ПANEПIइTHMIO KPHTH乏－TMHMA EФAPMOミMEN』N MAOHMATIKתN \mathcal{A} Archimedes Center for Modeling，Analysis \＆Computation UNIVERSITY OF CRETE－DEPARTMENT OF APPLIED MATHEMATICS Archimedes Center for Modeling，Analysis \＆Computation \mathcal{C}

ACMAC＇s PrePrint Repository

A nonlinear partial differential equation for the volume preserving mean curvature flow

Dimitra Antonopoulou and Georgia Karali

Original Citation：

Antonopoulou，Dimitra and Karali，Georgia
（2011）
A nonlinear partial differential equation for the volume preserving mean curvature flow．
（Submitted）
This version is available at：http：／／preprints．acmac．uoc．gr／70／
Available in ACMAC＇s PrePrint Repository：February 2012
ACMAC＇s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC．

A NONLINEAR PARTIAL DIFFERENTIAL EQUATION FOR THE VOLUME PRESERVING MEAN CURVATURE FLOW

DIMITRA ANTONOPOULOU, GEORGIA KARALI

Abstract

We analyze the evolution of multi-dimensional normal graphs over the unit sphere under volume preserving mean curvature flow and derive a non-linear partial differential equation in polar coordinates. Furthermore, we construct finite difference numerical schemes and present numerical results for the evolution of non-convex closed plane curves under this flow, to observe that they become convex very fast.

1. Introduction

In this paper, we study the evolution of normal graphs over the unit sphere under volume preserving mean curvature flow (VPMCF). We use a proper diffeomorphism and a general parametrization of the unit sphere. Our main goal is to express evolution as an initial and boundary value problem with periodic conditions for a second order non-linear partial differential equation with non-local integral terms. In addition for the two-dimensional case, we solve the problem numerically by applying finite difference schemes.

Given an initial simple and closed hypersurface S_{0} in \mathbb{R}^{n+1}, we seek a family

$$
S=\left\{S_{t} ; t \geq 0\right\}
$$

of smooth closed hypersurfaces in \mathbb{R}^{n+1} on which the following equation is satisfied, [4]

$$
\begin{equation*}
V=h-H \text { on } S_{t}, \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

Here $V=V(\sigma, t)$ and $H=H(\sigma, t)$ denote respectively the normal velocity and mean curvature of a point σ on S_{t}. The mean curvature on S_{t} is defined as an average of principal curvatures or equivalently as the trace of the second fundamental form. The function $h=h(t)$ is defined as the average of the mean curvature on S_{t}

$$
\begin{equation*}
h(t):=\frac{\int_{S_{t}} H(\sigma, t) d \sigma}{\int_{S_{t}} d \sigma}, t \geq 0 \tag{1.2}
\end{equation*}
$$

A basic property of the averaged mean curvature flow (1.1) is that it defines a volume preserving and area shrinking hypersurfaces family $\left\{S_{t} ; t \geq 0\right\}$. Any Euclidean sphere in \mathbb{R}^{n+1} is a static solution of (1.1). Existence and uniqueness of solution of (1.1) for smooth initial hypersurfaces is proved in [9] and [5]. Huisken [9] (and Gage [5] in the case of curves) proved that the solution of (1.1) exists globally and converges to a sphere, if the initial surface S_{0} is convex and smooth, while for any $t \geq 0 S_{t}$ remains convex. Extending the previous results, Escher and Simonett

[^0]in [4] proved that convexity is not necessary for global existence, i.e. there are non-convex initial conditions S_{0} such that the solution of (1.1) exists globally and converges exponentially fast to a sphere. Gage and Hamilton analyzed the heat equation on convex plane curves in [6].

Alikakos and Freire [1] have shown neckpinching of certain class of rotationally symmetric surfaces under volume preserving mean curvature flow. Later, Gang and Sigal analyzed the motion of surfaces of revolution under mean curvature flow, [7]. Escher and Simonett in [4] proved for (1.1) by means of a center manifold analysis the asymptotic stability of spheres under Hölder norm. In [2] a proof of this result is given in Sobolev norms by orthogonal decomposition of the solutions near the manifold of Euclidean spheres and by making use of certain properties of Lyapunov functionals.

In Section 2, introducing a suitable diffeomorphism we present S_{t} as a normal graph over the unit sphere in polar coordinates. In the next section we use this coordinate system and write (1.1) in an equivalent formulation. The resulting equation presented in Theorem 3.2 for general n and Remark 3.6 for the two-dimensional case is an evolutionary in time non-linear partial differential equation (p.d.e.). Struwe, in [12], derived in a more geometric manner in cartesian coordinates the evolution equation for the mean curvature flow considering the multidimensional case. In this paper, we analyze the volume preserving mean curvature flow and propose the use of a polar coordinates system in order to present evolution as an initial and boundary value problem.

Finally, in Section 4 we solve the problem numerically for non-convex initial conditions by applying explicit finite difference schemes. The numerical results agree to the theoretical result of asymptotic convergence to spheres; a general experimental observation is that non-convex curves evolving under volume preserving mean curvature flow become convex very fast. Our numerical experiments verify for the VPMCF the elegant theoretical result of Grayson [8] proved for smooth embedded curves in \mathbb{R}^{2} evolving under mean curvature flow. The result of Grayson completed the proof of the conjecture that curve shortening shrinks embedded plane curves smoothly to points, with round limiting shape, while these curves become convex without developing singularities. In our case, the flow of evolution is different since we refer to the volume preserving mean curvature flow (VPMCF), while the curve under this flow does not shrink to a point but converges asymtotically to a sphere always keeping the initial enclosed volume.

2. Normal graphs

Let Γ be a smooth hypersurface in \mathbb{R}^{n+1}. A hypersurface S in \mathbb{R}^{n+1} is a graph in the normal direction over Γ if there exists a function

$$
\varrho: \Gamma \rightarrow \mathbb{R}
$$

such that the function

$$
\theta_{\varrho}: \Gamma \rightarrow S
$$

defined by

$$
\theta_{\varrho}:=i d+\varrho \nu
$$

is a diffeomorphism from Γ to S, i.e. is a one-to-one smooth function onto S and θ_{ϱ}^{-1} is smooth too. Here ν is the unit outward normal vector field in Γ and $i d$ is
the identity function on Γ. Moreover, S is said to be in the class $H^{s}(\Gamma)$ if ϱ is in the class H^{s}.

Figure 1: Normal graph over the unit sphere in \mathbb{R}^{2}.
Let Γ be the unit sphere in \mathbb{R}^{n+1} of zero center and consider a family $\left\{S_{t}, t \geq 0\right\}$ of closed hypersurfaces in \mathbb{R}^{n+1} where for any $t \geq 0 S_{t}$ is a graph in the normal direction over Γ (see Fig. 1). More specifically, for $\Gamma=\left\{x \in \mathbb{R}^{n+1}:|x|=\right.$ $1\}$, we assume that there exists function $\rho^{*}: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ defining for t fixed a diffeomorphism $\theta_{\rho^{*}}(\cdot, t)$ onto S_{t} :

$$
\theta_{\rho^{*}}: \Gamma \times t \rightarrow S_{t}: \quad \theta_{\rho^{*}}(\gamma, t):=\gamma+\rho^{*}(\gamma, t) \nu(\gamma), \quad \gamma \in \Gamma, \quad t \geq 0
$$

Since $\theta_{\rho^{*}}(\Gamma, t)=S_{t}$ we deduce that in cartesian coordinates $x_{1}, \cdots, x_{n+1}, S_{t}$ is represented by

$$
\begin{equation*}
S_{t}=\left\{x \in \mathbb{R}_{*}^{n+1}:|x|-1-\rho^{*}\left(\frac{x}{|x|}, t\right)=0\right\} \tag{2.1}
\end{equation*}
$$

where $\mathbb{R}_{*}^{n+1}:=\mathbb{R}^{n+1}-\{0\}$. By setting $\widehat{\rho}:=1+\rho^{*},[2]$, we define the diffeomorphism

$$
\theta_{\widehat{\rho}}(\gamma, t):=\widehat{\rho}(\gamma, t) \gamma=\theta_{\rho^{*}}(\gamma, t)-i d(\gamma) .
$$

We represent S_{t} by using the diffeomorphism $\theta_{\hat{\rho}}$. S_{t} is identified by the function $\widehat{\rho}(\cdot, t): \Gamma \rightarrow \mathbb{R}$.

Let $x=\left(x_{1}, \cdots, x_{n+1}\right) \in \mathbb{R}^{n+1}$ in cartesian coordinates and consider the change of variables in polar coordinates $u=\left(u_{1}, \cdots, u_{n+1}\right)$

$$
\begin{align*}
& x=x(u)=\left(x_{1}\left(u_{1}, \cdots, u_{n+1}\right), \cdots, x_{n+1}\left(u_{1}, \cdots, u_{n+1}\right)\right) \tag{2.2}\\
& x_{1}=u_{n+1} y_{1}\left(u_{1}, \cdots, u_{n}\right), \cdots, x_{n+1}=u_{n+1} y_{n+1}\left(u_{1}, \cdots, u_{n}\right) \\
& \text { where } \quad u_{n+1}=|x| \in[0,+\infty)
\end{align*}
$$

The function $y=\left(y_{1}, \cdots, y_{n+1}\right)$ is on Γ and $y_{i} i=1, \cdots, n+1$ in polar coordinates may be expressed by the following formulas for $n=1,2$, ([10])

$$
\begin{array}{ll}
(n=1) & y_{1}=\cos \left(u_{1}\right), \quad y_{2}=\sin \left(u_{1}\right) \tag{2.3}\\
(n=2) & y_{1}=\cos \left(u_{1}\right) \cos \left(u_{2}\right), \quad y_{2}=\sin \left(u_{1}\right) \cos \left(u_{2}\right), \quad y_{3}=\sin \left(u_{2}\right)
\end{array}
$$

where $u_{1}, u_{2} \in[0,2 \pi] \times[0, \pi)$. If $n \geq 3$ then y can be defined by

$$
\begin{align*}
& y_{1}=\cos \left(u_{1}\right), y_{k}=\left(\prod_{j=1}^{k-1} \sin \left(u_{j}\right)\right) \cos \left(u_{k}\right), k=2, \cdots, n-1 \tag{2.4}\\
& y_{n}=\left(\prod_{j=1}^{n-1} \sin \left(u_{j}\right)\right) \cos \left(u_{n}\right), y_{n+1}=\left(\prod_{j=1}^{n-1} \sin \left(u_{j}\right)\right) \sin \left(u_{n}\right)
\end{align*}
$$

([11]), where $0 \leq u_{j}<\pi$ for $j=1, \cdots, n-1,0 \leq u_{n}<2 \pi$.
Note that the geometrical properties of S_{t} are independent of the choice of parametrization y of Γ. We may write

$$
u=u(x)=\left(u_{1}\left(x_{1}, \cdots, x_{n+1}\right), \cdots, u_{n+1}\left(x_{1}, \cdots, x_{n+1}\right)\right)
$$

as the change of variables is invertible.
Remark 2.1. Obviously, $\rho^{*}\left(\frac{x}{|x|}, t\right)$ is a function of $x=\left(x_{1}, \cdots, x_{n+1}\right)$ and t for any $x \in \mathbb{R}_{*}^{n+1}$, therefore, for t fixed we define

$$
\tilde{\rho}(\cdot, t): \mathbb{R}_{*}^{n+1} \rightarrow \mathbb{R}
$$

by

$$
\tilde{\rho}\left(x_{1}, \cdots, x_{n+1}, t\right):=1+\rho^{*}\left(\frac{x}{|x|}, t\right)=: \widehat{\rho}\left(\frac{x}{|x|}, t\right) .
$$

Denote that the above gives that $\tilde{\rho}$ is independent from $|x|$ while it depends only on the directional angles, and thus any change of variables of \mathbb{R}^{n+1} from cartesians to polar coordinates will give for $x \in \mathbb{R}_{*}^{n+1}$

$$
\tilde{\rho}\left(x_{1}, \cdots, x_{n+1}, t\right)=\rho\left(u_{1}, \cdots, u_{n}, u_{n+1}, t\right)=\rho\left(u_{1}, \cdots, u_{n}, t\right)
$$

since $u_{n+1}:=|x|$. In this paper we compute ρ as a solution of an initial and boundary value problem. Then we may use this ρ to construct S_{t} as follows: If Γ is represented by

$$
\Gamma:=\left\{y \in \mathbb{R}^{n+1}: \quad y=\left(y_{1}\left(u_{1}, \cdots, u_{n}\right), \cdots, y_{n+1}\left(u_{1}, \cdots, u_{n}\right)\right)\right\}
$$

where y is given for example by (2.3), (2.4) then

$$
\begin{equation*}
S_{t}:=\left\{x \in \mathbb{R}^{n+1}: \quad x=\rho\left(u_{1}, \cdots, u_{n}, t\right)\left(y_{1}\left(u_{1}, \cdots, u_{n}\right), \cdots, y_{n+1}\left(u_{1}, \cdots, u_{n}\right)\right)\right\} \tag{2.5}
\end{equation*}
$$

3. The evolution equation

In this Section we consider S_{t} to be a normal graph over the unit sphere Γ defined by (2.1) and prove an equivalent formulation for (1.1) presented as an evolution equation in time for $\rho=\rho\left(u_{1}, \cdots, u_{n}, t\right)$ in polar coordinates. Then S_{t} may be constructed in \mathbb{R}^{n+1} by utilizing (2.5).

We prove the next lemma.
Lemma 3.1. If S_{t} satisfies the VPMCF (1.1) then $\widetilde{\rho}$ satisfies

$$
\begin{equation*}
\partial_{t} \widetilde{\rho}=h \sqrt{1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}}+\left.\frac{1}{n}\left\{-\frac{n}{|x|}+\Delta_{x} \widetilde{\rho}-\frac{\left|\nabla_{x} \widetilde{\rho}\right|^{2}}{|x|\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)}-\frac{\nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T}}{\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)}\right\}\right|_{x \in S_{t}} \tag{3.1}
\end{equation*}
$$

Proof. By definition it holds that

$$
\tilde{\rho}\left(x_{1}, \cdots, x_{n+1}, t\right)=1+\rho^{*}\left(\frac{x}{|x|}, t\right)
$$

thus (2.1) gives that

$$
\begin{equation*}
S_{t}=\left\{x \in \mathbb{R}_{*}^{n+1}: \phi(x, t)=0\right\} \tag{3.2}
\end{equation*}
$$

where for t fixed, $\phi(\cdot, t): \mathbb{R}_{*}^{n+1} \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
\phi(x, t):=|x|-\widetilde{\rho}(x, t) \tag{3.3}
\end{equation*}
$$

Obviously any $x \in S_{t}$ is a root of $\phi(x, t)$. In what follows, we use that $\tilde{\rho}$ is a function defined on any $x \in \mathbb{R}_{*}^{n+1}$, independent of $|x|$. The derivatives in formulae are applied in the space \mathbb{R}^{n+1} in cartesians and at the end we consider $x \in S_{t} \subset \mathbb{R}^{n+1}$ in order to compute the exact values on the hypersurface S_{t}.

For the velocity and mean curvature of S_{t} we have respectively the formulae, [4]

$$
V=-\left.\frac{\partial_{t} \phi}{\left|\nabla_{x} \phi\right|}\right|_{x \in S_{t}}, \quad H=\left.\frac{1}{n} \operatorname{div}_{x}\left(\frac{\nabla_{x} \phi}{\left|\nabla_{x} \phi\right|}\right)\right|_{x \in S_{t}} .
$$

Using now the velocity formula in (1.1) we arrive at

$$
\begin{equation*}
\partial_{t} \phi=(H-h)\left|\nabla_{x} \phi\right| \quad \text { on } \quad S_{t} . \tag{3.4}
\end{equation*}
$$

From (3.3) we compute

$$
\begin{equation*}
\partial_{t} \phi(x, t)=-\partial_{t} \widetilde{\rho}(x, t), \quad \nabla_{x} \phi=\left(\frac{\partial|x|}{\partial x_{1}}-\widetilde{\rho}_{x_{1}}, \cdots, \frac{\partial|x|}{\partial x_{n+1}}-\widetilde{\rho}_{x_{n+1}}\right) \tag{3.5}
\end{equation*}
$$

while for any $0 \leq i \leq n+1$ it follows that

$$
\frac{\partial|x|}{\partial x_{i}}=\frac{1}{2}\left(\sum_{j=1}^{n+1} x_{j}^{2}\right)^{-1 / 2} 2 x_{i}=\frac{x_{i}}{|x|}
$$

Therefore, the second equality of (3.5) gives

$$
\begin{equation*}
\nabla_{x} \phi=\frac{x}{|x|}-\nabla_{x} \widetilde{\rho} \tag{3.6}
\end{equation*}
$$

In (3.4) we replace $\partial_{t} \phi$ by (3.5) and use (3.6) to obtain finally

$$
\begin{equation*}
\partial_{t} \widetilde{\rho}=(h-H)\left|\frac{x}{|x|}-\nabla_{x} \widetilde{\rho}\right| . \tag{3.7}
\end{equation*}
$$

Let us consider $\lambda>0$, then the next equality easily follows

$$
\widetilde{\rho}(\lambda x, t)=1+\rho^{*}\left(\frac{\lambda x}{|\lambda x|}, t\right)=1+\rho^{*}\left(\frac{x}{|x|}, t\right)=\widetilde{\rho}(x, t)
$$

Hence, for any $\lambda>0$, we obtain

$$
0=\partial_{\lambda}(\widetilde{\rho}(x, t))=\partial_{\lambda}(\widetilde{\rho}(\lambda x, t))=\sum_{i=1}^{n+1} \widetilde{\rho}_{y_{i}}(y, t) \frac{\partial y_{i}}{\partial \lambda}
$$

where

$$
\widetilde{\rho}(\lambda x, t)=\widetilde{\rho}(y, t),
$$

and $y:=\lambda x$. So, $x \nabla_{y} \widetilde{\rho}(y, t)=0$ and therefore $\lambda>0$ yields

$$
y \nabla_{y} \widetilde{\rho}(y, t)=\lambda x \nabla_{y} \widetilde{\rho}(y, t)=0
$$

Setting $\lambda:=1$ we get that

$$
\frac{x}{|x|} \perp \nabla_{x} \widetilde{\rho}(x, t)
$$

and thus

$$
\begin{equation*}
\left|\frac{x}{|x|}-\nabla_{x} \widetilde{\rho}\right|=\left(\left|\frac{x}{|x|}\right|^{2}+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)^{1 / 2}=\sqrt{1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}} . \tag{3.8}
\end{equation*}
$$

Replacing (3.8) in (3.7) we obtain

$$
\begin{equation*}
\partial_{t} \widetilde{\rho}=(h-H) \sqrt{1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}} . \tag{3.9}
\end{equation*}
$$

The next step is to calculate the mean curvature H in terms of $\widetilde{\rho}$. By (3.6), (3.8) and the definition (3.3) of ϕ it follows that
$\left(3\right.$. w(I) $:=\operatorname{div}_{x}\left(\frac{\nabla_{x} \phi}{\left|\nabla_{x} \phi\right|}\right)=\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)^{-\frac{1}{2}}\left(\frac{n}{|x|}-\Delta_{x} \widetilde{\rho}\right)$

$$
-\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)^{-\frac{3}{2}}\left|\nabla_{x} \widetilde{\rho}\right| \sum_{j=1}^{n+1}\left(\frac{x_{j}}{|x|}-\widetilde{\rho}_{x_{j}}\right) \frac{\partial}{\partial_{x_{j}}}\left(\left|\nabla_{x} \widetilde{\rho}\right|\right)
$$

Further,

$$
\frac{\partial}{\partial_{x_{j}}}\left(\left|\nabla_{x} \widetilde{\rho}\right|\right)=\frac{\partial}{\partial x_{j}}\left(\left(\sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}}^{2}\right)^{\frac{1}{2}}\right)=\left|\nabla_{x} \widetilde{\rho}\right|^{-1} \sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i} x_{j}}
$$

so replacing in (3.10) we get

$$
\begin{equation*}
n H=\mathcal{A}-\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)^{-\frac{3}{2}} \mathcal{B} \tag{3.11}
\end{equation*}
$$

for

$$
\mathcal{A}:=\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)^{-\frac{1}{2}}\left(\frac{n}{|x|}-\Delta_{x} \widetilde{\rho}\right)
$$

and

$$
\mathcal{B}:=\sum_{j=1}^{n+1}\left(\frac{x_{j}}{|x|}-\widetilde{\rho}_{x_{j}}\right)\left(\sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i} x_{j}}\right)
$$

But we note that

$$
\begin{equation*}
\nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T}=\sum_{j=1}^{n+1} \sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i} x_{j}} \widetilde{\rho}_{x_{j}}=\sum_{j=1}^{n+1} \widetilde{\rho}_{x_{j}} \sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i} x_{j}} \tag{3.12}
\end{equation*}
$$

thus replacing in \mathcal{B} we get

$$
\begin{equation*}
\mathcal{B}=\sum_{j=1}^{n+1} \frac{x_{j}}{|x|}\left(\sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i} x_{j}}\right)-\nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T}, \tag{3.13}
\end{equation*}
$$

where $\nabla_{x} \widetilde{\rho}^{T}$ is the transpose of $\nabla_{x} \widetilde{\rho}$. Since $x \perp \nabla_{x} \widetilde{\rho}$ we deduce that

$$
\sum_{j=1}^{n+1} x_{j} \widetilde{\rho}_{x_{j}}=0
$$

By differentiation with respect to x_{i} we obtain

$$
\sum_{j=1}^{n+1} x_{j} \widetilde{\rho}_{x_{j} x_{i}}+\widetilde{\rho}_{x_{i}}=0
$$

and consequently

$$
\begin{equation*}
\sum_{j=1}^{n+1} \frac{x_{j}}{|x|}\left(\sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i} x_{j}}\right)=-\frac{1}{|x|} \sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i}}=-\frac{\left|\nabla_{x} \widetilde{\rho}\right|^{2}}{|x|} \tag{3.14}
\end{equation*}
$$

By (3.13) combined with (3.14) the next relation follows

$$
\mathcal{B}=-\frac{\left|\nabla_{x} \widetilde{\rho}\right|^{2}}{|x|}-\nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T} .
$$

We replace \mathcal{B} and \mathcal{A} in (3.11) to arrive at
$n H=\frac{n}{|x| \sqrt{1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}}}-\frac{\Delta_{x} \widetilde{\rho}}{\sqrt{1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}}}+\frac{\left|\nabla_{x} \widetilde{\rho}\right|^{2}}{|x|\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)^{\frac{3}{2}}}+\left.\frac{\nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T}}{\left(1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right)^{\frac{3}{2}}}\right|_{x \in S_{t}}$.
Plugging the above in (3.9) we obtain equation (3.1).
The non-linear evolution equation for the VPMCF in polar coordinates is presented in the next theorem.

Theorem 3.2. Let S_{t} be a graph in normal direction over Γ determined by the function $\rho(\cdot, t): \Gamma \rightarrow \mathbb{R}$. If S_{t} satisfies the VPMCF (1.1) then ρ satisfies the evolution equation

$$
\begin{equation*}
\partial_{t} \rho=G(\rho), \quad t \geq 0 \tag{3.16}
\end{equation*}
$$

where

$$
G(\rho):=J(\rho)+\frac{h}{\rho} \sqrt{\rho^{2}+\mathcal{R}_{2}(\rho)}
$$

Here $J(\rho)$ is defined as

$$
\begin{equation*}
J(\rho):=\frac{1}{n}\left\{-\frac{n}{\rho}+\frac{\mathcal{R}_{1}(\rho)}{\rho^{2}}-\frac{\mathcal{R}_{2}(\rho)}{\rho\left(\rho^{2}+\mathcal{R}_{2}(\rho)\right)}-\frac{\mathcal{R}_{3}(\rho)}{\rho^{2}\left(\rho^{2}+\mathcal{R}_{2}(\rho)\right)}\right\} \tag{3.17}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{R}_{1}(\rho):=\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} \rho}{\partial u_{i} \partial u_{j}} \sum_{m=1}^{n+1} \frac{\partial u_{j}}{\partial y_{m}} \frac{\partial u_{i}}{\partial y_{m}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \sum_{m=1}^{n+1} \frac{\partial^{2} u_{q}}{\partial y_{m}^{2}}\right] \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{R}_{2}(\rho):=\sum_{k=1}^{n+1} \sum_{m=1}^{n} \sum_{i=1}^{n} \frac{\partial \rho}{\partial u_{m}} \frac{\partial u_{m}}{\partial y_{k}} \frac{\partial \rho}{\partial u_{i}} \frac{\partial u_{i}}{\partial y_{k}} \tag{3.19}
\end{equation*}
$$

$$
\left(3.2 \operatorname{R}_{3}(\rho):=\sum_{j=1}^{n+1} \sum_{i=1}^{n+1}\left(\left[\sum_{s=1}^{n} \frac{\partial \rho}{\partial u_{s}} \frac{\partial u_{s}}{\partial y_{i}}\right]\right.\right.
$$

$$
\left.\left[\sum_{l=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} \rho}{\partial u_{l} \partial u_{k}} \frac{\partial u_{k}}{\partial y_{i}} \frac{\partial u_{l}}{\partial y_{j}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial^{2} u_{q}}{\partial y_{i} \partial y_{j}}\right]\left[\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial u_{q}}{\partial y_{j}}\right]\right)
$$

while

$$
h:=\frac{\int_{S_{t}} H d \sigma}{\int_{S_{t}} d \sigma}=-\left(\int_{\Gamma} \rho J(\rho)\left(\rho^{2}+\mathcal{R}_{2}(\rho)\right)^{-\frac{1}{2}} \mu_{\rho}\right)\left(\int_{\Gamma} \mu_{\rho}\right)^{-1},
$$

where μ_{ρ} is the Jacobian in polar coordinates.

Proof. By Lemma 3.1 the VPMCF (1.1) is transformed to (3.1). We express (3.1) in terms of ρ. First, we calculate $\left.\Delta_{x} \widetilde{\rho}(x)\right|_{x \in S_{t}}$. Let $x \in \mathbb{R}_{*}^{n+1}$, then for $\widetilde{\rho}(x, t)=$ $\rho\left(u_{1}, \cdots, u_{n}, t\right)$ (polar coordinates in space), we apply the chain rule and use that $x=u_{n+1} y=|x| y$.

In details, for any $x \in \mathbb{R}_{*}^{n+1}$, we consider

$$
\widetilde{\rho}(x, t)=\rho\left(u_{1}, \cdots, u_{n}, t\right)
$$

and compute

$$
\begin{align*}
\widetilde{\rho}_{x_{l} x_{m}} & =\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} \rho}{\partial u_{i} \partial u_{j}} \frac{\partial u_{j}}{\partial x_{l}} \frac{\partial u_{i}}{\partial x_{m}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial^{2} u_{q}}{\partial x_{l} \partial x_{m}} \tag{3.21}\\
& =\frac{1}{|x|^{2}}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} \rho}{\partial u_{i} \partial u_{j}} \frac{\partial u_{j}}{\partial y_{l}} \frac{\partial u_{i}}{\partial y_{m}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial^{2} u_{q}}{\partial y_{l} \partial y_{m}}\right]
\end{align*}
$$

for any $l, m \leq n+1$. Here we used that

$$
\frac{\partial u_{i}}{\partial x_{m}}=\frac{1}{|x|} \frac{\partial u_{i}}{\partial y_{m}}
$$

and that

$$
\frac{\partial^{2} u_{q}}{\partial x_{l} \partial x_{m}}=\frac{1}{|x|^{2}} \frac{\partial^{2} u_{q}}{\partial y_{l} \partial y_{m}}
$$

since for any $x \in \mathbb{R}_{*}^{n+1}$ there exists $y \in \Gamma$ such that $x=|x| y$. Note that y is defined as a parametrization of Γ, for example by (2.3), (2.4). Hence we obtain

$$
\begin{aligned}
\left(3.2 x_{x}\right) \widetilde{\rho} & =\sum_{m=1}^{n+1} \widetilde{\rho}_{x_{m} x_{m}}=\frac{1}{|x|^{2}} \sum_{m=1}^{n+1}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} \rho}{\partial u_{i} \partial u_{j}} \frac{\partial u_{j}}{\partial y_{m}} \frac{\partial u_{i}}{\partial y_{m}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial^{2} u_{q}}{\partial y_{m}^{2}}\right] \\
& =\frac{1}{|x|^{2}}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} \rho}{\partial u_{i} \partial u_{j}} \sum_{m=1}^{n+1} \frac{\partial u_{j}}{\partial y_{m}} \frac{\partial u_{i}}{\partial y_{m}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \sum_{m=1}^{n+1} \frac{\partial^{2} u_{q}}{\partial y_{m}^{2}}\right] .
\end{aligned}
$$

If $x \in S_{t}$ then (3.2), (3.3) give that $|x|=1+\rho^{*}\left(\frac{x}{|x|}, t\right)=\rho\left(u_{1}, \cdots, u_{n}, t\right)$. Thus (3.22) yields

$$
\begin{equation*}
\left.\Delta_{x} \widetilde{\rho}(x)\right|_{x \in S_{t}}=\frac{1}{\rho^{2}} \mathcal{R}_{1}(\rho), \tag{3.23}
\end{equation*}
$$

for $\mathcal{R}_{1}(\rho)$ defined by (3.18). We note that the terms appearing in (3.18) can be computed because y is a known function given for example by (2.3) or (2.4).

Applying the chain rule at $\widetilde{\rho}(x, t)=\rho\left(u_{1}, \cdots, u_{n}, t\right)$ we arrive at

$$
\frac{\partial \widetilde{\rho}}{\partial x_{k}}=\sum_{l=1}^{n} \frac{\partial \rho}{\partial u_{l}} \frac{\partial u_{l}}{\partial x_{k}}
$$

for any $k \leq n+1$, consequently

$$
\begin{equation*}
\left|\nabla_{x} \widetilde{\rho}\right|^{2}=\sum_{k=1}^{n+1}\left\{\left(\sum_{l=1}^{n} \frac{\partial \rho}{\partial u_{l}} \frac{\partial u_{l}}{\partial x_{k}}\right)^{2}\right\} \tag{3.24}
\end{equation*}
$$

By (3.24) and by making use of the identity

$$
\left(\sum_{l=1}^{n} \varepsilon_{l}\right)^{2}=\sum_{m=1}^{n} \sum_{i=1}^{n} \varepsilon_{m} \varepsilon_{i}
$$

for

$$
\varepsilon_{l}:=\frac{\partial \rho}{\partial u_{l}} \frac{\partial u_{l}}{\partial x_{k}}
$$

we obtain

$$
\begin{aligned}
\left|\nabla_{x} \widetilde{\rho}\right|^{2} & =\sum_{k=1}^{n+1} \sum_{m=1}^{n} \sum_{i=1}^{n} \frac{\partial \rho}{\partial u_{m}} \frac{\partial u_{m}}{\partial x_{k}} \frac{\partial \rho}{\partial u_{i}} \frac{\partial u_{i}}{\partial x_{k}} \\
& =\frac{1}{|x|^{2}} \sum_{k=1}^{n+1} \sum_{m=1}^{n} \sum_{i=1}^{n} \frac{\partial \rho}{\partial u_{m}} \frac{\partial u_{m}}{\partial y_{k}} \frac{\partial \rho}{\partial u_{i}} \frac{\partial u_{i}}{\partial y_{k}}, x \in \mathbb{R}^{n+1} .
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
\left.\left|\nabla_{x} \widetilde{\rho}\right|^{2}\right|_{x \in S_{t}}=\frac{1}{\rho^{2}} \mathcal{R}_{2}(\rho) \tag{3.25}
\end{equation*}
$$

for $\mathcal{R}_{2}(\rho)$ defined by (3.19).
Next, we express in terms of ρ the operator $\nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T}$ appearing in (3.1). The equality $\widetilde{\rho}\left(x_{1}, \cdots, x_{n+1}, t\right)=\rho\left(u_{1}, \cdots, u_{n}, t\right)$ yields

$$
\widetilde{\rho}_{x_{j}}=\sum_{l=1}^{n} \frac{\partial \rho}{\partial u_{l}} \frac{\partial u_{l}}{\partial x_{j}}, \quad \widetilde{\rho}_{x_{i} x_{j}}=\sum_{l=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} \rho}{\partial u_{l} \partial u_{k}} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{l}}{\partial x_{j}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial^{2} u_{q}}{\partial x_{i} \partial x_{j}} .
$$

By (3.12) and the above, we obtain for any $x \in \mathbb{R}^{n+1}$

$$
\begin{align*}
& \nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T}=\sum_{j=1}^{n+1} \sum_{i=1}^{n+1} \widetilde{\rho}_{x_{i}} \widetilde{\rho}_{x_{i} x_{j}} \widetilde{\rho}_{x_{j}}= \\
& \sum_{j=1}^{n+1} \sum_{i=1}^{n+1}\left(\left[\sum_{s=1}^{n} \frac{\partial \rho}{\partial u_{s}} \frac{\partial u_{s}}{\partial x_{i}}\right]\left[\sum_{l=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} \rho}{\partial u_{l} \partial u_{k}} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{l}}{\partial x_{j}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial^{2} u_{q}}{\partial x_{i} \partial x_{j}}\right]\right. \tag{3.26}\\
& \left.\left[\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial u_{q}}{\partial x_{j}}\right]\right)=\frac{1}{|x|^{4}} \sum_{j=1}^{n+1} \sum_{i=1}^{n+1}\left(\left[\sum_{s=1}^{n} \frac{\partial \rho}{\partial u_{s}} \frac{\partial u_{s}}{\partial y_{i}}\right]\right. \\
& \left.\left[\sum_{l=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} \rho}{\partial u_{l} \partial u_{k}} \frac{\partial u_{k}}{\partial y_{i}} \frac{\partial u_{l}}{\partial y_{j}}+\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial^{2} u_{q}}{\partial y_{i} \partial y_{j}}\right]\left[\sum_{q=1}^{n} \frac{\partial \rho}{\partial u_{q}} \frac{\partial u_{q}}{\partial y_{j}}\right]\right)
\end{align*}
$$

Hence, we compute

$$
\begin{equation*}
\left.\nabla_{x} \widetilde{\rho} \operatorname{Hess}_{x}(\widetilde{\rho}) \nabla_{x} \widetilde{\rho}^{T}\right|_{x \in S_{t}}=\frac{1}{\rho^{4}} \mathcal{R}_{3}(\rho), \tag{3.27}
\end{equation*}
$$

for $\mathcal{R}_{3}(\rho)$ given by (3.20).
Utilizing the definition of $J(\rho)$ in (3.17), the expression of H in (3.15) and the definitions of $\mathcal{R}_{1}(\rho), \mathcal{R}_{2}(\rho), \mathcal{R}_{3}(\rho)$, we obtain that

$$
J(\rho)=-H \sqrt{1+\left|\nabla_{x} \widetilde{\rho}\right|^{2}}
$$

hence (3.25) yields

$$
H=\frac{-J(\rho) \rho}{\sqrt{\rho^{2}+\mathcal{R}_{2}(\rho)}} .
$$

Using the previous expression in $h=\frac{\int_{S_{t}} H d \sigma}{\int_{S_{t}} d \sigma}$ and the values given by (3.23), (3.25), (3.27) in (3.1) we get finally (3.16) since $\partial_{t} \widetilde{\rho}=\partial_{t} \rho$.

Remark 3.3. The operators $\mathcal{R}_{1}, \mathcal{R}_{2}$ and \mathcal{R}_{3}, e.g. (3.18)-(3.20), may be expressed in terms of the Beltrami differential parameters of first and second order. Considering the first fundamental form $G=(G)_{i j}, i, j=1, \cdots, n$ of the surface ρ we define in cartesians

$$
\partial \rho:=\left(\partial^{1} \rho, \cdots, \partial^{n} \rho\right)
$$

where

$$
\partial^{k} \rho:=\sum_{m=1}^{n} g^{k m} \frac{\partial \rho}{\partial u_{m}}, \quad k=1, \cdots, n,
$$

while $g^{k m}$ are the elements of G^{-1}. Further let

$$
|\partial \rho|_{\mathcal{G}}^{2}:=\partial \rho G \partial \rho^{T} .
$$

This expression is equal to the first differential parameter of Beltrami which is invariant with respect to allowable transformations of coordinates, [10], [2]. We also define $\Delta_{\Gamma} \rho$ as the Laplace-Beltrami operator on the unit sphere which is invariant too and also called as second differential parameter of Beltrami, [10]. Finally, let the $n \times n$ matrix Hess ρ be for t fixed the second covariant derivative of the scalar function $\rho\left(u_{1}, \cdots, u_{n}, t\right),[10]$, given by

$$
(\operatorname{Hess} \rho)_{r s}:=\frac{\partial^{2} \rho}{\partial u_{r} \partial u_{s}}-\sum_{p=1}^{n} \Gamma_{r s}^{p} \frac{\partial \rho}{\partial u_{p}}
$$

where $\Gamma_{r s}^{p}$ are the Christoffel symbols of second kind, then it follows that

$$
\mathcal{R}_{1}(\rho)=\Delta_{\Gamma} \rho, \quad \mathcal{R}_{2}(\rho)=|\partial \rho|_{\mathcal{G}}^{2}, \quad \mathcal{R}_{3}(\rho)=\partial \rho \operatorname{Hess} \rho \partial \rho^{T},
$$

and the VPMCF (1.1) admits an elegant representation in terms of Beltrami operators and of covariant Hessian, [2].

Remark 3.4. Considering the standard parametrization (2.4), we denote that

$$
u_{i}=\operatorname{arcot}\left(y_{i}\left(y_{i}^{2}+y_{i+1}^{2}+\cdots+y_{n+1}^{2}\right)^{-\frac{1}{2}}\right), \quad i=1, \cdots, n
$$

Remark 3.5. In order to compute an explicit formula for (3.16), we may use the standard parametrization given by (2.3), or (2.4). We supplement the non-linear p.d.e. (3.16) by an initial periodic condition $\rho(\cdot, 0)$ given for any

$$
\left(u_{1}, \cdots, u_{n}\right) \in(0, \pi) \times \cdots \times(0, \pi) \times[0,2 \pi] .
$$

We also impose periodic and Dirichlet boundary conditions and derive an initial and boundary value problem. More specifically, if $n \geq 2$ we consider the p.d.e. (3.16) at any $t>0$ for $\left(u_{1}, \cdots, u_{n-1}\right)$ in the open set $\mathcal{A}:=(0, \pi) \times \cdots \times(0, \pi)$, and for any $u_{n} \in(0,2 \pi)$. Since S_{t} is closed we impose a periodic boundary condition on the azimuth u_{n} by

$$
\rho\left(u_{1}, \cdots, u_{n-1}, 0, t\right)=\rho\left(u_{1}, \cdots, u_{n-1}, 2 \pi, t\right) \text { for any }\left(u_{1}, \cdots, u_{n-1}\right) \in \mathcal{A}, \quad t \geq 0
$$

In addition, we assign boundary values at the south and north poles $0, \pi$. Since the coordinate system is polar, these values at the poles must be independent of the azimuth u_{n} (u_{n} is measured along the equator), so we impose Dirichlet conditions
on the azimuthal derivatives for any $u_{n} \in[0,2 \pi]$ and any $t>0$ as follows

$$
\begin{aligned}
& \frac{\partial \rho}{\partial u_{n}}\left(0, u_{2}, \cdots, u_{n}, t\right)=0, \quad \frac{\partial \rho}{\partial u_{n}}\left(\pi, u_{2}, \cdots, u_{n}, t\right)=0, \quad u_{i} \in(0, \pi), \quad i \neq 1, n \\
& \frac{\partial \rho}{\partial_{u_{n}}}\left(u_{1}, 0, \cdots, u_{n}, t\right)=0, \quad \frac{\partial \rho}{\partial_{u_{n}}}\left(u_{1}, \pi, \cdots, u_{n}, t\right)=0, \quad u_{i} \in(0, \pi), \quad i \neq 2, n \\
& \frac{\partial \rho}{\partial_{u_{n}}}\left(u_{1}, u_{2}, \cdots, 0, u_{n}, t\right)=0, \quad \frac{\partial \rho}{\partial_{u_{n}}}\left(u_{1}, u_{2}, \cdots, \pi, u_{n}, t\right)=0 \\
& u_{i} \in(0, \pi), \quad i \neq n-1, n .
\end{aligned}
$$

For the case $n=1$ we only consider periodicity on azimuth.
Remark 3.6. For the 2-dimensional VPMCF (3.16), i.e. in the case of curves in \mathbb{R}^{2}, let $n=1$. We use the symbol $u_{1}=: \theta$, to obtain $\rho=\rho(\theta, t), y_{1}=\cos \theta, y_{2}=\sin \theta$, $\theta=\arctan \left(\frac{y_{2}}{y_{1}}\right), 0 \leq \theta \leq 2 \pi$, and we further compute $\frac{\partial \theta}{\partial y_{1}}=-\sin \theta, \frac{\partial \theta}{\partial y_{2}}=\cos \theta$, $\frac{\partial^{2} \theta}{\partial y_{1}^{2}}=-2 \cos \theta \sin \theta, \frac{\partial^{2} \theta}{\partial y_{1} \partial y_{2}}=-1+2 \cos ^{2} \theta, \frac{\partial^{2} \theta}{\partial y_{2}^{2}}=2 \cos \theta \sin \theta$. We replace in \mathcal{R}_{1}, $\mathcal{R}_{2}, \mathcal{R}_{3}$ e.g. (3.18)-(3.20), to obtain after straightforward calculations that

$$
\mathcal{R}_{1}(\rho)=\rho_{\theta \theta}, \quad \mathcal{R}_{2}(\rho)=\rho_{\theta}^{2}, \quad \mathcal{R}_{3}(\rho)=\rho_{\theta}^{2} \rho_{\theta \theta}
$$

Thus by (3.17) we get

$$
J(\rho)=\frac{\rho_{\theta \theta}-\frac{\rho_{\theta}^{2}}{\rho}}{\rho^{2}+\rho_{\theta}^{2}}-\frac{1}{\rho}
$$

In order to calculate h we write

$$
S_{t}=\left\{z \in \mathbb{R}^{2}: z=\left(z_{1}(\theta, t), z_{2}(\theta, t)\right)=\rho(\theta, t)(\cos \theta, \sin \theta), \quad \theta \in[0,2 \pi]\right\}
$$

thus $\int_{S_{t}} d \sigma=\int_{0}^{2 \pi} \sqrt{z_{1 \theta}^{2}+z_{2 \theta}^{2}} d \theta$. We compute $z_{1 \theta}^{2}+z_{2 \theta}^{2}=\rho_{\theta}^{2}+\rho^{2}$ to get

$$
\int_{S_{t}} d \sigma=\int_{0}^{2 \pi} \sqrt{\rho_{\theta}^{2}+\rho^{2}} d \theta, \quad h=-\frac{\int_{0}^{2 \pi} \rho J(\rho) d \theta}{\int_{0}^{2 \pi} \sqrt{\rho_{\theta}^{2}+\rho^{2}} d \theta}
$$

We replace in (3.16) and obtain the final equation

$$
\begin{equation*}
\partial_{t} \rho=\frac{\rho_{\theta \theta}-\frac{\rho_{\theta}^{2}}{\rho}}{\rho^{2}+\rho_{\theta}^{2}}-\frac{1}{\rho}-\frac{\sqrt{\rho^{2}+\rho_{\theta}^{2}} \int_{0}^{2 \pi} \rho J(\rho) d \theta}{\rho \int_{0}^{2 \pi} \sqrt{\rho_{\theta}^{2}+\rho^{2}} d \theta} . \tag{3.28}
\end{equation*}
$$

Remark 3.7. In three dimensions $(n=2)$ using (2.3) we write

$$
S_{t}=\left\{z \in \mathbb{R}^{3}: z=\rho(\theta, \phi, t)(\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi), \theta \in[0,2 \pi], \phi \in[0, \pi]\right\}
$$

In this case we may compute H by using the first and second fundamental forms for hypersurfaces.

4. Numerical experiments for the 2-dimensional VPMCF

4.1. Finite difference schemes. We consider the case $n=1$. The VPMCV can be presented (Remark 3.6, eqn. (3.28)) as the following non-linear initial and
boundary value problem for ρ

$$
\begin{gathered}
\partial_{t} \rho=\frac{\rho_{\theta \theta}-\frac{\rho_{\theta}^{2}}{\rho}}{\rho^{2}+\rho_{\theta}^{2}}-\frac{1}{\rho}+\sqrt{\rho^{2}+\rho_{\theta}^{2}} \frac{\int_{0}^{2 \pi}\left(\frac{-\rho_{\theta \theta}+\frac{\rho_{\theta}^{2}}{\rho}}{\rho^{2}+\rho_{\theta}^{2}}+\frac{1}{\rho}\right) \rho d \theta}{\rho \int_{0}^{2 \pi} \sqrt{\rho^{2}+\rho_{\theta}^{2}} d \theta}, 0<\theta<2 \pi, \quad t>0 \\
(4.1) \rho(\theta, 0)=\rho_{0}(\theta), \quad 0 \leq \theta \leq 2 \pi, \quad \rho(0, t)=\rho(2 \pi, t), \quad t \geq 0
\end{gathered}
$$

with periodic conditions and smooth periodic initial data ρ_{0}. We will consider the case when ρ_{0} is non-convex. We approximate numerically (4.1) by explicit finite difference schemes using the trapezoid rule for the non-local integral terms.

More specifically, let define the uniform partition $0=\theta_{0}<\theta_{1}<\theta_{2}<\cdots<\theta_{J}=$ 2π, with $\theta_{j}:=j h, j=0, \cdots J$, for $h:=\frac{2 \pi}{100}, J:=100$. We approximate the terms

$$
\rho\left(\theta_{j}, t^{n}\right), \quad \partial_{t} \rho\left(\theta_{j}, t^{n+1}\right), \quad \rho_{\theta}\left(\theta_{j}, t^{n}\right), \quad \rho_{\theta \theta}\left(\theta_{j}, t^{n}\right)
$$

for $j=1, \cdots, J-1$, by

$$
\rho_{j}^{n}, \quad \frac{\rho_{j}^{n+1}-\rho_{j}^{n}}{k}, \quad \frac{\rho_{j+1}^{n}-\rho_{j-1}^{n}}{2 h} \text { and } \frac{\rho_{j+1}^{n}-2 \rho_{j}^{n}+\rho_{j-1}^{n}}{h^{2}}
$$

respectively, for $k=\frac{1}{100}$, and $t^{n}:=n k, n=0, \cdots, N$. We also approximate the values $\rho\left(\theta_{0}, t^{n+1}\right)=\rho\left(\theta_{J}, t^{n+1}\right)$ by ρ_{1}^{n+1} for $n=0, \cdots, N$, and use the initial condition $\rho_{j}^{0}:=\rho_{0}\left(\theta_{j}\right), j=1, \cdots, J$. Obviously

$$
S_{0}=\left\{z \in \mathbb{R}^{2}: z=\rho_{0}(\theta)(\cos \theta, \sin \theta), \theta \in[0,2 \pi]\right\}
$$

while for any $t>0$

$$
S_{t}=\left\{z \in \mathbb{R}^{2}: z=\rho(\theta, t)(\cos \theta, \sin \theta), \theta \in[0,2 \pi]\right\}
$$

In details, let $\rho_{j}^{0}:=\rho_{0}\left(\theta_{j}\right), j=1, \cdots, J$. For any $n=1, \cdots, N$ we solve the $J-1 \times J-1$ diagonal system

$$
\frac{\rho_{j}^{n+1}-\rho_{j}^{n}}{k}=\frac{\frac{\rho_{j+1}^{n}-2 \rho_{j}^{n}+\rho_{j-1}^{n}}{h^{2}}-\frac{\left(\frac{\rho_{j+1}^{n}-\rho_{j-1}^{n}}{2 h}\right)^{2}}{\rho_{j}^{n}}}{\left(\rho_{j}^{n}\right)^{2}+\left(\frac{\rho_{j+1}^{n}-\rho_{j-1}^{n}}{2 h}\right)^{2}}-\frac{1}{\rho_{j}^{n}}+\frac{\sqrt{\left(\rho_{j}^{n}\right)^{2}+\left(\frac{\rho_{j+1}^{n}-\rho_{j-1}^{n}}{2 h}\right)^{2}}}{\rho_{j}^{n}} \frac{A_{n}}{B_{n}},
$$

where $j=1, \cdots, J-1$, while A_{n}, B_{n} are the approximations of the non-local integral terms of (4.1) at $t:=t^{n}$ calculated by the trapezoid rule. Further using the periodic conditions for $j=J$ and any $n=0, \cdots, N$ we set $\rho_{0}^{n+1}:=\rho_{1}^{n+1}$, $\rho_{J}^{n+1}:=\rho_{1}^{n+1}$.
4.2. Numerical results. For the first experiment (Case 1), we use as initial condition the following non-convex smooth and periodic function

$$
\rho_{0}(\theta)=\left(4+\cos ^{3} \theta\right)\left(2+\sin ^{3} \theta\right) .
$$

Figure 2 presents the evolution of the closed initial curve S_{0} for various times $t_{0}=0$, $t_{1}=1, t_{2}=10, t_{3}=20$. In this case the asymptotic convergence to a sphere is observable.

Figure 2: Case 1.
We next consider for the second experiment (Case 2)

$$
\rho_{0}(\theta)=\left(1.5+\cos ^{3} \theta\right)\left(2+\sin ^{3} \theta\right)\left(2-\cos ^{3} \theta \sin \theta\right)
$$

The above function creates a closed curve which is locally intensively non-convex. In Figure 3 we present S_{t} for $t_{0}=0, t_{1}=1, t_{2}=10, t_{3}=20$. A general observation stemming from these experiments is that the VPMCF converges first rapidly to a convex curve and after asymtotically to a sphere.

Figure 3: Case 2.

5. Conclusions

The (VPMCF) acting on normal graphs over the unit sphere is presented as a non-linear initial and boundary value evolutionary problem for the radial function in polar coordinates. The resulting equation is a second order partial differential equation containing some non-local integral terms. The (VPMCF) is an optimization procedure that drives hypersurfaces to spheres (i.e. to minimal area surfaces) under the constraint of constant enclosed volume. Our numerical results for the 2dimensional case indicates that convexity is a local minimizer and arise the question if this is indeed true in two or higher dimensions.

6. Acknowledgements

The authors would like to thank Prof. Israel Michael Sigal for stimulating discussions on mean curvature flow. The second author is supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme, MIRG-CT-2007-200526 and partially supported by the FP7-REGPOT-2009-1 project "Archimedes Center for Modeling, Analysis and Computation".

References

[1] Alikakos, N. D. \& Freire, A. 2003 The normalized mean curvature flow for a small bubble in a Riemannian manifold. J. Differential Geom. 64(2), 247-303.
[2] Antonopoulou, D. C. \& Karali, G. D. \& Sigal, I. M. 2010 Stability of spheres under volume preserving mean curvature flow. Dynamics of PDE 7(4), 327-344, 2010.
[3] Escher, J. \& Simonett, G. 1998 A Center Manifold Analysis for the Mullins-Sekerka Model. J. Differential Eq. 143, 267-292.
[4] Escher, J. \& Simonett, G. 1998 The volume preserving mean curvature flow near spheres. Proc. Amer. Math. Soc. 126(9), 2789-2796.
[5] Gage, M. 1986 On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor. Contemp. Math. 51, AMS, Providence, 51-62.
[6] Gage, M. \& Hamilton, R. 1986 The Heat equation shrinking convex plane curves. J. Differential Geom. 23, 69-96.
[7] Gang, Z. \& Sigal, I. M. 2009 Neck pinching dynamics under mean curvature flow. J. Geom. Anal. 19, 36-80.
[8] Grayson, M. A. 1987 The Heat Equation shrinks embedded plane curves to round points. J. Differential Geom. 26, 285-314.
[9] Huisken, G. 1987 The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35-48.
[10] Kreyszig, E. 1991 Differential Geometry. Dover Publications. New York.
[11] Shimakura, N. 1992 Partial Differential operators of Elliptic Type. Translations of Mathematical Monographs, Vol. 99.
[12] Struwe, M. 1996 Geometric evolution problems. Nonlinear partial differential equations in differential geometry. (Park City, UT, 1992), IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, 257-339.

Department of Applied Mathematics, University of Crete, 71409 Heraklion, Greece, and Institute of Applied and Computational Mathematics, FOrth, Greece.

E-mail address: danton@tem.uoc.gr
E-mail address: gkarali@tem.uoc.gr

[^0]: 2000 Mathematics Subject Classification. 35K55 53C44.
 Key words and phrases. Nonlinear parabolic equations, Geometric evolution equations, Normal graphs, Volume preserving mean curvature flow, Numerics.

