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ON THE EXISTENCE OF SOLUTION FOR A
CAHN-HILLIARD/ALLEN-CAHN EQUATION

GEORGIA KARALI, YUKO NAGASE, AND TONIA RICCIARDI

Abstract. We consider the existence of the solution for the Cahn-Hilliard/Allen-Cahn
equation, which was studied in [11]. This mean field partial differential equation con-
tains qualitatively microscopic information on particle-particle interactions and multiple
particle dynamics. For a bounded potential or in one-dimensional case, the existence
was proved in [12]. In this paper, we improve the existence for a standard double-well
potential in dimension 1 ≤ n ≤ 4 with Neumann boundary conditions in view of the free
energy.

AMS classification : 35G25, 35G30, 82B26
keywords : Allen-Cahn equation, Cahn-Hilliard equation, mean curvature flow, quartic
bistable potential

1. Introduction

We consider a scalar Cahn-Hilliard/Allen-Cahn equation;

(1.1)

 ut = −δ∆(∆u−W ′(u)) + (∆u−W ′(u)) in Ω× [0, T ),
u(x, 0) = u0(x) in Ω,
∂u
∂ν

= ∂∆u
∂ν

= 0 on ∂Ω,

where Ω is a bounded domain in Rn, ν is the unit normal on ∂Ω, δ > 0 is a diffusion
constant and W ∈ C3(Ω;R+ ∪ {0}) is a quartic bistable potential which has zeros at ±1,
that is, there exists a constant c > 0 such that

(1.2) |W (i)(s)| ≤ c(1 + |s|4−i) for s ∈ R i = 0, 1, 2.

As known results, for the Cahn-Hilliard equation the existence of the solution is proved
in [5] by the Galerkin approximation, for the degenerate mobility case in [4]. For the
equation (1.1) it is proved in [12] for a C2-bounded potential or in the one-dimensional
case. In this paper we show the existence of the solution of (1.1). We actually prove
the existence for the quartic potential W in space dimension 1 ≤ n ≤ 4 by the Galerkin
method.

For the equation (1.1) the volume
∫

Ω
u dx is not necessarily preserved because of the

Allen-Cahn term, although the volume is preserved for Cahn-Hilliard equation. Thus we
have to pay careful attention to estimate Galerkin ansatz by using some inequalities and
interpolations and the energy estimates.

The Cahn-Hilliard/Allen-Cahn equation is introduced in [8] and [13] as a simplified
model with multiple microscopic mechanism. The Cahn-Hilliard model can describe sur-
face diffusion including particle/particle interactions, while the Allen-Cahn describes a
simplified model of adsorption to and desorption from the surface. It is well known that
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the Allen-Cahn and Cahn-Hilliard equations can serve as diffuse interface models for
limiting sharp interface motion. In [11] they considered the ε-scaled problem;

(1.3) uεt = −ε2δ∆(∆uε − W ′(uε)

ε2
) + (∆uε − W ′(uε)

ε2
) in Ω× [0, T ).

For the Allen-Cahn equation uεt = ∆uε − W ′(uε)
ε2

or the Cahn-Hilliard equation uεt =

∆(∆uε − W ′(uε)
ε2

), there are several studies about the singular limit as ε tends to 0. It
is well-known that the limit evolution of the Allen-Cahn equation is the mean curvature
flow, which is proved in the several methods, formally by Fife in [7], Rubinstein, Sternberg
and Keller in [19], from the viscosity solution by Evans and Spruck in [6] and Chen, Giga
and Goto in [3], in the sense of Brakke’s motion [2] by Ilmanen in [10]. The Cahn-
Hilliard equation was constructed to describe mass conservative phase separation. By
considering an appropriate singular limit (as ε tends to 0) it can describe the motion
of interphase boundaries separating two phases of differing composition during the later
stages of coarsening. In a suitable scale it is proved that the limit evolution is the Mullins-
Sekerka model, a result which was formally proved in [18] and rigorously in [1].

For (1.3), the order of the convergence of ε is sufficiently large to vanish for the Cahn-
Hilliard term and actually it is proved in [11] that the limit evolution is also mean curvature
flow but with a different coefficient;

(1.4) V = µσκ

where V is the normal velocity and κ is the mean curvature of the limit interface, σ is a

surface tension given by σ =
∫ 1

−1

√
W (s)ds and µ is a mobility constant given by

(1.5) µ = 2(

∫
R
χq′ dx)−1

where q = tanh is a well-known function which is used in order to describe transition
profile of the Allen-Cahn equation and χ is a solution of the ODE

(1.6) −δχ′′ + χ = q′ in R and χ(±∞) = 0.

It is worth mentioning that the mobility is completely different from the one of the Allen-
Cahn equation (V = k). This implies in particular that the diffusion speeds up the mean
curvature flow.

In [12] focusing on the continuous dependence of the diffusion constant δ they con-
structed a sequence of solutions which converges to a solution of the Allen-Cahn equation
as δ tends to 0.

Concerning the Allen-Cahn structure we set

(1.7) v := ∆u−W ′(u).
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and we rewrite (1.1) to the following form;

(1.8)


ut = −δ∆v + v in Ω× [0, T ),
v = ∆u−W ′(u) in Ω× [0, T ),
u(x, 0) = u0(x) in Ω,
∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω.

For the diffused interface problem, we usually consider the free energy functional given
by

(1.9) E(u) =

∫
Ω

|∇u|2

2
+W (u) dx.

In the stationary problem for ε-scaled energy Eε(u) =
∫

Ω
ε|∇u|2

2
+ W (u)

ε
dx, there are

various interesting analysis of the singular limit as ε tends to zero, in connection with the
theory of the minimal surface. As a celebrated result, Modica and Mortola in [16] and
Sternberg in [20] proved the Γ-convergence of the energy to the perimeter of the minimal
area surface. In [15] Luckhaus and Modica showed that for the minimization problem of
Eε under the volume constraint, the Lagrange multiplier in the Euler-Lagrange equation,
converges to the mean curvature of the minimal area surface. Moreover in the general
critical point, Hutchinson and Tonegawa proved that the chemical potential converges to
the mean curvature of the limit interface in varifold sense in [9].

Concerning the time evolution equation, for a pair of solution (u, v) of (1.8) it holds
that

d

dt
E(u) =

∫
Ω

(−∆u+W ′(u))ut dx =

∫
Ω

−v(−δ∆v + v) dx

= −
∫

Ω

δ|∇v|2 + v2 dx ≤ 0,

(1.10)

which implies that the equation (1.3) is a flow for the free energy functional E(u).
For the mathematical setting we introduce

(1.11) H2
bc(Ω) :=

{
f ∈ H2(Ω) | df

dν
= 0 on ∂Ω

}
and

(1.12) H4
bc(Ω) :=

{
f ∈ H4(Ω) | df

dν
=
d∆f

dν
= 0 on ∂Ω

}
.

We remark that equivalences of norms in these spaces are known, referred to [17], that is,
for any η > 0,

(1.13) {‖∆u‖2
L2(Ω) + η‖u‖2

L2(Ω)}
1
2
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are norms on H2
bc(Ω) which are equivalent to the H2(Ω)-norm. Similarly,

(1.14) {‖∆2u‖2
L2(Ω) + η‖u‖2

L2(Ω)}
1
2

are norms on H4
bc(Ω) which are equivalent to the H4-norm.

The weak formulation of the problem is the following;

Definition 1.1. We say a function u ∈ L2(0, T ;H2
bc(Ω)) with ut ∈ L2(0, T ; (H1(Ω))−1) is

a weak solution of the equation (1.1) if∫
Ω

utη dx =

∫
Ω

−δ(∆u−W ′(u))∆η + (∆u−W ′(u))η dx.(1.15)

for each η ∈ H2
bc(Ω) and a.e. time t ∈ [0, T ] and

(1.16) u(x, 0) = u0(x).

Remark 1.2. For the pairing in LHS of (1.15), we note that L2(Ω) ⊂ (H1(Ω))−1 ⊂
(H2(Ω))−1. Since if u ∈ L2(0, T ;H2

bc(Ω)) with ut ∈ L2(0, T ; (H1(Ω))−1) then u ∈ C([0, T ];L2(Ω)),
thus the equality (1.16) makes sense.

Throughout this paper, different positive constants will be denoted by the same letter
c. We write c(s) when it is helpful to write out the dependence of c on s.

Next, we prove existence for the quartic potential W in space dimension 1 ≤ n ≤ 4 by
the Galerkin method.

2. The existence theorem

We obtain the following existence theorem.

Theorem 2.1. Let Ω be a bounded domain with a C4-boundary in Rn for dimension
1 ≤ n ≤ 4. Suppose the initial data u0 ∈ H1(Ω) then there exists a solution u of the initial
boundary problem (1.1) satisfying

(2.1) u ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2
bc(Ω)) ∩ L4((0, T )× Ω) for all T > 0.

Additionally, the function v given by (1.7) satisfies v ∈ L2(0, T ;H1(Ω)).
Moreover in dimension n = 1, 2, 3, if ∂Ω is C∞ and the initial data u0 ∈ H2(Ω), then

(2.2) u ∈ C([0, T ];H2
bc(Ω)) ∩ L2(0, T ;H4

bc(Ω)) for all T > 0.

Remark 2.2. The same claim also holds under the periodic boundary condition. In the
proof for simplicity we consider the explicit and typical potential, given by W (s) = (1−s2)2

without loss of generality.

Remark 2.3. For ε-scaled problem, we can also prove the existence of solution if we
assume the boundedness of the initial energy.
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Proof. (STEP1) First we consider the case of the initial value u0 ∈ H1(Ω). We show the
existence of the solution by applying a Galerkin method. Let {λi}i∈N be eigenvalues and
{φi}i∈N be eigenfunctions of Laplacian under the Neumann boundary condition

(2.3) −λiφi = ∆φi in Ω,
∂φi
∂ν

= 0 on ∂Ω for i = 1, 2, · · · .

We can assume that the first eigenvalue λ1 = 0 and the normalization condition (φi, φj)L2(Ω) =
δij for 0 = λ1 < λ2 ≤ λ3 ≤ · · · without loss of generality. For every N ∈ N we consider

the following function uN defined by the Galerkin ansatz

(2.4) uN(x, t) =
N∑
i=1

aNi (t)φi(x),

∫
Ω

uNt φj dx+ δ∆uN∆φj − δW ′(uN)∆φj −∆uNφj +W ′(uN)φj dx = 0(2.5)

for j = 1, · · · , N, and

(2.6) uN(x, 0) =
N∑
i=1

(u0, φi)L2(Ω) φi(x) for j = 1, · · · , N.

This yields the following initial value problem of ODE for aNj (t) for j = 1, · · · , N

(2.7)
d

dt
aNj (t) + δλ2

ja
N
j (t) + δλj(W

′(uN), φj)L2(Ω) + λja
N
j + (W ′(uN), φj)L2(Ω) = 0.

and

(2.8) aNj (0) = (u0, φj)L2(Ω).

By the standard argument of ODE, this initial value problem has a local solution. We
want to show that a global solution {aNj }Nj exists on (0, T ) for any T > 0.

By multiplying φjuN for each j = 1, · · · , N by both side of (2.7), taking
∑N

j=1 and

integrating, we have

d

dt

∫
Ω

|uN |2 dx+

∫
Ω

δ|∆uN |2 + 12δ|∇uN |2|uN |2 + |∇uN |2 + |uN |4 dx

= 4

∫
Ω

|uN |2 dx+ 4δ

∫
Ω

|∇uN |2 dx.
(2.9)
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For the second term of RHS of (2.9), by interpolation and the equivalence of the norm
(1.13), we have

4δ

∫
Ω

|∇uN |2 dx ≤ cδ‖uN‖L2(Ω)‖uN‖H2(Ω)

≤ cδ‖uN‖L2(Ω){
∫

Ω

|∆uN |2 dx+ ‖uN‖2
L2(Ω)}

1
2

≤ cδ

∫
Ω

|uN |2 dx+
δ

2

∫
Ω

|∆uN |2 dx.

(2.10)

By (2.9) and (2.10), we have

(2.11)
d

dt

∫
Ω

|uN |2 dx+

∫
Ω

δ

2
|∆uN |2 + |∇uN |2 + |uN |4 dx ≤ c

∫
Ω

|uN |2 dx.

Thus by Gronwall’s inequality for an arbitrary fixed T > 0, we have

(2.12)

∫
Ω

|uN |2 dx ≤ c ecT
∫

Ω

|uN(x, 0)|2 dx.

By the definition of aNj (0) in (2.8), we have

∫
Ω

|uN(x, 0)|2 dx =
N∑
j=1

|aj(0)|2 =
N∑
j=1

{
∫

Ω

u0(x)φj(x) dx}2

≤
∞∑
j=1

{
∫

Ω

u0(x)φj(x) dx}2 =

∫
Ω

|u0|2 dx.

(2.13)

Thus by (2.12), (2.11) and (2.13), uN is bounded independently of N in L∞(0, T ;L2(Ω)),
L2(0, T ;H2(Ω)) and L4((0, T )× Ω).

Since ‖uN‖L2(Ω) =
∑N

i=1(aNi (t))2, by L∞(0, T ;L2(Ω))-bound of uN we obtain a priori

bound of aNj for j = 1, · · · , N. Thus the ODE (2.7) and (2.8) have a global solution.

In order to estimate of ‖∇uN‖L∞(0,T ;L2(Ω)) we consider the energy E(uN). We set bNj (t)

and vN(x, t) such as

(2.14) bNj = −λjaNj (t)− (W ′(uN), φj)L2(Ω)

and

(2.15) vN(x, t) =
N∑
j=1

bNj (t)φj(x).
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By the definition of vN and bNj , we have

(2.16) −
∫

Ω

δ|∇vN |2 + |vN |2 dx =
d

dt

∫
Ω

|∇uN |2

2
+W (uN) dx.

By integrating with respect to t ∈ (0, T ], we have

(2.17)

∫ t

0

∫
Ω

δ|∇vN |2 + |vN |2 dx dt+ E(uN(t)) = E(uN(0))

Since the initial data u0 is H1-function, the initial energy E(u0) is well-defined in dimen-
sion 1 ≤ n ≤ 4 by the Sobolev inequality and we denote E0 := E(u0). We claim that
there exists a constant cE0 = cE0(E0, ‖u0‖H1(Ω)) > 0 such that

(2.18) E(uN(0)) ≤ cE0 .

Indeed, by (2.6) we have

∫
Ω

|∇uN(0)|2 dx =
N∑
i=1

(u0, φi)
2
L2(Ω)

∫
Ω

|∇φi|2 dx =
N∑
i=1

(u0, φi)
2
L2(Ω)λi

≤
∞∑
i=1

(u0, φi)
2
L2(Ω)λi =

∫
Ω

|∇u0|2 dx ≤ E0.

(2.19)

For the second term of the energy,

(2.20)

∫
Ω

W (uN(0)) dx ≤ c(1 +

∫
Ω

|uN(0)|4 dx).

By (2.13) and (2.19), we notice that

(2.21) ‖uN(0)‖H1(Ω) ≤ ‖u0‖H1(Ω).

In dimension n = 1, by (2.21) and the Sobolev inequality, we have

(2.22) ‖uN(0)‖C(Ω) ≤ c‖uN(0)‖H1(Ω) ≤ c‖u0‖H1(Ω).

In dimension n = 2, 3, 4, similarly by (2.21) and the Sobolev inequality, we have

(2.23) ‖uN(0)‖L4(Ω) ≤ c‖uN(0)‖H1(Ω) ≤ c‖u0‖H1(Ω).

By (2.20), (2.22) and (2.23), the potential term of the energy is bounded. Thus the
claim (2.18) holds and by (2.17) and (2.18), ‖∇uN‖L∞(0,T ;L2(Ω)) is bounded. Thus uN ∈

L∞(0, T ;H1(Ω)) and there exists a constant cH1 > 0 independent of N satisfying

(2.24) ‖uN‖L∞(0,T ;H1(Ω)) ≤ cH1 .
7



Moreover, we choose t = T in (2.17), by (2.18) we obtain

(2.25) ‖vN‖L2(0,T ;H1(Ω)) ≤ c(δ).

Let ΠN be a projection of L2(Ω) onto span{φ1, · · · , φN}. For all ζ ∈ L2(0, T ;H1(Ω))
by (2.7), (2.14) and (2.15) we have

|
∫ T

0

∫
Ω

uNt ζ dxdt| = |
∫ T

0

∫
Ω

∂tu
NΠNζ dxdt|

= |
∫ T

0

∫
Ω

−δ∇vN∇ΠNζ +

∫ T

0

∫
Ω

vNΠNζ dxdt|

≤ c‖∇vN‖L2(Ω×(0,T ))‖∇ζ‖L2(Ω×(0,T )) + ‖vN‖L2(Ω×(0,T ))‖ζ‖L2(Ω×(0,T ))

≤ c‖vN‖L2(0,T ;H1(Ω))‖ζ‖L2(0,T ;H1(Ω)).

(2.26)

Thus by (2.26) we have

(2.27) ‖∂tuN‖L2(0,T ;(H1(Ω))−1) ≤ c.

Together with L4((0, T )× Ω) and L2(0, T ;H2(Ω)) boundedness of uN , (2.24), (2.25) and
(2.26) by the compactness results in [14], there exist (u, v) and a subsequence, which we
denote {uN} and {vN} again, such that

(2.28) uN → u weak− ∗ in L∞(0, T ;H1(Ω)),

(2.29) uN → u weakly in L2(0, T ;H2(Ω)) and L4((0, T )× Ω),

(2.30) uN → u strongly in C([0, T ];L2(Ω)),

(2.31) uNt → ut weakly in L2(0, T ; {H1(Ω)}−1),

(2.32) uN → u strongly in L2(0, T ;L2(Ω)) and a.e. in Ω× (0, T )

and

(2.33) vN → v weakly in L2(0, T ;H1(Ω))

as N tends to ∞. Consequently, we can pass to the limit in (2.4), (2.5) and (2.6) and we
obtain

∫
Ω

utφj + δ∆u∆φj − δW ′(u)∆φj −∆uφj +W ′(u)φj dx = 0 for j = 1, · · · , N.

(2.34)
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Let η be an arbitrary function in L2(0, T ;H2
bc(Ω)) and {ηk} be its approximation given

by the form

(2.35) ηk(x, t) =
k∑
i=1

dki (t)φi(x)

where {di}ki=1 are smooth functions. As the function of the form (2.35) are dense in
L2(0, T ;H2

bc(Ω) we can take such a sequence. By (2.34) the following equality holds

∫ T

0

∫
Ω

utηk + δ∆u∆ηk − δW ′(u)∆ηk −∆uηk +W ′(u)ηk dxdt = 0.(2.36)

Taking limit with respect to k, for η we have

∫ T

0

∫
Ω

utη + δ∆u∆η − δW ′(u)∆η −∆uη +W ′(u)η dxdt = 0.(2.37)

Hence in particular, for each η ∈ H2
bc(Ω) and a.e. 0 ≤ t ≤ T

(2.38)

∫
Ω

utη + δ∆u∆η − δW ′(u)∆η −∆uη +W ′(u)η dx = 0.

For the convergence of the initial value uN(0), by the strong convergence of uN in
C([0, T ];L2(Ω)), uN(0) converges to u0 in L2(Ω). Thus we have that u(0) = u0. Then the
first claim of the theorem holds.

(STEP 2) Next we consider the case of the initial value u0 ∈ H2(Ω). Adding to the pre-
vious calculation, we consider the bound of supt∈(0,T ) ‖∆uN‖L2(Ω). By multiplying φj∆

2uN

for j = 1, · · · , N by both side of (2.7), taking
∑N

j=1 and integrating, we have

d

dt

∫
Ω

|∆uN |2dx+

∫
Ω

δ|∆2uN |2 + (D(∆uN))2 dx

= −
∫

Ω

δ∆W ′(uN)∆2uN + ∆W ′(uN)∆uN dx.

(2.39)

For the RHS of (2.39) by the Cauchy-Schwarz inequality, we have

d

dt

∫
Ω

|∆uN |2dx+

∫
Ω

δ

2
|∆2uN |2 + (D(∆uN))2 dx

≤ c

∫
Ω

δ|∆W ′(uN)|2 dx+ c

∫
Ω

|∆uN |2 dx.
(2.40)
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For the first term of (2.40) we claim that

(2.41)

∫
Ω

δ|∆W ′(uN)|2 dx ≤ δ

4

∫
Ω

|∆2uN |2 dx+ c

∫
Ω

|∆uN |2 dx+ c.

Indeed, since ∆W ′(uN) = W ′′′(uN)|DuN |2 +W ′′(uN)∆uN , we have∫
Ω

|∆W ′(uN)|2 dx

≤ c

∫
Ω

|uN |2|DuN |4 dx+ c

∫
Ω

(1 + |uN |4)|∆uN |2 dx

≤ c‖uN‖2
L∞(Ω)‖DuN‖4

L4(Ω) + c‖uN‖4
L∞(Ω)

∫
Ω

|∆uN |2 dx+ c

∫
Ω

|∆uN |2 dx.

(2.42)

For the term ‖DuN‖4
L4(Ω), by the Sobolev inequality, interpolation and (1.14), we have

‖DuN‖L4(Ω) ≤c‖uN‖H1+n
4 (Ω)

≤ c‖uN‖1− n
12

H1(Ω)‖u
N‖

n
12

H4(Ω)

≤ c(cH1)(‖∆2uN‖2
L2(Ω) + 1)

n
24 .

(2.43)

For the term
∫

Ω
|∆uN |2 dx, by interpolation and (1.14) we have

(2.44) ‖∆uN‖L2(Ω) ≤ ‖uN‖H2(Ω) ≤ c‖uN‖
2
3

H1(Ω)‖u
N‖

1
3

H4(Ω) ≤ c(cH1)(1 + ‖∆2uN‖2
L2(Ω))

1
6 .

Thus by (2.42), (2.43) and (2.44) we have∫
Ω

|∆W ′(uN)|2 dx ≤c‖uN‖2
L∞(Ω)(c+ ‖∆2uN‖2

L2(Ω))
n
6

+ c‖uN‖4
L∞(Ω)(c+ ‖∆2uN‖2

L2(Ω))
1
3 + c

∫
Ω

|∆uN |2 dx.
(2.45)

For ‖uN‖L∞(Ω), in dimension n = 1 we have

(2.46) ‖uN‖L∞(Ω) ≤ c‖uN‖H1(Ω) ≤ c‖uN‖L∞(0,T ;H1(Ω)) ≤ c.

In dimension n = 2, since H1+ε(Ω) ⊂ L∞(Ω) for all ε > 0, by taking ε = 1
6

and interpo-
lation, we have

(2.47) ‖uN‖L∞(Ω) ≤ c‖uN‖H1+ε(Ω) ≤ c‖uN‖1−ε
H1(Ω)‖u

N‖εH4(Ω) ≤ c(1 + ‖∆2uN‖2
L2(Ω))

1
12 .
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In dimension n = 3, since ∂Ω is smooth we can use Agmon’s inequality and by (2.44) we
have

(2.48) ‖uN‖L∞(Ω) ≤ c‖uN‖
1
2

H1(Ω)‖u
N‖

1
2

H2(Ω) ≤ c(c+ ‖∆2uN‖2
L2(Ω))

1
12 .

Thus together with (2.42), (2.43), (2.44), (2.45), (2.46) and (2.48) by the Cauchy-Schwarz
inequality, we have∫

Ω

|∆W ′(uN)|2 dx ≤ δ

4

∫
Ω

|∆2uN |2 dx+ c

∫
Ω

|∆uN |2 dx+ c.(2.49)

Thus by (2.40) and (2.49), we have

(2.50)
d

dt

∫
Ω

|∆uN |2dx+

∫
Ω

δ

4
|∆2uN |2 + (D(∆uN))2 dx ≤ c

∫
Ω

|∆uN |2 dx+ c.

By applying Gronwall’s inequality again, we have

(2.51) sup
t∈(0,T )

∫
Ω

|∆uN |2 dx ≤ c

∫
Ω

|∆uN(0)|2 dx+ c.

By the definition of uN in (2.4) and aNj (0) in (2.8), we have

(2.52)

∫
Ω

|∆uN(0)|2 dx =
N∑
j=1

(λjaj(0))2 ≤
∞∑
j=1

(λjaj(0))2 =

∫
Ω

|∆u0|2 dx.

By (2.50), (2.51) and (2.52), we have uN ∈ L∞(0, T ;H2
bc(Ω)) ∩ L2(0, T ;H4

bc(Ω)). Thus we
can take a subsequence satisfying

(2.53) uN → u weak− ∗ in L∞(0, T ;H2
bc(Ω))

and

(2.54) uN → u weakly in L2(0, T ;H4(Ω))

adding to the previous convergence from (2.28) to (2.32) as N tends to ∞. Therefore, all
the claim of the theorem holds.

�

Remark 2.4. If we consider the convergence of (1.1) to the Allen-Cahn equation with
respect to the diffused constant δ, we can not let δ → 0 in this proof since the estimates
of the top term in (2.11) and (2.40) depend on δ. But we can drop these terms by their
positivity and it follows that if u0 ∈ H1(Ω) then u ∈ C([0, T ];H1(Ω)) and if u0 ∈ H2(Ω)
then u ∈ C([0, T ];H2

bc(Ω)) independent of δ.
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