " xeMy '
and
lell? », =(ws,e)o.n
(2.26)

<llAelop int s =Xl

Case 1: Let r € {2,3}. Then, using (2.26)), (2.23), (2.19) and (2.22)), we obtain

lell2, <CR | Fllesn A"~ wslog o

0,D =

<CR DN Fllsn llell—s.p

which, obviously, yields (2.24]).
Case 2: Let r = 4. Then, combining, (2.26)), (2.19), (2.15)) and (2.1)), we get

lells.5 < CllAello,n h* | Txells.n
<C|Aello,o h* Jlells.o (2.27)
<C|Aello,p h? IVello,n-

Also, we observe that and yield

1 1
IVello,n <[|Aclld s [A(TsAe)]5

) N (2.28)
<[ Aellgo llell -
Now, we combine (2.27), (2.28) and (2.23) to have
lellin <CH l1aelis
<Ch%|flis,
which obviously leads to for r = 4. O



Remark 2. In the estimate (2.24) we observe that the order of convergence is equal to r + 1 except in
the case r = 2. Note that this is not in contradiction to the results in [I3] where only the case r > 3 is
considered.

3. An estimate for the modeling error

Here, we derive an L°(L2(L2)) bound for the modeling error u — @, in terms of At and Az.

Theorem 5. Let u and u be defined, respectively, by (1.2)) and (1.6). Then, there exists a real constant
C > 0, independent of T, At and Az, such that

max {E [Ju 2, }* < O [pa(ati)} A £ h A’F 0 ] vee 0554, @)

where pq is the polynomial defined in Lemma[3}

Proof. Using (1.2)) and ( m, we conclude that
u(t, z) — u(t, x) // [(X0.)(s) G(t — s;2,y) — é(t,x; s,y)] dW(s,y) V(t,z) €[0,T]x D, (3.2)
where G : (0,T) x D — L2((0,T) x D) given by

é(tvx; )

= xrAn? /S Xoy(s) Gt — 5" 2,y") ds'dy’ (3.3)

Snop

for n € Ny and p € J2.
1
Let © := (]E [||u — ﬁ||§D]) 2 and t € (0,T]. Using (3.2), the It6 isometry (2.6) and (2.5, we obtain

= /OT (/D i [X(O’t)(s) Gt — s;x,y) — G(t, x; s, y)] ’ dxdy) ds

from which, using (3.3)), follows that

e(t)-W{ > Z/{/

neN, peJgd

[ / Ko (s) Gt = si.y)

n,p n,p

=

2
— X (s) Gt = 5’52, y’)} ds’dy’] dsdy} da:} .

Now, we introduce the splitting

O(t) < O.(t) + O (t), (3.4)
where
@A(t) = At(lAz;)d{ Z/\:/ /{/ / X(Ot ( s;z,y)
neN, pegg
- G(t — sz, y/)} ds/dy/} ’ dsdy} d:v} 2
and

@B(t)mfmw{ 2 2 /D{/

neN, neJ?

[/ [Xw»t)(S) Gt — s:2,0/)

n,p Sn,p

Nl

2
— Xo,n(s") Gt — s, y’)} ds’dy’} dsdy} dx} )



Estimation of ©,(¢): Using (1.4) and the (-, -), p—orthogonality of (£4)sene, We have

2
@i(t) = (A;)Qd Z / {/ [ X, (8) {G’(t —s;x,y) — Gt — s;x,y/)} dy/] dsdy}dm

nEN*;LEjd
2 (4 2
= D D { / [Z Ko (s) 220 / (caly) — 2aly)) dy') ]dsdy}
neN, ueJgé Snn | aend Pu
2 2
= = Y {Z / Ko (s) e 27 ”ds}{ > / / (ealy) — 2aly)) dy') dy},
aeNd \ nen, negd” Pu Dy

:(Ml)mzd{/o 232 (1 WS}{Z/D /Dga ~caly)) dy) dy},

egar Tm

from which, using the Cauchy-Schwarz inequality, follows that

CHOEDY (/0 e~ 2Xalt=s) ds l(A a Z /D y }%(y)—ea(y’)IQdy’dy]- (3.5)

a€eN?
Observing that fg e~ (t=9) gg < %)\;2 for o € N%, and that
sup |5a(y) — 5a(y’)| < 22+ min {1, 3 dz Ax \04|Nd}
Yy’ €D,
<2577 43 Aa¥ o], YV e[0,1], VaeNd, vueJd,
(3-5) yields

Gi(t) < dt1=2v gv p2y—4 (A$>2'y Z |\2(72”) (3.6)

ac

The series in (3.6) converges when 2(2 — ) > d or equivalently v < #5¢. Thus, combining (3.6) and
(2.10), we, finally, conclude that

O.(t) < Ce 3 Az s~ Vee (0,%54]. (3.7)

Estimation of ©Og(t): For ¢t € (0,77, let N(t) =min{¢e€N: 1<¢(<N, and t<t,} and

. T, if n< N(t) N
To(t) := T, N (0,8) = ' n=1,...,N().
(tﬁ(t),l,t), if n= N(t)

Now, we use (1.4) and the (-, ), ,—orthogonality of (¢4)nena as follows

%(t) = (At(Az)d Z / {/ l/ {X(O,t)(S)G(th;I,y/)

neN, uejd

2
— Xon(s") Gt — s, y’)} dS’dy’] ds} dx

X A2 (t—s)
S/ (] (toato
Tn Tn

2 / 2
— X0,5)(s") e Aalt=s) ) ds’) ds]

= wodm Y. Z(/

aeNd | pegd Pu



which yields that

N(t)
< 24 Z < . Z\I/ ) (3.8)

a€eND

where

2 2 , 2
V(L) = / ( / (X(O,t)(s) e Aalt=s) _ Xo,0)(s") e Aalt=s )) ds’) ds.
T T

n

Let o € N% and n € {1,...,N(t) — 1}. Then, we have

S/ 2

:/ (// /\ie_Ai(t_T)des’> ds

T Tht s

max{s’,s} 2
/ (// /\ie_ki(t_T)des') ds
Tn Tyt tyn—
s 2

2/ (// A2 e~ Ra(t- T)des) ds+2/ (// Aie—ki“—ﬂdms’) ds

Ty T Tn Tpd t

n—1

s 2
2At<// A2 e Aalt- T)des) +2(A1)? / (/ Aie**i“*ﬂm) ds,
Tpd tn—1 Tn t

n—1

IN

IN

IN

from which, using the Cauchy-Schwarz inequality, follows that

S 9 2
(1) < 4(AL)? / ( / Age—w—f)dr) ds.

Tn tn—1

Now, observing that A2 e*a ("=t = g, (e’\i(f’t)) we obtain

2
To(t) < 4(At)? / (e—ki(t—s) _ e—Ai(t—tn_l)) ds

Tn

4(At)? (1 _ e_’\iAt)Q/ =22 (t=5) 4g
T,

n

IN

N2 2 =222 (t—tp) _ 222 (t—t,_1)
< 2(A1)? (1 — e Rttt e .

Thus, by summing with respect to n, we obtain
N(t)—1

{_e—AEAty2
> Uar) < 2= (3.9)

o

Considering, now, the case n = N(t), we have

U (1) = WO(t) + PE(¢) (3.10)
with
t s . 2
/ / / A2t drds’ + / e a3 qs’ | ds
R -1 tRy-1 78
2
Z/N (/ Ai(tsqu’) ds.
N(t) T

10



Then, we have

5(t) < %t{l—e X2 (1=t - 1)}2

\Ila
At (1 _e—,\iAt)z

IN
AR X

and

s’

2
)\2 2 =T) grds’ + At e -2 (= S)] ds

i< [ V

IRw-1 7R
<2 / l/ / A2 A7) qrds! ds—l—(At) |:1—6_2Ai<t_tﬁ(t)1)
a R -1 N@)-1v%
max{s,s } - 2 ,
<2 / l/ / AW drds’ | ds + (At) (1—e a5t
tRw—1 L tRm—1 /I8 w -1
2

< 8(At)? / [/ NN dr | ds+ G5 (1- e

tRwy-1 L7 tRm—1
< 8(At)? /t {e_)‘i(t_s) —Nalt=ty- 1>} ds + (A” (1—e2aa),

tﬁ(t)—l

which, along with (3.10)), gives

v, < 5(At)2 (l_e—zxim) +% (1 _e—AiAt)2_
N(t) =
Since the mean value theorem yields: 1 — e~ Ml < A2 At, the above inequality takes the form
a e 2)\ At
(At)2 V& < 617- (3.11)

Combining (3.8)), (3.9) and (3.11)) we obtain
g Y e e (3.12)

aeNd
Now, combine and - to arrive at
O,(t) < C (pa(AtT))? At'F (3.13)
The error bound follows by observing that ©(0) = 0 and combining the bounds , and
B13). O
4. Time-discrete approximations

The Backward Euler time-discrete approximations to the solution @(7,y,,-) of the problem (|1.5) are
defined as follows: first, set R
U =0, (4.1)

and then, form =1,..., M, find Um e H4(D) such that

Um— U™ + Ar A2U™ = / Wds as.. (4.2)

11



To develop an error estimate in a discrete in time L{°(L2(L2)) norm for the above time-discrete
approximations, we need an error estimate in a discrete in time L?(L2) norm for the Backward Euler
time-discrete approximations, (W)X _. of the solution w to the deterministic problem (|1.3)), specified
by setting

m=0>
WO = w, (4.3)

and then, for m =1,..., M, by finding W™ & H4(D) such that
W™ — W™l 4 AT APW™ = 0. (4.4)

Proposition 6. Let (W™)M_, be the Backward Euler time-discrete approximations of the solution w of
the problem (1.3) defined in (4.3)-(d.4). If wo € H3(D), then, there exists a constant C > 0, independent
of T and AT, such that

M 3
( Z AT W™ —w(Tpm, )||§D> < C(AT)? Jwg||ggao—= YO € [0,1]. (4.5)
m=1
Proof. Tt is analogous to the proof of Proposition 4.1 in [20], and thus is omitted. O

Theorem 7. Let u be the solution of (1.5) and (ﬁm)%zo be the Backward Euler time-discrete approxi-
mations specified in (4.1))—(4.2). Then there exists a constant C' > 0, independent of T, At, Az and AT,
such that

1 _
ez {IE [HUm —E(Tm,-)||g‘,3}}2 < C B(Ar,e) AT5 ¢, Vee (0, 454], (4.6)

where W(AT, €) := [e72 + (A7) (pa(AT7))2] and pq is the polynomial defined in Lemma B

Proof. Let I : L?(D) — L?(D) be the identity operator, A : L*(D) — H*(D) be the inverse elliptic
operator A := (I + A7 A%)~! which has Green function G,(z,y) = Y cne %‘i‘ig’), ie. Af(z) =
fD Gi(z,y)f(y)dy for x € D and f € L?(D). Obviously, G,(z,y) = G,(y,x) for 2,y € D, and G €
L*(D x D). Also, for m € N, we denote by G, ,, the Green function of A™. Thus, from , using
an induction argument, we conclude that Um = ;."':1 fAj Am—j+1/V[7(T, )dr for m =1,..., M, which is

written, equivalently, as follows:
ﬁm(a:) = / / lem(r;x,y) /W(T, y)dydr VYxeD, m=1,...,M, (4.7)
0 D
where lem(r; x,y) = Z;n:l Xs, (1) Gam—j1(w,y) V7T €[0,T], Va,y € D.
Let m € {1,...,M} and ™ := IE[Hﬁm — (T, +)||2 5] First, we use (&.7), (L6), 2.9), (2.6), ([.5)

and (2.8)), to obtain

£m =

&=

{ / (/T/ X070 (7) [Kin (752, 9) = G = 752, )| W(7,) dyd7)2 dx}

" <// (t52,9) — G(Tm T;a:,y)]zdycm) dr

(/ / am—e+1(%,9) = G(7m —T;way)fdydx) dr. (4.8)

/ AT Sy, — )2 dr
+

IN I IA
:>3 TMS Il MS

| /\
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where

3

BT = 2 / ||Am—£+1 - S(Tm - TZ*I)”iS dT?
J4

178

/ 1S (T — 71) — S(r — 7|2 dr
172

Estimation of B’": By the definition of the Hilbert-Schmidt norm, we have

3

BY =2
J4

NE

B < 2AT Z ||Am_e+15a = S(Tm — Tﬁfl)gaHg,D
=1 acNd
<2 Z (Z AT ”Aminrlga = 8(tm — Té—l)sa”g,D>
a€eNd (=1
<2 Z (Z AT ||A£€a - S(T€)5a|g,D> .
aeNd =

Let 0 € [0,%%9) and € = 429 — 9. Using the deterministic error estimate (4.5) and ( , we obtain
8 8 g
B™ < CAr% E ||€a||ﬁ4efz

aeNd
< CAFP Y a0
acNd
260
< CAT Z Huﬁ (4.9)
aeNd
29
S Z ‘Otld+8€
aGNd
< Ce'Ar 540,

Estimation of B}': Using, again, the definition of the Hilbert-Schmidt norm we have

=2 ), (Z/ IS (Tm = Te-1)ga — S(Tm — T)ealls 5 d7-> . (4.10)

a€ND

Since S(t)eq = e Nate, for t > 0, (4.10) yields

Br=23" [2/ (/ [em4tm == _e—Aim—r)rgi(x) dx) dT]

aeNd

IN
-
|
%
>
SRV
0
>
5

from which, applying (2.11]), we obtain
B < C py(Ari) Ar'a”. (4.11)
Thus, we obtain the estimate (4.6]) as a conclusion of (4.8)), (4.9) and (4.11]). O
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5. Convergence of the fully-discrete approximations

In this section, our goal is to derive a discrete in time L{°(L%(L2)) error estimate for the Backward
Euler fully-discrete approximations of u given in 7. For that, we follow the way to compare
them to the Backward Euler time-discrete approximations of @ defined in 7, under the light of
the error estimate obtained in Theorem [1

Our first step, is to derive a discrete in time L?(L?2) error estimate between the Backward Euler time-
discrete and the Backward Euler fully discrete approximations of the solution w of given below:
Set

WP := Phwy, (5.1)

and then, for m =1,..., M, find W;* € M}, such that
Wi — W+ A B, W = 0. (5.2)

Proposition 8. Let r € {2,3,4}, w be the solution of the problem , (Wm)M_, be the Backward
Euler time-discrete approximations of w defined in —, and (W) _o be the Backward Euler
fully-discrete approzimations of w specified in -. If wy € ﬂS(D), then, there exists a constant
C > 0, independent of T, h and AT, such that

M 2
( > Ar|wm - W;”||§,D> < C R wollgsnor VO € [0,1], (5.3)
m=1
where
20 if r=2 30 -2 if r=2
v(r,0) =< 40 if r=3 and &(r,0) =940 -2 if r=3. (5.4)
50 if r=4 50 —2 if r=4

Proof. Let E™ := W™ — W™ for m =0,..., M. We will get (5.3) by interpolation, showing it for § =0
and 0 = 1.

We use (4.4) and (5.2), to obtain: Ty ,(E™ — E™™1) + AT E™ = A7 (Ts — Ty, ) A2W™ for m =
1,..., M. Taking the L?(D)—inner product of both sides of the latter equation by E™ and using (2.21)),
we arrive at

AT n E™)E o= (A(Ts E™ 1), AT n ™) o

m||2 211m m (55)
+AT|E™|S, = AT (T — T,)) A W™, E™)o p
for m = 1,...,M. Now, using the Cauchy-Schwartz inequality and the geometric mean inequality we
obtain
—2(A(Tp 0 E™ ), AT 0 E™))op 2 — ([ATs, B HE o + ATs 0 E™)3 ) (5.6)

for m =1,..., M. Next, we combine (5.5) and (5.6] to conclude

HA(TBJLEm)Hg,D - ||A(TBJLEm_1)||3,D +2A7 ||Em||§p < 2A7((Ts — TB,h)AQWm7 E™)o,p
form =1,..., M. Summing with respect to m from 1 up to M, applying the Cauchy-Schwarz inequality
and using that T, E® = 0, we obtain

ST Ar|E™2, < ST AT [(Ts — Ton)A2W™|2 . (5.7)
m=1

m=1

Let » = 3. Then, by (2.24) and (5.7)), we obtain

1

M 2 M %
<Z ATEmH?,D> < Cht (Z At HAQW’”HiD) . (5.8)
m=1

m=1

14



Taking the (-, ), p—inner product of (4.4) with A2W™, and then integrating by parts and summing with
respect to m from 1 up to M, it follows that

M M
S AW — AWTTLAW™), 4+ > AT AW, = 0. (5.9)

m=1 m=1
Since Y0, (AW™ — AWm’l,AWm)O i L(1AwW™M|2 , — [|[AWO)2 ), (B-9) yields

M
D ATIAWTE, < 5 llwoll b (5.10)

m=1
Combining, now, (5.8)), (5.10) and (2.3)), we obtain
1
M 2
( > Ar ||Em||§,D> < Ch* |Jwo| e (5.11)
m=1
Let r = 2. Then, by (2.24)), (2.4) and (5.7, we obtain

(Z AT||Em§,D> <O R (Z AT HAQW’”Hil>
m=1

-

m=1
1
M 2
<Ch |- Ar (TEAQWM,AQWT")O,D] (5.12)
m=1
1
<Ch?

M 2
-> AT(AW“@,AQW”)O,D] )
m=1

Taking the (-, "), p—inner product of (4.4) with AW™ integrating by parts and summing with respect
to m from 1 up to M, it follows that

M M
DS (VWT VWL YW =Y AT (AW AW, = 0, (5.13)
m=1 m=1

Since Y24 (VIV™ — VIV VIW™), , > L [[VW]2,, — [[VWO)2 ], (B-I3) vields

M
=) AT(APWTL AW )0 < 5 [lwoll? . (5.14)

m=1

Combining (5.12)), (5.14) and (2.3) we get

-

( Y A7 IIEmlliD> < Ch? Jwollg- (5.15)
m=1

Let r = 4. Then, observing that A2W™ € H2(D) and using the relations (2.24), (2.4) and (5.7), we
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obtain

1
2

(Z AT||Em§YD> <OR (Z Ar HAQW”LH;)
m=1 m=1
M 3
<ChH (Z AT HAP’W"LHIQ.{1>
m=1

1
2

(5.16)

N|=

M

<Ch |- Ar (TEA3Wm7A3Wm)O,D]
m=1

2

<Ch® [— > AT(AQW’”,ASW’”)O,Dl
m=1

After, applying the operator A on (4.4), take the (-,-), p—inner product of the obtained relation with
A2W™ integrate by parts and sum with respect to m from 1 up to M, to get

Z (AW™ — AW APW™) = N AT (AW AP, = 0. (5.17)
=1 m=1

Also, we have

M M
=D (AW = AW AT, b = Y (AW F = AW g AW | )
m=1

m=1

M
m . (5.18)
>3 (IAW™ 3 = 1AW™E)
m=1
>3 (AWM R — AW g ) -
Thus, and - 5.18)) yield
M
=Y AT (AR AP, < 4 lwolFs. (5.19)
m=1
Combining (|5.16)) and ( we get
1
M 2
(Z AT ||Em||§,D> < Ch5 ||Jwo|gs. (5.20)
m=1

Thus, the relations and (| - yield . ) for 6 = 1.

Since Tp p (W] Wh ) AT W =0form=1,...,M, we obtain

M M
IS AT W2, — AT, W D12 ]+ S Ar w2, <o,
m=1 m=1

which, along with (2.22)) and (2.4)), yields

[N

mi|2 1
(;_ AT||Wy ) < 1A w0)lloo 5.21)

SCHonHfz.
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Now, using (4.4) and (2.17), we obtain (T,W™ — T,W™ L T,W™), , + A7 |[|[W™|2 , = 0 for m =
., M, which yields [[T.W™|2, — |T,W™ 2, + 2A7'||Wm|\2 < 0form =1,...,M. Then,
summing with respect to m from 1 up to M, and using (2.13)) and ( we obtain

M 3
(Z AT IW’”IIE,D> < Z5 1Tew’llo.n
k=1

<
(5.22)
< C|lwoll-»,p
< C ||U)()||H72.
1
Finally, combine with (5.22) to get (> p_; AT|E™||2,)? < C |lwollz—2, which is equivalent to

[5.3) for § = 0. ' 0
6-3)

The following lemma ensures the existence of a continuous Green function for the solution operator
of a discrete elliptic problem.

Lemma 9. Let r € {2,3,4}, ¢ >0, f € L?>(D) and ¢, € M}, such that

€ Bpthn +Yn = Prf. (5.23)
Then there exists a function Gy e € C(D x D) such that

/Ghexy (y)dy Yz €D (5.24)

and Gp, (2, y) = Gp.c(y,x) for z,y € D.

Proof. Let dim(My) = ny, and ~p, : My, X My, — R be an inner product on M}, given by v, (x4, X5) =
(AXA, Axg)o.p for xa, x5 € Mp. We can construct a basis (Xg) ', of My, which is L?(D)—orthonormal,

. (Xi» Xj)o.p = 035 for i, j =1,...,nyp, and y,—orthogonal, i.e., there are (A, ),", C (O +00) such that
'yh(xi,xj) = Ap,i0; fori,j = 17 ...,np (see Section 8.7 in [9]). Thus, there are (u]) ", C R such that
Uvp, = 2721 i x;, and (5.23) is equivalent to p; = H%Am (f,Xi)o.p for i =1,... ny. Finally, we obtain

B2D) with Gy o(a,y) = Y7, ME20W) O

We are ready to compare, in the discrete in time L$°(L2(L2)) norm, the time-discrete with the
fully-discrete Backward Euler approximations of .

Proposition 10. Let r € {2,3,4}, u be the solution of the problem (L5), (UZL”)% o be the Backward

Euler fully-discrete approzimations of U speczﬁed n ., and ( Um) o be the Backward Euler time-
discrete approximations of u specified in . Then there exists a constant C > 0, independent of
Ax, At, h and AT, such that

s AB[[[O7 —0 |2, ]} < et w097, Vee (0.m(rd) (5.25)
where
(r,d) = =2 (5.26)
Vy(r,d) = 4%(1 if?":3,4. .

Proof. Let I : L?*(D) — L?*(D) be the identity operator and Ay : L?(D) — S7 be the inverse discrete
elliptic operator given by Ay := (I + A7 Bp,)~!P, and having a Green function Gh,a- (cf. Lemma E[)
Also for £ € N, we denote by G AT% the Green function of Ae Using, now, an induction argument, from

we conclude that Uh = f Ay Iy W(r,-)dr, m =1,..., M, which is written, equivalently,
as follows:

Uﬁ”(ac):/ ’ @h,m(fgm,y)/V[?(T,y)dydT VeeD, m=1,...,M, (5.27)
0 D
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where
m

Dhmrmy ZXA )Gharm—jt+1(z,y) Y7 €[0,T], Ya,y € D.
Using (4.7), (5.27)), the Ito—lsometry property of the stochastic integral (2.6]), (2.5) and (2.8)), we get
Am Am " D) 2
E 10" - T2, 7/ // (r:2,) = Dum(752,9)) dyda ) dr
DJ D
Sl L T S 4
j=174;

where A is the inverse elliptic operator defined in the proof of Theorem [7} Now, we use the definition of
the Hilbert-Schmidt norm and the deterministic error estimate (5.3), to have

E(I0™ - Ti2,) < 30 A | 32 1A+ en — AT en |2,
Jj=1 a€eN?
< Z Z AT [[Aeq — Aia()tH(?,D
a€eNd | j=1
< OO N lealfen, m=1,...,M, Y0€0,1].
a€eNd
Thus, we arrive at
1
1 2
3m £Tm 2 2 v(r,0 2¢(r,0)
(max (B[O = 02,])" < ontO |3 ol , Voelo1],
- aeNd
from which, requiring —2¢(r,0) > d and using (2.10)), (5.25)), easily, follows. O

The available error estimates allow us to conclude a discrete in time L (L2 (L2)) convergence of the
Backward Euler fully-discrete approximations of u, over a uniform partition of [0, T].

Theorem 11. Let r € {2,3,4}, v, (r,d) be defined by -, be the solution of problem (1.5, and
(Um) o be the Backward Euler fully-discrete approzimations of u constructed by (L.7)-(1.8). Then,
there emsts a constant C > 0, independent of T, h, A, At and Az, such that

max {E[||7;" fa(Tm,-)ng‘D]}% < C [B(ara) AT 4 g F prrdme ] (5.28)

0<m<m
for €1 € (0, 4;d} and €3 € (0,v,(r,d)] where G(AT,€1) := €, z (AT)61 (pa(ATT))z.
Proof. The estimate is a simple consequence of the error bounds and ( - O

Remark 3. Let us find the optimal value for the parameters €; and €3 in (5.28) and for parameter € in
(13.1). Let g(e) = e 26 “foree (0,~] where v, § € (0,1). Then, a simple calculation yields

g(€) =357 (e—2(0)) (e+e(0)), Yee (0,9],

where €(0) := 272 |log(8)|~2. Since lims_, €(§) = 0, there exists 94 € (0,1) such that €(d) € (0,7) for
d € (0,6,]. Now, assuming that ¢ € (0,d,], we conclude that

min g(e) = g ((8)) = 2% [log(a) [} 5 V=V
ec(0,y
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Thus, assuming that h and A7 are small enough, and setting e; = €(A7) and e2 = €(h), the error estimate

(5.28)) is written in the form

vy (r,d)—

O<Ar4gd_\/§x/liTAf>|log(A7)|i+h ﬁmHog(h)ﬁ).

Proceeding in a similar way, the error bound (3.1]) is written as

4—d

B T
0 (At“éd + Az T VRV |10g(A$)i> '

Remark 4. The solution u of is B—Holder in ¢ and 8'—Holder in z with 8 < % and 8/ < 454
(see, e.g., [B], [10]). This is the reason why the expected order of convergence in time and space, are
respectively 8 and 3’. According to Theorem the expected order of convergence in time is achieved
and the expected order of convergence in space is also achieved when r = 3,4. For r = 2, the order of
convergence in space is lower and an explanation for that is the fact that the order of convergence in the
L?(D)—norm of the finite element method for the biharmonic problem is equal to 2 and not equal to
r+1=3asitis for r = 3,4 (see Proposition . The expected order of convergence in time and in space
are also obtained in [4] and [2I] for other type of numerical methods.
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