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Finite element approximations
for a linear fourth-order parabolic SPDE

in two and three space dimensions
with additive space-time white noiseI

Georgios T. Kossiorisa, Georgios E. Zourarisa,∗

aDepartment of Mathematics, University of Crete, GR–714 09 Heraklion, Crete, Greece.

Abstract

We consider an initial- and Dirichlet boundary- value problem for a linear fourth-order stochastic parabolic
equation, in two or three space dimensions, forced by an additive space-time white noise. Discretizing
the space-time white noise a modeling error is introduced and a regularized fourth-order linear stochastic
parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem
are constructed by using, for discretization in space, a standard Galerkin finite element method based
on H2−piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a
priori estimates for the modeling error and for the approximation error to the solution of the regularized
problem.

Keywords: finite element method, space-time white noise, Backward Euler time-stepping, fully-discrete
approximations, a priori error estimates, fourth order parabolic equation, two and three space
dimensions
2000 MSC: 65M60, 65M15, 65C20

1. Introduction

1.1. Formulation of the problem

Let d = 2 or 3, T > 0, D = (0, 1)d ⊂ Rd and (Ω,F , P ) be a complete probability space. Then we
consider an initial- and Dirichlet boundary- value problem for a fourth-order linear stochastic parabolic
equation formulated, typically, as follows: find a stochastic function u : [0, T ]×D → R such that

∂tu+ ∆2u = Ẇ (t, x) ∀ (t, x) ∈ (0, T ]×D,
∆mu(t, ·)

∣∣
∂D

= 0 ∀ t ∈ (0, T ], m = 0, 1,

u(0, x) = 0 ∀x ∈ D,
(1.1)

a.s. in Ω, where Ẇ denotes a space-time white noise on [0, T ] × D (see, e.g.,[27], [16]). The stochastic
partial differential equation in (1.1) is the linear diffusive part of the stochastic Cahn-Hilliard equation
(cf. [5], [10]) which was introduced for the investigation of phase separation in spinodal decomposition
(see, e.g., [6], [17], [12]).

The mild solution of the problem above (cf. [5], [10]), known as ‘stochastic convolution’, is given by

u(t, x) =

∫ t

0

∫
D

G(t− s;x, y) dW (s, y). (1.2)
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Here, G(t;x, y) is the space-time Green kernel of the corresponding deterministic parabolic problem: find
a deterministic function w : [0, T ]×D → R such that

∂tw + ∆2w = 0 ∀ (t, x) ∈ (0, T ]×D,
∆mw(t, ·)

∣∣
∂D

= 0 ∀ t ∈ (0, T ], m = 0, 1,

w(0, x) = w0(x) ∀x ∈ D,
(1.3)

where w0 is a deterministic initial condition. In particular, we have

w(t, x) =

∫
D

G(t;x, y)w0(y) dy ∀ (t, x) ∈ (0, T ]×D

and
G(t;x, y) =

∑
α∈Nd

e−λ
2
αt εα(x) εα(y) ∀ (t, x, y) ∈ (0, T ]×D ×D, (1.4)

where λα := π2 |α|2
Nd

, |α|Nd :=
(∑d

i=1 α
2
i

) 1
2

and εα(z) := 2
d
2

∏d
i=1 sin(αi π zi) for all z ∈ D and α ∈ Nd.

1.2. The regularized problem

Extending the approach proposed in [1] for a second order one-dimensional linear stochastic parabolic
equation with additive space-time white noise, we construct below an approximate initial and boundary
value problem:

For N?, J? ∈ N, define the mesh-lengths ∆t := T
N?

, ∆x := 1
J?

, and the nodes tn := n∆t for
n = 0, . . . , N? and xj := j∆x for j = 0, . . . , J?. Then, we define the sets N? := {1, . . . , N?},
J? := {1, . . . , J?}, Tn := (tn−1, tn) for n ∈ N?, Dj := (xj−1, xj) for j ∈ J?, Dµ :=

∏d
i=1Dµi

for µ ∈ J d? , and Sn,µ := Tn ×Dµ for n ∈ N? and µ ∈ J d? . Next, consider the fourth-order
linear stochastic parabolic problem:

∂tû+ ∆2û = Ŵ in (0, T ]×D,
∆mû(t, ·)

∣∣
∂D

= 0 ∀ t ∈ (0, T ], m = 0, 1,

û(0, x) = 0 ∀x ∈ D,
(1.5)

a.e. in Ω, where

Ŵ (t, x) := 1
∆t (∆x)d

∑
n∈N?

∑
µ∈J?

XSn,µ(t, x)Rn,µ ∀ (t, x) ∈ [0, T ]×D,

Rn,µ :=

∫
Sn,µ

1 dW ,∀n ∈ N?, ∀µ ∈ J d? ,

and XS is the index function of S ⊂ [0, T ]×D.
The solution of the problem (1.5), according to the standard theory for parabolic problems (see, e.g, [22]),
has the integral representation

û(t, x) =

∫ t

0

∫
D

G(t− s;x, y) Ŵ (s, y) dsdy ∀ (t, x) ∈ [0, T ]×D. (1.6)

Remark 1. The properties of the stochastic integral (see, e.g., [27]), yield that Rn,µ ∼ N (0,∆t(∆x)d)
for all (n, µ) ∈ N?×J d? . Also, we observe that E[Rn,µRn

′,µ′ ] = 0 for (n, µ) 6= (n′, µ′). Thus, the random
variables (Rn,µ)(n,µ)∈N?×J d? are independent.
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1.3. The numerical approximations

In order to construct fully-discrete approximations to û, we let M ∈ N, (τm)Mm=0 be the nodes of
a uniform partition of [0, T ] with stepsize ∆τ , i.e. τm := m∆τ for m = 0, . . . ,M , and define ∆m :=
(τm−1, τm) for m = 1, . . . ,M . Also, we let Mh ⊂ H1

0 (D) ∩ H2(D) be a finite element space consisting
of functions which are piecewise polynomials over a partition of D in triangles or rectangulars with
maximum diameter h, and define a discrete biharmonic operator Bh : Mh →Mh by∫

D

Bhϕ χ dx =

∫
D

∆ϕ ∆χ dx, ∀ϕ, χ ∈Mh,

and the usual L2(D)−projection operator Ph : L2(D)→Mh by∫
D

Phf χ dx =

∫
D

f χ dx, ∀χ ∈Mh, ∀ f ∈ L2(D).

The approximations to û we consider follow by employing the Backward Euler finite element method
which begins by setting

Û0
h := 0, (1.7)

and, then for m = 1, . . . ,M , finds Ûmh ∈Mh such that

Ûmh − Ûm−1
h + ∆τ BhÛ

m
h =

∫
∆m

PhŴ ds. (1.8)

1.4. Main results of the paper

In the rest of the paper we investigate the convergence of the fully discrete approximations to the
solution û of (1.5) to the mild solution u of (1.1). That error of approximating u splits in two parts: the
modeling error which is the error of approximating u by û, and the numerical approximation error which
is the error of approximating û by the numerical method defined in (1.7)–(1.8).

An L∞t (L2
P (L2

x)) estimate of the modeling error is achieved, in Theorem 5, by obtaining the bound

max
t∈[0,T ]

{∫
Ω

(∫
D

|u(t, x)− û(t, x)|2 dx
)
dP

} 1
2

≤ C
[
ε−

1
2 ∆x

4−d
2 −ε + ∆t

4−d
8

]
, ∀ ε ∈ (0, 4−d

2 ],

without imposing conditions on ∆t and ∆x as happens in [1] and [2]. For the numerical approximation
error, we derive, in Theorem 11, the following discrete in time L∞t (L2

P (L2
x)) estimate:

max
0≤m≤M

{∫
Ω

(∫
D

∣∣Ûmh (x)− û(τm, x)
∣∣2 dx) dP} 1

2

≤ C
[
ε
− 1

2
1 ∆τ

4−d
8 −ε1 + ε

− 1
2

2 hν?−ε2
]
, (1.9)

for ε1 ∈ (0, 4−d
8 ] and ε2 ∈ (0, ν?], where ν? = ν?(r, d) is given in (5.26) and depends on the space dimension

d and a parameter r ∈ {2, 3, 4} which is related to the approximation properties of the finite element
spaces Mh (see (2.19)). To get the estimate (1.9), first we introduce the Backward-Euler time-discrete
approximations of û and analyze their convergence in the discrete in time L∞t (L2

P (L2
x)) norm above (see

Theorem 7); then, we derive an estimate for the error of approximating the Backward-Euler time-discrete
approximations of û by the Backward-Euler fully-discrete approximation of û (see Proposition 10). This
procedure allows us to estimate separately the space and the time discretization error in constrast to the
technique used in [26] and [2] for second order problems.

For approximation methods for fourth-order stochastic parabolic problems driven by a space-time
white noise, we refer the reader: to [4] which considers a finite difference method for the stochastic
Cahn-Hilliard equation, and to [24], [14] and [15] which consider time-stepping methods for a wide family
of evolution problems that includes (1.1), while the finite element method is not among the space-
discretization techniques considered in [14] and [15]. Our previous paper [20] analyzes Backward Euler
finite element approximations for the 1D space dimensional case where the space regularity of the solution
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is higher and thus a different regularized problem is proposed as a basis for developing the numerical
method. We also refer to [21] for the analysis of a Backward Euler finite element method for problem (1.1),
where the biharmonic operator ∆2 is discretized by ∆2

h, ∆h being the discrete Laplacian operator (see,
e.g., [25]). In the present paper we use the discrete operator Bh for the discretization of the biharmonic
operator which is different from ∆2

h. Also, we refer the reader to [8], [1], [18], [26], [28] and [2] for the
analysis of the finite element method for second order stochastic parabolic problems.

We close the section by an overview of the paper. Section 2 introduces notation, and recalls or prove
several results often used in the paper. Section 3 is dedicated to the estimation of the modeling error.
Section 4 defines the Backward Euler time-discrete approximations of û and analyzes its convergence.
Section 5 contains the error analysis for the Backward Euler fully-discrete approximations of û.

2. Notation and preliminaries

2.1. Function spaces and operators

We denote by L2(D) the space of the Lebesgue measurable functions which are square integrable on

D with respect to Lebesgue’s measure dx, provided with the standard norm ‖g‖0,D := {
∫
D
|g(x)|2 dx} 1

2

for g ∈ L2(D). The standard inner product in L2(D) that produces the norm ‖ ·‖0,D is written as (·, ·)0,D,
i.e., (g1, g2)0,D :=

∫
D
g1(x)g2(x) dx for g1, g2 ∈ L2(D). For s ∈ N0, Hs(D) will be the Sobolev space of

functions having generalized derivatives up to order s in the space L2(D), and by ‖ · ‖s,D its usual norm,

i.e. ‖g‖s,D :=
{∑

α∈Nd0 , |α|Nd≤s
‖∂αx g‖20,D

} 1
2 for g ∈ Hs(D). Also, by H1

0 (D) we denote the subspace of

H1(D) consisting of functions which vanish at the boundary ∂D of D in the sense of trace. We note that
in H1

0 (D) the, well-known, Poincaré-Friedrichs inequality holds, i.e.,

‖g‖0,D ≤ CPF ‖∇g‖0,D ∀ g ∈ H1
0 (D), (2.1)

where ‖∇v‖0,D :=
(∑

α∈Nd0 , |α|Nd=1 ‖∂αx v‖20,D
) 1

2

for v ∈ H1(D).

The sequence of pairs {
(
λα, εα

)
}α∈Nd is a solution to the eigenvalue/eigenfunction problem: find

nonzero ϕ ∈ H2(D) ∩ H1
0 (D) and σ ∈ R such that −∆ϕ = σ ϕ in D. Since (εα)α∈Nd is a complete

(·, ·)0,D−orthonormal system in L2(D), for s ∈ R, a subspace Ḣ
s
(D) of L2(D) (see [25]) is defined by

Ḣs(D) :=

v ∈ L2(D) :
∑
α∈Nd

λsα (v, εα)2
0,D <∞


and provided with the norm ‖v‖Ḣs :=

(∑
α∈Ndλ

s
α (v, εα)2

0,D

) 1
2 ∀ v ∈ Ḣs(D). Let m ∈ N0. It is well-

known (see [25]) that

Ḣm(D) =
{
v ∈ Hm(D) : ∆iv |∂D = 0 if 0 ≤ i < m

2

}
(2.2)

and there exist constants Cm,A and Cm,B such that

Cm,A ‖v‖m,D ≤ ‖v‖Ḣm ≤ Cm,B ‖v‖m,D ∀ v ∈ Ḣm(D). (2.3)

Also, we define on L2(D) the negative norm ‖ · ‖−m,D by

‖v‖−m,D := sup
{

(v,ϕ)0,D

‖ϕ‖m,D : ϕ ∈ Ḣm(D) and ϕ 6= 0
}
∀ v ∈ L2(D),

for which, using (2.3), it is easy to conclude that there exists a constant C−m > 0 such that

‖v‖−m,D ≤ C−m ‖v‖Ḣ−m ∀ v ∈ L2(D). (2.4)
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Let L2 = (L2(D), (·, ·)0,D) and L(L2) be the space of linear, bounded operators from L2 to L2. We say

that, an operator Γ ∈ L(L2) is Hilbert-Schmidt, when ‖Γ‖HS :=
(∑∞

k=1 ‖Γεk‖20,D
) 1

2 < +∞, where ‖Γ‖HS

is the so called Hilbert-Schmidt norm of Γ. We note that the quantity ‖Γ‖HS does not change when we
replace (εk)∞k=1 by another complete orthonormal system of L2. It is well known (see, e.g., [11]) that an
operator Γ ∈ L(L2) is Hilbert-Schmidt iff there exists a measurable function g : D ×D → R such that
Γ[v](·) =

∫
D
g(·, y) v(y) dy for v ∈ L2(D), and then, it holds that

‖Γ‖HS =

(∫
D

∫
D

g2(x, y) dxdy

) 1
2

. (2.5)

Let LHS(L2) be the set of Hilbert Schmidt operators of L(L2) and Φ : [0, T ] → LHS(L2). Also, for
a random variable X, let E[X] be its expected value, i.e., E[X] :=

∫
Ω
X dP . Then, the Itô isometry

property for stochastic integrals, which we will use often in the paper, reads

E
[∥∥∥ ∫ T

0

Φ dW
∥∥∥2

0,D

]
=

∫ T

0

‖Φ(t)‖2HS dt. (2.6)

For later use, we introduce the projection operator Π̂ : L2((0, T )×D)→ L2((0, T )×D) defined by

Π̂(g; ·)
∣∣
Sn,µ := 1

∆t∆xd

∫
Sn,µ

g(t, x) dtdx, ∀n ∈ N?, ∀µ ∈ J d? , (2.7)

for g ∈ L2((0, T )×D), which obviously satisfies that(∫ T

0

∫
D

(Π̂g)2 dxdt

) 1
2

≤
(∫ T

0

∫
D

g2 dxdt

) 1
2

∀ g ∈ L2((0, T )×D). (2.8)

and has the following property:

Lemma 1. For g ∈ L2((0, T )×D), it holds that∫ T

0

∫
D

Π̂(g; s, y) dW (s, y) =

∫ T

0

∫
D

Ŵ (t, x) g(t, x) dtdx. (2.9)

Proof. To obtain (2.9) we work, using (2.7) and the properties of W , as follows:∫ T

0

∫
D

Π̂(g; s, y) dW (s, y) = 1
∆t (∆x)d

∑
n∈N?

∑
µ∈J d?

(∫
Sn,µ

g dtdx
)(∫ T

0

∫
D

XSn,µ(s, y) dW (s, y)
)

= 1
∆t (∆x)d

∑
n∈N?

∑
µ∈J d?

(∫
Sn,µ

g(t, x) dtdx
)
Rn,µ

= 1
∆t (∆x)d

∑
n∈N?

∑
µ∈J d?

∫ T

0

∫
D

g(t, x)XSn,µ(t, x)Rn,µ dtdx

=

∫ T

0

∫
D

g(t, x) Ŵ (t, x) dtdx.

We close this section, by stating some asymptotic bounds for series that will often appear in the rest
of the paper and for a proof of them we refer the reader to [19].

Lemma 2. Let d ∈ {1, 2, 3} and c? > 0. Then, there exists a constant C > 0 that depends on c? and d,
such that ∑

α∈Nd
|α|−(d+c?ε)

Nd
≤ C ε−1 ∀ ε ∈ (0, 2]. (2.10)
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Lemma 3. Let d ∈ {2, 3} and δ > 0. Then there exists a constant C > 0 which is independent of δ, such
that ∑

α∈Nd

1−e−λ
2
αδ

λ2
α

≤ C pd(δ
1
4 ) δ

4−d
4 , (2.11)

where pd(s) := 1 +
∑d
i=1 s

i.

2.2. Linear elliptic and parabolic operators

For given f ∈ L2(D) let vE ∈ H2(D) ∩H1
0 (D) be the solution of the boundary value problem

∆vE = f in D, (2.12)

and TE : L2(D)→ H2(D) ∩H1
0 (D) be its solution operator, i.e. TEf := vE, which has the property

‖TEf‖m,D ≤ CE,m ‖f‖m−2,D, ∀ f ∈ Hmax{0,m−2}(D), ∀m ∈ N0. (2.13)

Also, for f ∈ L2(D) let vB ∈ H4(D) be the solution of the following biharmonic boundary value problem

∆2vB = f in D,

∆mvB
∣∣
∂D

= 0, m = 0, 1,
(2.14)

and TB : L2(D)→ Ḣ4(D) be the solution operator of (2.14), i.e. TBf := vB, which satisfies

‖TBf‖m,D ≤ CB,m ‖f‖m−4,D, ∀ f ∈ Hmax{0,m−4}(D), ∀m ∈ N0. (2.15)

Due to the type of boundary conditions of (2.14), we conclude that

TBf = T 2
Ef, ∀ f ∈ L2(D), (2.16)

which, easily, yields
(TBv1, v2)0,D = (TEv1, TEv2)0,D ∀ v1, v2 ∈ L2(D). (2.17)

Letting (S(t)w0)t∈[0,T ] be the standard semigroup notation for the solution w of (1.3), we can easily

establish the following property (see, e.g., [25], [23]): for ` ∈ N0, β, p ∈ R+
0 and q ∈ [0, p+ 4`] there exists

a constant C > 0 such that:∫ tb

ta

(t− ta)β
∥∥∂`tS(t)w0

∥∥2

Ḣp
dt ≤ C ‖w0‖2Ḣp+4`−2β−2 ∀ tb > ta ≥ 0, ∀w0 ∈ Ḣp+4`−2β−2(D). (2.18)

2.3. Discrete spaces and operators

For r ∈ {2, 3, 4}, we consider a finite element space Mh ⊂ H1
0 (D)∩H2(D) consisting of functions which

are piecewise polynomials over a partition of D in triangles or rectangles with maximum mesh-length h.
We assume that the space Mh has the following approximation property

inf
χ∈Mh

‖v − χ‖2,D ≤ C hr−1 ‖v‖r+1,D ∀ v ∈ Hr+1(D) ∩H1
0 (D), (2.19)

which covers several classes of H2 finite element spaces, for example the tensor products of C1 splines,
the Argyris triangle elements, the Hsieh-Clough-Tocher triangle elements and the Bell triangle (cf. [7],
[3]).

A finite element approximation vB,h ∈Mh of the solution vB of (2.14) is defined by the requirement

BhvB,h = Phf. (2.20)
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Then, we denote by TB,h : L2(D)→Mh the solution operator of (2.20), i.e. TB,hf := vB,h = B−1
h Phf for

f ∈ L2(D), which satisfies that

(TB,hf, g)0,D = (∆TB,hf,∆TB,hg)0,D = (f, TB,hg)0,D ∀ f, g ∈ L2(D), (2.21)

Also, using (2.20), (2.14) and (2.15) we conclude that

‖∆TB,hf‖0,D ≤‖∆TBf‖0,D
≤C ‖f‖−2,D ∀ f ∈ L2(D).

(2.22)

Applying the standard theory of the finite element method (see, e.g., [7], [3]) and using (2.15), we get

‖∆(TBf − TB,hf)‖0,D ≤ C hr−1 ‖f‖r−3,D, ∀ f ∈ Hmax{r−3,0}(D), (2.23)

while error estimates in the L2(D) norm are obtained in the proposition below.

Proposition 4. Let r ∈ {2, 3, 4}. Then, it holds that:

‖TBf − TB,hf‖0,D ≤ C


h5 ‖f‖1,D, r = 4

h4 ‖f‖0,D, r = 3,

h2 ‖f‖−1,D, r = 2,

∀ f ∈ Hmax{r−3,0}(D). (2.24)

Proof. Let f ∈ Hmax{0,r−3}(D) and e = TBf − TB,hf . Also, we define a bilinear form γ : H2(D) ×
H2(D) → R by γ(v1, v2) := (∆v1,∆v2)0,D for v1, v2 ∈ H2(D). Now, let wA, wB ∈ Ḣ4(D) be defined by
TB∆e = wA and TBe = wB. Then, using Galerkin orthogonality, we have:

‖∇e‖20,D = − γ(wA, e)0,D

≤‖∆e‖0,D inf
χ∈Mh

‖wA − χ‖2,D (2.25)

and

‖e‖20,D = γ(wB, e)0,D

≤‖∆e‖0,D inf
χ∈Mh

‖wB − χ‖2,D. (2.26)

Case 1: Let r ∈ {2, 3}. Then, using (2.26), (2.23), (2.19) and (2.22), we obtain

‖e‖20,D ≤C hr−1 ‖f‖r−3,D h
r−1 ‖wB‖r+1,D

≤C h2(r−1) ‖f‖r−3,D ‖e‖r−3,D

which, obviously, yields (2.24).
Case 2: Let r = 4. Then, combining, (2.26), (2.19), (2.15) and (2.1), we get

‖e‖20,D ≤C ‖∆e‖0,D h3 ‖TBe‖5,D
≤C ‖∆e‖0,D h3 ‖e‖1,D
≤C ‖∆e‖0,D h3 ‖∇e‖0,D.

(2.27)

Also, we observe that (2.25) and (2.15) yield

‖∇e‖0,D ≤‖∆e‖
1
2
0,D ‖∆(TB∆e)‖

1
2
0,D

≤‖∆e‖
1
2
0,D ‖e‖

1
2
0,D.

(2.28)

Now, we combine (2.27), (2.28) and (2.23) to have

‖e‖
3
2
0,D ≤C h3 ‖∆e‖

3
2
0,D

≤C h 15
2 ‖f‖

3
2
1,D,

which obviously leads to (2.24) for r = 4.
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Remark 2. In the estimate (2.24) we observe that the order of convergence is equal to r + 1 except in
the case r = 2. Note that this is not in contradiction to the results in [13] where only the case r ≥ 3 is
considered.

3. An estimate for the modeling error

Here, we derive an L∞t (L2
P (L2

x)) bound for the modeling error u− û, in terms of ∆t and ∆x.

Theorem 5. Let u and û be defined, respectively, by (1.2) and (1.6). Then, there exists a real constant
C > 0, independent of T , ∆t and ∆x, such that

max
[0,T ]

{
E
[
‖u− û‖20,D

]} 1
2 ≤ C

[
(pd(∆t

1
4 ))

1
2 ∆t

4−d
8 + ε−

1
2 ∆x

4−d
2 −ε

]
∀ ε ∈ (0, 4−d

2 ], (3.1)

where pd is the polynomial defined in Lemma 3.

Proof. Using (1.2) and (1.6), we conclude that

u(t, x)− û(t, x) =

∫ T

0

∫
D

[
X(0,t)(s)G(t− s;x, y)− G̃(t, x; s, y)

]
dW (s, y) ∀ (t, x) ∈ [0, T ]×D, (3.2)

where G̃ : (0, T )×D → L2((0, T )×D) given by

G̃(t, x; ·)
∣∣∣
Sn,µ

≡ 1
∆t (∆x)d

∫
Sn,µ

X(0,t)(s
′)G(t− s′;x, y′) ds′dy′ (3.3)

for n ∈ N? and µ ∈ J d? .

Let Θ :=
(
E
[
‖u− û‖20,D

]) 1
2 and t ∈ (0, T ]. Using (3.2), the Itô isometry (2.6) and (2.5), we obtain

Θ2(t) =

∫ T

0

(∫
D

∫
D

[
X(0,t)(s)G(t− s;x, y)− G̃(t, x; s, y)

]2
dxdy

)
ds

from which, using (3.3), follows that

Θ(t) = 1
∆t (∆x)d

{ ∑
n∈N?

∑
µ∈J d?

∫
D

{∫
Sn,µ

[∫
Sn,µ

[
X(0,t)(s)G(t− s;x, y)

−X(0,t)(s
′)G(t− s′;x, y′)

]
ds′dy′

]2

dsdy

}
dx

} 1
2

.

Now, we introduce the splitting
Θ(t) ≤ ΘA(t) + ΘB(t), (3.4)

where

ΘA(t) := 1
∆t (∆x)d

{ ∑
n∈N?

∑
µ∈J d?

∫
D

{∫
Sn,µ

[ ∫
Sn,µ

X(0,t)(s)
[
G(t− s;x, y)

−G(t− s;x, y′)
]
ds′dy′

]2
dsdy

}
dx

} 1
2

and

ΘB(t) = 1
∆t (∆x)d

{ ∑
n∈N?

∑
µ∈J d?

∫
D

{∫
Sn,µ

[ ∫
Sn,µ

[
X(0,t)(s)G(t− s;x, y′)

−X(0,t)(s
′)G(t− s′;x, y′)

]
ds′dy′

]2
dsdy

}
dx

} 1
2

.

8



Estimation of ΘA(t): Using (1.4) and the (·, ·)0,D−orthogonality of (εα)α∈Nd , we have

Θ2
A(t) = 1

(∆x)2d

∑
n∈N?

∑
µ∈J d?

∫
D

{∫
Sn,µ

[∫
Dµ

X(0,t)(s)
[
G(t− s;x, y)−G(t− s;x, y′)

]
dy′

]2

dsdy

}
dx

= 1
(∆x)2d

∑
n∈N?

∑
µ∈J d?

{∫
Sn,µ

[ ∑
α∈Nd

X(0,t)(s) e
−2λ2

α(t−s)
(∫

Dµ

(εα(y)− εα(y′)) dy′
)2
]
dsdy

}

= 1
(∆x)2d

∑
α∈Nd

{ ∑
n∈N?

∫
Tn

X(0,t)(s) e
−2λ2

α(t−s) ds

}{ ∑
µ∈J d?

∫
Dµ

(∫
Dµ

(εα(y)− εα(y′)) dy′
)2

dy

}
,

= 1
(∆x)2d

∑
α∈Nd

{∫ t

0

e−2λ2
α(t−s) ds

}{ ∑
µ∈J d?

∫
Dµ

(∫
Dµ

(εα(y)− εα(y′)) dy′
)2

dy

}
,

from which, using the Cauchy-Schwarz inequality, follows that

Θ2
A(t) ≤

∑
α∈Nd

(∫ t

0

e−2λ2
α(t−s) ds

)[
1

(∆x)d

∑
µ∈J d?

∫
Dµ×Dµ

∣∣εα(y)− εα(y′)
∣∣2 dy′dy]. (3.5)

Observing that
∫ t

0
e−2λ2

α(t−s) ds ≤ 1
2 λ
−2
α for α ∈ Nd, and that

sup
y,y′∈Dµ

∣∣εα(y)− εα(y′)
∣∣ ≤ 2

d
2 +1 min

{
1, π2 d

1
2 ∆x |α|Nd

}
≤ 2

d
2 +1−γ πγ d

γ
2 ∆xγ |α|γ

Nd
, ∀ γ ∈ [0, 1], ∀α ∈ Nd, ∀µ ∈ J d? ,

(3.5) yields

Θ2
A(t) ≤ 2d+1−2γ dγ π2γ−4 (∆x)2γ

∑
α∈Nd

1

|α|2(2−γ)

Nd
. (3.6)

The series in (3.6) converges when 2(2 − γ) > d or equivalently γ < 4−d
2 . Thus, combining (3.6) and

(2.10), we, finally, conclude that

ΘA(t) ≤ C ε−
1
2 ∆x

4−d
2 −ε ∀ ε ∈

(
0, 4−d

2

]
. (3.7)

Estimation of ΘB(t): For t ∈ (0, T ], let N̂(t) := min
{
` ∈ N : 1 ≤ ` ≤ N? and t ≤ t`

}
and

T̂n(t) := Tn ∩ (0, t) =

{
Tn, if n < N̂(t)

(tN̂(t)−1, t), if n = N̂(t)
, n = 1, . . . , N̂(t).

Now, we use (1.4) and the (·, ·)0,D−orthogonality of (εα)α∈Nd as follows

Θ2
B(t) = (∆x)d

(∆t (∆x)d)2

∑
n∈N?

∑
µ∈J d?

∫
D

{∫
Tn

[∫
Sn,µ

[
X(0,t)(s)G(t− s;x, y′)

−X(0,t)(s
′)G(t− s′;x, y′)

]
ds′dy′

]2

ds

}
dx

= (∆x)d

(∆t (∆x)d)2

∑
α∈Nd

 ∑
µ∈J d?

(∫
Dµ

εα(y′) dy′
)2

[ N̂(t)∑
n=1

∫
Tn

( ∫
Tn

(
X(0,t)(s) e

−λ2
α(t−s)

−X(0,t)(s
′) e−λ

2
α(t−s′)

)
ds′
)2

ds

]
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which yields that

Θ2
B(t) ≤ 2d

∑
α∈Nd

(
1

(∆t)2

N̂(t)∑
n=1

Ψα
n(t)

)
, (3.8)

where

Ψα
n(t) :=

∫
Tn

( ∫
Tn

(
X(0,t)(s) e

−λ2
α(t−s) −X(0,t)(s

′) e−λ
2
α(t−s′)

)
ds′
)2

ds.

Let α ∈ Nd and n ∈ {1, . . . , N̂(t)− 1}. Then, we have

Ψα
n(t) =

∫
Tn

( ∫
Tn

∫ s′

s

λ2
α e
−λ2

α(t−τ) dτds′
)2

ds

≤
∫
Tn

( ∫
Tn

∫ max{s′,s}

tn−1

λ2
α e
−λ2

α(t−τ) dτds′
)2

ds

≤ 2

∫
Tn

( ∫
Tn

∫ s′

tn−1

λ2
α e
−λ2

α(t−τ) dτds′
)2

ds+ 2

∫
Tn

( ∫
Tn

∫ s

tn−1

λ2
α e
−λ2

α(t−τ) dτ ds′
)2

ds

≤ 2 ∆t
( ∫

Tn

∫ s′

tn−1

λ2
α e
−λ2

α(t−τ) dτds′
)2

+ 2 (∆t)2

∫
Tn

(∫ s

tn−1

λ2
α e
−λ2

α(t−τ) dτ
)2

ds,

from which, using the Cauchy-Schwarz inequality, follows that

Ψα
n(t) ≤ 4 (∆t)2

∫
Tn

(∫ s

tn−1

λ2
α e
−λ2

α(t−τ) dτ
)2

ds.

Now, observing that λ2
α e

λ2
α(τ−t) = ∂τ

(
eλ

2
α(τ−t)

)
, we obtain

Ψα
n(t) ≤ 4 (∆t)2

∫
Tn

(
e−λ

2
α(t−s) − e−λ

2
α(t−tn−1)

)2

ds

≤ 4 (∆t)2
(
1− e−λ

2
α∆t
)2 ∫

Tn

e−2λ2
α(t−s) ds

≤ 2 (∆t)2
(
1− e−λ

2
α∆t
)2 e−2λ2

α(t−tn)−e−2λ2
α(t−tn−1)

λ2
α

·

Thus, by summing with respect to n, we obtain

1
(∆t)2

N̂(t)−1∑
n=1

Ψα
n(t) ≤ 2 (1−e−λ

2
α∆t)2

λ2
α

· (3.9)

Considering, now, the case n = N̂(t), we have

Ψα
N̂(t)(t) = Ψα

A(t) + Ψα
B(t) (3.10)

with

Ψα
A(t) :=

∫ t

t
N̂(t)−1

(∫ t

t
N̂(t)−1

∫ s

s′
λ2
αe
−λ2

α(t−τ) dτds′ +

∫ t
N̂(t)

t

e−λ
2
α(t−s) ds′

)2

ds

Ψα
B(t) :=

∫ t
N̂(t)

t

(∫ t

t
N̂(t)
−1

e−λ
2
α(t−s′) ds′

)2

ds.
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Then, we have

Ψα
B(t) ≤ ∆t

λ4
α

[
1− e−λ

2
α

(
t−t

N̂(t)−1

) ]2
≤ ∆t

λ4
α

(
1− e−λ

2
α ∆t )2

and

Ψα
A(t) ≤

∫ t

t
N̂(t)−1

[∫ t

t
N̂(t)−1

∫ s

s′
λ2
αe
−λ2

α(t−τ) dτds′ + ∆t e−λ
2
α(t−s)

]2

ds

≤ 2

∫ t

t
N̂(t)−1

[∫ t

t
N̂(t)−1

∫ s

s′
λ2
αe
−λ2

α(t−τ) dτds′

]2

ds+ (∆t)2

λ2
α

[
1− e−2λ2

α

(
t−t

N̂(t)−1

) ]

≤ 2

∫ t

t
N̂(t)−1

[∫ t

t
N̂(t)−1

∫ max{s,s′}

t
N̂(t)−1

λ2
αe
−λ2

α(t−τ) dτds′

]2

ds+ (∆t)2

λ2
α

(
1− e−2λ2

α ∆t
)

≤ 8 (∆t)2

∫ t

t
N̂(t)−1

[∫ s

t
N̂(t)−1

λ2
αe
−λ2

α(t−τ) dτ

]2

ds+ (∆t)2

λ2
α

(
1− e−2λ2

α ∆t
)

≤ 8 (∆t)2

∫ t

t
N̂(t)−1

[
e−λ

2
α(t−s) − e−λ

2
α(t−t

N̂(t)−1
)
]2
ds+ (∆t)2

λ2
α

(
1− e−2λ2

α ∆t
)
,

which, along with (3.10), gives

Ψα
N̂(t) ≤ 5 (∆t)2

λ2
α

(
1− e−2λ2

α ∆t
)

+ ∆t
λ4
α

(
1− e−λ

2
α∆t

)2 ·
Since the mean value theorem yields: 1− e−λ2

α∆t ≤ λ2
α ∆t, the above inequality takes the form

1
(∆t)2 Ψα

N̂(t) ≤ 6 1−e−2λ2
α ∆t

λ2
α

· (3.11)

Combining (3.8), (3.9) and (3.11) we obtain

Θ2
B(t) ≤ 8

∑
α∈Nd

1−e−2λ2
α ∆t

λ2
α

· (3.12)

Now, combine (3.12) and (2.11) to arrive at

ΘB(t) ≤ C (pd(∆t
1
4 ))

1
2 ∆t

4−d
8 . (3.13)

The error bound (3.1) follows by observing that Θ(0) = 0 and combining the bounds (3.4), (3.7) and
(3.13).

4. Time-discrete approximations

The Backward Euler time-discrete approximations to the solution û(τm, ·) of the problem (1.5) are
defined as follows: first, set

Û0 := 0, (4.1)

and then, for m = 1, . . . ,M , find Ûm ∈ Ḣ4(D) such that

Ûm − Ûm−1 + ∆τ ∆2Ûm =

∫
∆m

Ŵ ds a.s.. (4.2)
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To develop an error estimate in a discrete in time L∞t (L2
P (L2

x)) norm for the above time-discrete
approximations, we need an error estimate in a discrete in time L2

t (L
2
x) norm for the Backward Euler

time-discrete approximations, (Wm)Mm=0, of the solution w to the deterministic problem (1.3), specified
by setting

W 0 := w0, (4.3)

and then, for m = 1, . . . ,M , by finding Wm ∈ Ḣ4(D) such that

Wm −Wm−1 + ∆τ ∆2Wm = 0. (4.4)

Proposition 6. Let (Wm)Mm=0 be the Backward Euler time-discrete approximations of the solution w of
the problem (1.3) defined in (4.3)–(4.4). If w0 ∈ Ḣ2(D), then, there exists a constant C > 0, independent
of T and ∆τ , such that(

M∑
m=1

∆τ ‖Wm − w(τm, ·)‖20,D

) 1
2

≤ C (∆τ)θ ‖w0‖Ḣ4θ−2 ∀ θ ∈ [0, 1]. (4.5)

Proof. It is analogous to the proof of Proposition 4.1 in [20], and thus is omitted.

Theorem 7. Let û be the solution of (1.5) and (Ûm)Mm=0 be the Backward Euler time-discrete approxi-
mations specified in (4.1)–(4.2). Then there exists a constant C > 0, independent of T , ∆t, ∆x and ∆τ ,
such that

max
1≤m≤M

{
E
[
‖Ûm − û(τm, ·)‖20,D

]} 1
2 ≤ C ω̃(∆τ, ε) ∆τ

4−d
8 −ε, ∀ ε ∈

(
0, 4−d

8

]
, (4.6)

where ω̃(∆τ, ε) := [ε−
1
2 + (∆τ)ε (pd(∆τ

1
4 ))

1
2 ] and pd is the polynomial defined in Lemma 3.

Proof. Let I : L2(D) → L2(D) be the identity operator, Λ : L2(D) → Ḣ4(D) be the inverse elliptic

operator Λ := (I + ∆τ ∆2)−1 which has Green function GΛ(x, y) =
∑
α∈Nd

εα(x) εα(y)
1+∆τλ2

α
, i.e. Λf(x) =∫

D
GΛ(x, y)f(y) dy for x ∈ D and f ∈ L2(D). Obviously, GΛ(x, y) = GΛ(y, x) for x, y ∈ D, and G ∈

L2(D × D). Also, for m ∈ N, we denote by GΛ,m the Green function of Λm. Thus, from (4.2), using

an induction argument, we conclude that Ûm =
∑m

j=1

∫
∆j

Λm−j+1Ŵ (τ, ·) dτ for m = 1, . . . ,M , which is

written, equivalently, as follows:

Ûm(x) =

∫ τm

0

∫
D

K̂m(τ ;x, y) Ŵ (τ, y) dydτ ∀x ∈ D, m = 1, . . . ,M, (4.7)

where K̂m(τ ;x, y) :=
∑m
j=1 X∆j

(τ)GΛ,m−j+1(x, y) ∀ τ ∈ [0, T ], ∀x, y ∈ D.

Let m ∈ {1, . . . ,M} and Em := E
[
‖Ûm − û(τm, ·)‖20,D

]
. First, we use (4.7), (1.6), (2.9), (2.6), (2.5)

and (2.8), to obtain

Em =E
[ ∫

D

(∫ T

0

∫
D

X(0,τm)(τ)
[
K̂m(τ ;x, y)−G(τm − τ ;x, y)

]
Ŵ (τ, y) dydτ

)2

dx
]

≤
∫ τm

0

(∫
D

∫
D

[
K̂m(τ ;x, y)−G(τm − τ ;x, y)

]2
dydx

)
dτ

≤
m∑
`=1

∫
∆`

(∫
D

∫
D

[
GΛ,m−`+1(x, y)−G(τm − τ ;x, y)

]2
dydx

)
dτ.

≤
m∑
`=1

∫
∆`

‖Λm−`+1 − S(τm − τ)‖2HS dτ

≤BmA + BmB ,

(4.8)
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where

BmA := 2

m∑
`=1

∫
∆`

‖Λm−`+1 − S(τm − τ`−1)‖2HS dτ,

BmB := 2

m∑
`=1

∫
∆`

‖S(τm − τ`−1)− S(τm − τ)‖2HS dτ.

Estimation of BmA : By the definition of the Hilbert-Schmidt norm, we have

BmA ≤ 2 ∆τ

m∑
`=1

 ∑
α∈Nd

‖Λm−`+1εα − S(τm − τ`−1)εα‖20,D


≤ 2

∑
α∈Nd

(
m∑
`=1

∆τ ‖Λm−`+1εα − S(τm − τ`−1)εα‖20,D

)

≤ 2
∑
α∈Nd

(
m∑
`=1

∆τ ‖Λ`εα − S(τ`)εα‖20,D

)
.

Let θ ∈ [0, 4−d
8 ) and ε = 4−d

8 − θ. Using the deterministic error estimate (4.5) and (2.10), we obtain

BmA ≤ C ∆τ2θ
∑
α∈Nd

‖εα‖2Ḣ4θ−2

≤ C ∆τ2θ
∑
α∈Nd

λ4θ−2
α

≤ C ∆τ2θ
∑
α∈Nd

1

|α|4(1−2θ)

Nd

≤ C ∆τ2θ
∑
α∈Nd

1

|α|d+8 ε

Nd

≤ C ε−1 ∆τ2( 4−d
8 −ε).

(4.9)

Estimation of BmB : Using, again, the definition of the Hilbert-Schmidt norm we have

BmB = 2
∑
α∈Nd

(
m∑
`=1

∫
∆`

‖S(τm − τ`−1)εα − S(τm − τ)εα‖20,D dτ

)
. (4.10)

Since S(t)εα = e−λ
2
αt εα for t ≥ 0, (4.10) yields

BmB = 2
∑
α∈Nd

[
m∑
`=1

∫
∆`

(∫
D

[
e−λ

2
α(τm−τ`−1) − e−λ

2
α(τm−τ)

]2
ε2
α(x) dx

)
dτ

]

= 2
∑
α∈Nd

[
m∑
`=1

∫
∆`

e−2λ2
α(τm−τ)

[
1− e−λ

2
α(τ−τ`−1)

]2
dτ

]

≤ 2
∑
α∈Nd

(
1− e−λ

2
α ∆τ

)2 [ ∫ τm

0

e−2λ2
α(τm−τ) dτ

]
≤
∑
α∈Nd

1−e−2λ2
α ∆τ

λ2
α

,

from which, applying (2.11), we obtain

BmB ≤ C pd(∆τ
1
4 ) ∆τ

4−d
4 . (4.11)

Thus, we obtain the estimate (4.6) as a conclusion of (4.8), (4.9) and (4.11).
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5. Convergence of the fully-discrete approximations

In this section, our goal is to derive a discrete in time L∞t (L2
P (L2

x)) error estimate for the Backward
Euler fully-discrete approximations of û given in (1.7)–(1.8). For that, we follow the way to compare
them to the Backward Euler time-discrete approximations of û defined in (4.1)–(4.2), under the light of
the error estimate obtained in Theorem 7.

Our first step, is to derive a discrete in time L2
t (L

2
x) error estimate between the Backward Euler time-

discrete and the Backward Euler fully discrete approximations of the solution w of (1.3) given below:
Set

W 0
h := Phw0, (5.1)

and then, for m = 1, . . . ,M , find Wm
h ∈Mh such that

Wm
h −Wm−1

h + ∆τ BhW
m
h = 0. (5.2)

Proposition 8. Let r ∈ {2, 3, 4}, w be the solution of the problem (1.3), (Wm)Mm=0 be the Backward
Euler time-discrete approximations of w defined in (4.3)-(4.4), and (Wm

h )Mm=0 be the Backward Euler

fully-discrete approximations of w specified in (5.1)-(5.2). If w0 ∈ Ḣ3(D), then, there exists a constant
C > 0, independent of T , h and ∆τ , such that(

M∑
m=1

∆τ ‖Wm −Wm
h ‖20,D

) 1
2

≤ C hν(r,θ) ‖w0‖Ḣξ(r,θ) ∀ θ ∈ [0, 1], (5.3)

where

ν(r, θ) :=


2 θ if r = 2

4 θ if r = 3

5 θ if r = 4

and ξ(r, θ) :=


3θ − 2 if r = 2

4θ − 2 if r = 3

5θ − 2 if r = 4

. (5.4)

Proof. Let Em := Wm −Wm
h for m = 0, . . . ,M . We will get (5.3) by interpolation, showing it for θ = 0

and θ = 1.
We use (4.4) and (5.2), to obtain: TB,h(Em − Em−1) + ∆τ Em = ∆τ (TB − TB,h)∆2Wm for m =

1, . . . ,M . Taking the L2(D)−inner product of both sides of the latter equation by Em and using (2.21),
we arrive at

‖∆(TB,hE
m)‖20,D−(∆(TB,hE

m−1),∆(TB,hE
m))0,D

+ ∆τ ‖Em‖20,D = ∆τ ((TB − TB,h)∆2Wm, Em)0,D

(5.5)

for m = 1, . . . ,M . Now, using the Cauchy-Schwartz inequality and the geometric mean inequality we
obtain

− 2 (∆(TB,hE
m−1),∆(TB,hE

m))0,D ≥ −
(
‖∆(TB,hE

m−1)‖20,D + ‖∆(TB,hE
m)‖20,D

)
(5.6)

for m = 1, . . . ,M . Next, we combine (5.5) and (5.6) to conclude

‖∆(TB,hE
m)‖20,D − ‖∆(TB,hE

m−1)‖20,D + 2 ∆τ ‖Em‖20,D ≤ 2 ∆τ ((TB − TB,h)∆2Wm, Em)0,D

for m = 1, . . . ,M . Summing with respect to m from 1 up to M , applying the Cauchy-Schwarz inequality
and using that TB,hE

0 = 0, we obtain

M∑
m=1

∆τ ‖Em‖20,D ≤
M∑
m=1

∆τ
∥∥(TB − TB,h)∆2Wm

∥∥2

0,D
. (5.7)

Let r = 3. Then, by (2.24) and (5.7), we obtain(
M∑
m=1

∆τ ‖Em‖20,D

) 1
2

≤ C h4

(
M∑
m=1

∆τ
∥∥∆2Wm

∥∥2

0,D

) 1
2

. (5.8)
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Taking the (·, ·)0,D−inner product of (4.4) with ∆2Wm, and then integrating by parts and summing with
respect to m from 1 up to M , it follows that

M∑
m=1

(∆Wm −∆Wm−1,∆Wm)0,D +

M∑
m=1

∆τ ‖∆2Wm‖20,D = 0. (5.9)

Since
∑M

m=1

(
∆Wm −∆Wm−1,∆Wm

)
0,D
≥ 1

2

(
‖∆WM‖20,D − ‖∆W 0‖20,D

)
, (5.9) yields

M∑
m=1

∆τ ‖∆2Wm‖20,D ≤ 1
2 ‖w0‖22,D. (5.10)

Combining, now, (5.8), (5.10) and (2.3), we obtain(
M∑
m=1

∆τ ‖Em‖20,D

) 1
2

≤ C h4 ‖w0‖Ḣ2 . (5.11)

Let r = 2. Then, by (2.24), (2.4) and (5.7), we obtain(
M∑
m=1

∆τ ‖Em‖20,D

) 1
2

≤C h2

(
M∑
m=1

∆τ
∥∥∆2Wm

∥∥2

Ḣ−1

) 1
2

≤C h2

[
−

M∑
m=1

∆τ (TE∆2Wm,∆2Wm)0,D

] 1
2

≤C h2

[
−

M∑
m=1

∆τ (∆Wm,∆2Wm)0,D

] 1
2

.

(5.12)

Taking the (·, ·)0,D−inner product of (4.4) with ∆Wm, integrating by parts and summing with respect
to m from 1 up to M , it follows that

M∑
m=1

(
∇Wm −∇Wm−1,∇Wm

)
0,D
−

M∑
m=1

∆τ (∆2Wm,∆Wm)0,D = 0. (5.13)

Since
∑M

m=1(∇Wm −∇Wm−1,∇Wm)0,D ≥ 1
2

[
‖∇WM‖20,D − ‖∇W 0‖20,D

]
, (5.13) yields

−
M∑
m=1

∆τ (∆2Wm,∆Wm)0,D ≤ 1
2 ‖w0‖21,D. (5.14)

Combining (5.12), (5.14) and (2.3) we get(
M∑
m=1

∆τ ‖Em‖20,D

) 1
2

≤ C h2 ‖w0‖Ḣ1 . (5.15)

Let r = 4. Then, observing that ∆2Wm ∈ Ḣ2(D) and using the relations (2.24), (2.4) and (5.7), we
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obtain (
M∑
m=1

∆τ ‖Em‖20,D

) 1
2

≤C h5

(
M∑
m=1

∆τ
∥∥∆2Wm

∥∥2

Ḣ1

) 1
2

≤C h5

(
M∑
m=1

∆τ
∥∥∆3Wm

∥∥2

Ḣ−1

) 1
2

≤C h5

[
−

M∑
m=1

∆τ (TE∆3Wm,∆3Wm)0,D

] 1
2

≤C h5

[
−

M∑
m=1

∆τ (∆2Wm,∆3Wm)0,D

] 1
2

.

(5.16)

After, applying the operator ∆ on (4.4), take the (·, ·)0,D−inner product of the obtained relation with
∆2Wm, integrate by parts and sum with respect to m from 1 up to M , to get

−
M∑
m=1

(
∆Wm −∆Wm−1,∆2Wm

)
0,D
−

M∑
m=1

∆τ (∆3Wm,∆2Wm)0,D = 0. (5.17)

Also, we have

−
M∑
m=1

(∆Wm −∆Wm−1,∆2Wm)0,D ≥
M∑
m=1

(
‖∆Wm‖2

Ḣ1 − ‖∆Wm‖Ḣ1 ‖∆Wm−1‖Ḣ1

)
≥ 1

2

M∑
m=1

(
‖∆Wm‖2

Ḣ1 − ‖∆Wm−1‖2
Ḣ1

)
≥ 1

2

(
‖∆WM‖2

Ḣ1 − ‖∆W 0‖Ḣ1

)
.

(5.18)

Thus, (5.17) and (5.18) yield

−
M∑
m=1

∆τ (∆3Wm,∆2Wm)0,D ≤ 1
2 ‖w0‖2Ḣ3 . (5.19)

Combining (5.16) and (5.19) we get(
M∑
m=1

∆τ ‖Em‖20,D

) 1
2

≤ C h5 ‖w0‖Ḣ3 . (5.20)

Thus, the relations (5.11), (5.15) and (5.20) yield (5.3) for θ = 1.
Since TB,h(Wm

h −W
m−1
h ) + ∆τ Wm

h = 0 for m = 1, . . . ,M , we obtain

1
2

M∑
m=1

[
‖∆(TB,hW

m
h )‖20,D − ‖∆(TB,hW

m−1
h )‖20,D

]
+

M∑
m=1

∆τ ‖Wm
h ‖20,D ≤ 0,

which, along with (2.22) and (2.4), yields(
M∑
m=1

∆τ ‖Wm
h ‖20,D

) 1
2

≤ 1√
2
‖∆(TB,hw0)‖0,D

≤C ‖w0‖Ḣ−2 .

(5.21)
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Now, using (4.4) and (2.17), we obtain (TEW
m − TEW

m−1, TEW
m)0,D + ∆τ ‖Wm‖20,D = 0 for m =

1, . . . ,M , which yields ‖TEWm‖20,D − ‖TEWm−1‖20,D + 2 ∆τ ‖Wm‖20,D ≤ 0 for m = 1, . . . ,M . Then,
summing with respect to m from 1 up to M , and using (2.13) and (2.4) we obtain(

M∑
k=1

∆τ ‖Wm‖20,D

) 1
2

≤ 1√
2
‖TEw0‖0,D

≤ C ‖w0‖−2,D

≤ C ‖w0‖Ḣ−2 .

(5.22)

Finally, combine (5.21) with (5.22) to get
(∑M

m=1 ∆τ ‖Em‖20,D
) 1

2 ≤ C ‖w0‖Ḣ−2 , which is equivalent to
(5.3) for θ = 0.

The following lemma ensures the existence of a continuous Green function for the solution operator
of a discrete elliptic problem.

Lemma 9. Let r ∈ {2, 3, 4}, ε > 0, f ∈ L2(D) and ψh ∈Mh such that

εBhψh + ψh = Phf. (5.23)

Then there exists a function Gh,ε ∈ C(D ×D) such that

ψh(x) =

∫
D

Gh,ε(x, y) f(y) dy ∀x ∈ D (5.24)

and Gh,ε(x, y) = Gh,ε(y, x) for x, y ∈ D.

Proof. Let dim(Mh) = nh and γh : Mh ×Mh → R be an inner product on Mh given by γh(χA, χB) :=
(∆χA,∆χB)0,D for χA, χB ∈Mh. We can construct a basis (χj)

nh
j=1 of Mh which is L2(D)−orthonormal,

i.e., (χi, χj)0,D = δij for i, j = 1, . . . , nh, and γh−orthogonal, i.e., there are (λh,`)
nh

`=1 ⊂ (0,+∞) such that
γh(χi, χj) = λh,i δij for i, j = 1, . . . , nh (see Section 8.7 in [9]). Thus, there are (µj)

nh
j=1 ⊂ R such that

ψh =
∑nh
j=1 µj χj , and (5.23) is equivalent to µi = 1

1+ε λh,i
(f, χi)0,D for i = 1, . . . , nh. Finally, we obtain

(5.24) with Gh,ε(x, y) =
∑nh
j=1

χj(x)χj(y)
1+ε λh,j

.

We are ready to compare, in the discrete in time L∞t (L2
P (L2

x)) norm, the time-discrete with the
fully-discrete Backward Euler approximations of û.

Proposition 10. Let r ∈ {2, 3, 4}, û be the solution of the problem (1.5), (Ûmh )Mm=0 be the Backward

Euler fully-discrete approximations of û specified in (1.7)-(1.8), and (Ûm)Mm=0 be the Backward Euler time-
discrete approximations of û specified in (4.1)-(4.2). Then, there exists a constant C > 0, independent of
∆x, ∆t, h and ∆τ , such that

max
1≤m≤M

{
E
[∥∥Ûmh − Ûm∥∥2

0,D

]} 1
2 ≤ C ε−

1
2 hν?(r,d)−ε, ∀ ε ∈ (0, ν?(r, d)] (5.25)

where

ν?(r, d) :=

{
4−d

3 if r = 2
4−d

2 if r = 3, 4
. (5.26)

Proof. Let I : L2(D) → L2(D) be the identity operator and Λh : L2(D) → Srh be the inverse discrete
elliptic operator given by Λh := (I + ∆τ Bh)−1Ph and having a Green function Gh,∆τ (cf. Lemma 9).
Also, for ` ∈ N, we denote by Gh,∆τ,` the Green function of Λ`h. Using, now, an induction argument, from

(1.8) we conclude that Ûmh =
∑m

j=1

∫
∆j

Λm−j+1
h Ŵ (τ, ·) dτ , m = 1, . . . ,M , which is written, equivalently,

as follows:

Ûmh (x) =

∫ τm

0

∫
D

D̂h,m(τ ;x, y) Ŵ (τ, y) dydτ ∀x ∈ D, m = 1, . . . ,M, (5.27)
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where

D̂h,m(τ ;x, y) :=

m∑
j=1

X∆j
(τ)Gh,∆τ,m−j+1(x, y) ∀ τ ∈ [0, T ], ∀x, y ∈ D.

Using (4.7), (5.27), the Itô-isometry property of the stochastic integral (2.6), (2.5) and (2.8), we get

E
[
‖Ûm − Ûmh ‖20,D

]
≤
∫ τm

0

(∫
D

∫
D

[
K̂m(τ ;x, y)− D̂h,m(τ ;x, y)

]2
dydx

)
dτ

≤
m∑
j=1

∫
∆j

‖Λm−j+1 − Λm−j+1
h ‖2HS dτ, m = 1, . . . ,M,

where Λ is the inverse elliptic operator defined in the proof of Theorem 7. Now, we use the definition of
the Hilbert-Schmidt norm and the deterministic error estimate (5.3), to have

E
[
‖Ûm − Ûmh ‖20,D

]
≤

m∑
j=1

∆τ

 ∑
α∈Nd

‖Λm−j+1εα − Λm−j+1
h εα‖20,D


≤
∑
α∈Nd

 m∑
j=1

∆τ ‖Λjεα − Λjhεα‖
2
0,D


≤ C h2 ν(r,θ)

∑
α∈Nd

‖εα‖2Ḣξ(r,θ) , m = 1, . . . ,M, ∀ θ ∈ [0, 1].

Thus, we arrive at

max
1≤m≤M

(
E
[
‖Ûm − Ûmh ‖20,D

]) 1
2 ≤ C hν(r,θ)

∑
α∈Nd

|α|2 ξ(r,θ)
Nd

 1
2

, ∀ θ ∈ [0, 1],

from which, requiring −2 ξ(r, θ) > d and using (2.10), (5.25), easily, follows.

The available error estimates allow us to conclude a discrete in time L∞t (L2
P (L2

x)) convergence of the
Backward Euler fully-discrete approximations of û, over a uniform partition of [0, T ].

Theorem 11. Let r ∈ {2, 3, 4}, ν?(r, d) be defined by (5.26), û be the solution of problem (1.5), and

(Ûmh )Mm=0 be the Backward Euler fully-discrete approximations of û constructed by (1.7)-(1.8). Then,
there exists a constant C > 0, independent of T , h, ∆τ , ∆t and ∆x, such that

max
0≤m≤M

{
E
[
‖Ûmh − û(τm, ·)‖20,D

]} 1
2 ≤ C

[
ω̃(∆τ, ε1) ∆τ

4−d
8 −ε1 + ε

− 1
2

2 hν?(r,d)−ε2
]
, (5.28)

for ε1 ∈
(
0, 4−d

8

]
and ε2 ∈

(
0, ν?(r, d)

]
where ω̃(∆τ, ε1) := ε

− 1
2

1 + (∆τ)ε1(pd(∆τ
1
4 ))

1
2 .

Proof. The estimate is a simple consequence of the error bounds (5.25) and (4.6).

Remark 3. Let us find the optimal value for the parameters ε1 and ε2 in (5.28) and for parameter ε in

(3.1). Let g(ε) = ε−
1
2 δ−ε for ε ∈ (0, γ] where γ, δ ∈ (0, 1). Then, a simple calculation yields

g′(ε) = ε−
3
2 δ−ε ( ε− ε̃(δ) ) ( ε+ ε̃(δ) ), ∀ ε ∈ (0, γ],

where ε̃(δ) := 2−
1
2 | log(δ)|− 1

2 . Since limδ→0 ε̃(δ) = 0, there exists δγ ∈ (0, 1) such that ε̃(δ) ∈ (0, γ) for
δ ∈ (0, δγ ]. Now, assuming that δ ∈ (0, δγ ], we conclude that

min
ε∈(0,γ]

g(ε) = g (ε̃(δ)) = 2
1
4 | log(δ)| 14 δ

− 1√
2
√
| log(δ)| .
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Thus, assuming that h and ∆τ are small enough, and setting ε1 = ε̃(∆τ) and ε2 = ε̃(h), the error estimate
(5.28) is written in the form

O

(
∆τ

4−d
8 −

1√
2
√
| log(∆τ)| | log(∆τ)| 14 + h

ν?(r,d)− 1√
2
√
| log(h)| | log(h)| 14

)
.

Proceeding in a similar way, the error bound (3.1) is written as

O

(
∆t

4−d
8 + ∆x

4−d
2 −

1√
2
√
| log(∆x)| | log(∆x)| 14

)
.

Remark 4. The solution u of (1.1) is β−Hölder in t and β′−Hölder in x with β < 4−d
8 and β′ < 4−d

2
(see, e.g., [5], [10]). This is the reason why the expected order of convergence in time and space, are
respectively β and β′. According to Theorem 11, the expected order of convergence in time is achieved
and the expected order of convergence in space is also achieved when r = 3, 4. For r = 2, the order of
convergence in space is lower and an explanation for that is the fact that the order of convergence in the
L2(D)−norm of the finite element method for the biharmonic problem is equal to 2 and not equal to
r+ 1 = 3 as it is for r = 3, 4 (see Proposition 4). The expected order of convergence in time and in space
are also obtained in [4] and [21] for other type of numerical methods.
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