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THEORY AND NUMERICAL APPROXIMATIONS
FOR A NONLINEAR 141 DIRAC SYSTEM

NIKOLAOS BOURNAVEAST AND GEORGIOS E. ZOURARIS?

ABSTRACT. We consider a nonlinear Dirac system in one space dimension with periodic boundary con-
ditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose
an implicit-explicit finite difference method for its approximation, proving optimal order a priori error
estimates in various discrete norms and showing results from numerical experiments.
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1. INTRODUCTION

1.1. Statement of the problem. In the work at hand we shall consider a nonlinear Dirac system of
equations formulated as follows:

(1.1a) U +wy =t0qu+ 1A f(u,w)u,
(1.1b) Wi 4+ Uy =T w + 1A fu, w)w,

where u = u(x,t) and w = w(x,t) are functions of x € R and ¢ > 0, which, for ¢ = 0, are periodic in x
with period L. The constants ay, as, A1, Ay are real and f is a smooth real-valued function. This system
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is a generalization of a physical model for extended particles (see [2]) where ag = —a; = m > 0 is the
mass, \] = —\2 = \ is a coupling constant and f(u,w) = |u|> — |w|?. Then (II&)—(IIH) becomes

(1.2a) w4+ wy = —imu+ i\ (Jul? = |w?)u,
(1.2b) wi +up =imw — i\ (Jul* — |w|*) w.

Here, we have made two basic choices. The first one was to consider periodic initial conditions which was
motivated from the observation that several authors developed, tested and analyzed numerical methods
for that case (see for example [7], [§], [13], [25]). The second one was to work with a general nonlinearity
since we would develop and analyze a numerical method for the approximation of the solution to the
problem which will not be limited by a special type of nonlinearity.

Let us introduce some notation that will be useful in writting (IZT) in a form that is customary in the

study of the Dirac equation. We define the Dirac matrices v° and ~* by

o (0 1 (i 0
7‘(10 and =1 ;|

Then

(1.3) Y+t = 29", Vv € {0,1}

and

(1.4) () =" () ==

where (") is the Minkowski metric, g°° = 1, g'! = —1 and ¢! = ¢'° = 0. We may of course choose as

Dirac matrices any other pair v°, v! which satisfy (I=3) and (I=d). All such pairs are unitarily equivalent.
Let ¢(z,t) = (Y1(x,t),12(x,t))” € CxC and m > 0. The linear Dirac equation in one space dimension
is the following equation

(1.5) —i (70 + 71 0p) +mp =0

and analogously the nonlinear Dirac equation in one space dimension is formulated as
(1.6) — i (Y0 +4'0:0) + myp = f(4).

If we define

0 = . 0 —
a:_vo’yl:(_i 0)7 5:_7’70:(_1- O)a

04221, 62:_15 ozﬁ—f—ﬁoz:(), Oé*:Ol7 /6*:_/6
and we can write the Dirac equation (ICH) as
(1.7) O — adpt) —mpBY =0.

Now we wish to write the system (ITT) in a similar form. To this end we define

then

Y1 =u, P2 =iw.

Then, it is easily seen that (IT0) is equivalent to
(1.8) O —a0up =i Ap +i f(¢p) Ay,

where
_ aq 0 - Al 0
a=(5 ) = (h )

The Dirac equation arises in relativistic quantum mechanics and describes spin-1/2 particles, for
example electrons. It can be thought of as a relativistic analogue of the Schrédinger equation. Coupled
systems such as the Dirac-Klein-Gordon equations and the Maxwell-Dirac equations, as well as nonlinear
Dirac equations of the form (I8), play a fundamental role in Physics. We refer the reader to [26] for a
detailed discussion of these issues.

The nonlinear Dirac equation ([CH) has been studied both with ‘general’ nonlinearities f () and with
nonlinearities with special structure [@, 8, B, 4, I8, 9, 20]. In one space dimension Delgado [9] studied
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the Cauchy problem for the Thirring model and the Federbusch model (a 4 x 4 system of two coupled
nonlinear Dirac equations), as well as the Dirac-Klein-Gordon and the Maxwell-Dirac equations, and
proves global existence of H! solutions. Glassey [I1] studied two 4 x 4 systems each consisting of two
coupled Dirac equations and proved global existence in H' under a smallness condition on the initial
data.

The plan of the paper is as follows. We will first prove local existence for (Il) and then investigate
whether the local solution can be extended to a global one. We shall show that if A\; = Ao we have global
existence without the need for any smallness assumptions. This is due to a cancellation property of the
nonlinearity, similar to the one used in Deldado [0]. In the case A; = —)2 a smallness condition in L?
is needed for global existence, in the same spirit as Glassey [I[1]. We shall then propose a second order,
unconditionally stable implicit-explicit finite difference method to construct numerical approximations of
the solution to the Dirac system (I) for which we prove convergence in the discrete L> norm. Also, we
shall discuss the implementation of the proposed method and show results from numerical experiments.

1.2. Existence theorems. We begin by defining the notions of solution we shall use.

Definition 1.1. A local H*-solution of (ICR) is a 2-spinor field v : (—o0o, +00) x[0,T] — CxC, L-periodic
in x, with € C° ([0, T]; H,, x Hf,.) which satisfies (I8) in the sense of distributions.

per per

Definition 1.2. A global H-solution of (V) is a 2-spinor field 1 : (—o0o,+o) x [0,00) — C x C,
L-periodic in z, with ¢ € C° ([0, oo); H:,, x HY ) which satisfies (IR) in the sense of distributions.

per per

We shall always assume that £ is a positive integer. Of course if £ > 2 an H%solution is automatically
continuously differentiable and hence it is a classical solution.
We shall prove the following existence theorems:

Theorem 1.1. (Local Existence) Let vy € Hﬁ x H:_ be a given L-periodic 2-spinor. Then there exists

er per

aT >0, such that the system (CR) has a unique H*-solution in (—oc, +00) x [0, T] with ¢(x,0) = o (z).
Theorem 1.2. (Global Existence) If Ay = Aa, then the solution of Theorem I is actually global.

Theorem 1.3. (Global Ezistence) Suppose a1 = —aa, \; = —Ag and f(u,w) = |u|?—|w|?. If in addition
the smallness condition

L
Il [ (e e < 4
0
is satisfied, then the solution of Theorem [ is global.

It is a remarkable fact that only the L?-norm of the initial data enters the smallness condition in
Theorem 3.

1.3. An implicit-explicit finite difference method. The numerical approximation of the solution to
the Dirac system () or () has been addressed by several authors. In particular, Alvarez and Carreras
[2] consider the physical problem () and investigate, via numerical computations, the interaction
dynamics for solitary waves. Alvarez, Kuo and Vazquez [3] formulate the numerical method used in [2],
which combines a second order finite diffence discretization in space with a Crank-Nicolson time stepping,
and provide a local-time error estimate in the discrete L? norm. A complete error analysis in the discrete
L? norm for the Crank-Nicolson finite difference method and in the case of periodic boundary conditions is
given by De Frutos [7], who also proves the discrete L? convergence of an explicit leap-frog finite difference
method for (I2) with periodic boundary conditions and of an implicit box-method for (IZ2) with a special
type of boundary conditions. De Frutos and Sanz-Serna [8] prove L? convergence of a split-step spectral
method for the Dirac system (I) with periodic boundary conditions, —A; = Ay = 1 and a nonlinearity of
the form f(u,w) = f(|u2—|w|?). Also, for problem (I=2), Alvarez [ proposes a linearization of the Crank-
Nicolson finite difference method and Jiménez [I5] formulates two implicit conservative finite difference
methods. Guo, Shen and Xu [[2] consider spectral and pseudospectral semidiscrete approximations of the
solution to the Cauchy problem for (I”2), proving a local-time discrete L? error estimate (cf. [3]). Shao
and Tang [Z5] discretize () using a discontinuous finite element method in space and an explicit Runge-
Kutta method in time. Also, they show results from numerical experiments adopting periodic boundary
3



conditions. Hong and Li [3] introduce multi-symplectic Runge-Kutta methods for the discretization of
(2) under periodic boundary conditions, and then discuss their conservation properties and how well
a discrete conservation law approximates the corresponding continuous one. Finally, Wang and Tang
[27] discretize (I2) using an explicit second order Runge-Kutta method in time along with a second
order finite volume method in space, and propose an adaptive mesh redistribution algorithm. In their
numerical experiments they adopt non-reflecting boundary conditions at artificial boundaries. Closing
the presentation of the existing bibliography, we would like to point out that the works [i], [I5], [25], [I3]
and [27] do not provide a mathematical proof for the convergence of the numerical methods proposed, in
addition to the computational evidence for their efficiency.

In the work at hand we consider the Dirac system (I0) under periodic boundary conditions. For the
approximation of its solution we propose a numerical method which is different from other methods in the
bibliography and combines a second order central finite difference space-discretization with a second order,
two-step, implicit-explicit time-stepping method of Crank-Nicolson-type. The term ‘implicit-explicit’
reflects the fact that the adopted time-stepping method treats the linear part of the system implicitly
and the nonlinear one explicitly. The motivation to apply that discretization splitting was the observation
that the corresponding linear problem (i.e. the case f = 0) is L?—conservative. Thus, discretizing it with
a conservative implicit method (since explicit methods do not have in general conservative properties) we
obtain an unconditionally invertible linear discrete operator. Combining it with an explicit discretization
of the nonlinear part of the system, the method becomes well-defined without mesh conditions, because
only the discrete linear part of the system has to be inverted at every time-step. Thus, we avoid on
the one hand CFL conditions required when using explicit methods (cf. [[7], [25], [Z7]) and on the other
hand the iterations needed to solve nonlinear systems of algebraic equations which is the outcome of an
implicit method (cf. [B], [@], [§], [£3], [IH]).

Let us formulate our method. First, choose N € N and J € N. Then, introduce a uniform partition

of the time interval [0, 7] with mesh-length 7 := % and nodes K = (t,,)%_, defined by t,, := m7 for

m=0,...,N. Also, introduce a uniform partition of the space interval [0, L] with mesh-length h := JL—H
and nodes H = (z;);%, defined by x; := jh for j =0,...,J + 1. The partition H extends to the whole
real line by = ,,(j41) ;= mL +z; for j =0,...,J and m € Z. In what follows, the finite dimensional
space

Xp ={(zm)mez CC: 2y =2mi,41 VYmeL},

consisting of periodic complex sequences with period J+1, will be the space of the finite difference approxi-
mations. For n = 0,..., N, define the sequences u", w" € Xy, by u? = u(z;,t,) and w} := w(z;,t,)
for j € Z, where the functions v and w form the L—periodic solution pair of the continuous problem
(CT3)—(CIH). The implicit-explicit finite difference method we propose constructs, for m =0,..., N, an
approximation (U™, W™) € X}, x X}, of (u™,w™), following the steps below:

Step 1. Set
(1.9) UP:=uf and W) :=w), j=1,...,J+1

J J J

Step 2. Find (U', W) € X}, such that

vl-ud o Wi -wi wo,  —w? Ul+U;
J J 1 j+1 j—1 Jj+1 j—1 — g J J ; 0 0 0
T +2( 2h + 2h )_Zal s TiM f(UG, W) Uy,

wi-w? | (U}L,-U; vo,,-U? wi+w?
J J 1 i1 Y51 JF1 Y51 ) J J ; 0 0 0
T 2( sh T 2 )—za2 7 Hid f(UF, W) W;

(1.10)

forj=1,...,J+1.
Step 3. For n =2,...,N, find (U™, W™) € X}, such that

ur—ur? Wr o —Wr WP -wr? ur+urT?
J J 1 J+1 j—1 i+1 =1 — YiTYi . n—1 n—1 n—1
51—+ 3 ( = + = =i 3 +i U W)U,

-W Ur , —UP ursr-ur? wr4wnr—2 _ _ _
J j 1 j+1 j—1 J+1 j—1 o j j . n—1 n—1 n—1
27 +3 ( 2k + 2% =tz 2 +ide f(UFT, W)W




The above finite difference method is well-defined with no restrictions on 7 and h (see Section B2).
Also, at every time step the implementation of the method results the need to solve 3—diagonal linear
systems of algebraic equations with dimension % provided that J+1 is an even integer (see Section E7).
In the latter situation, the method becomes semi-explicit in the sense that we are able to compute half
of the unknowns implicitly by solving linear systems of equations and then to compute the other half
one explicitly via formulas that connect them to the previously computed values (see (E)). Another
characteristic of the method is that, for n > 2, the matrix of the resulting linear systems is the same
at every iteration (see Section B in contrast to the linearized Crank-Nicolson method proposed in [f].
This is achieved since: (i) the partition of the time interval [0, 7] is uniform, (ii) the coefficients of the
linear part of the equations are time-independent and (iii) the nonlinear part of the equations does not
contribute in the matrix of the linear system which is the goal of the implicit-explicit construction of the
method.

Investigating the convergence of the finite difference method (IZ9)—(IZI), we prove an optimal order
error estimate in the discrete L*°(0, L)—norm (see Theorem B), i.e., that there exists a nonnegative

constant C being independent of 7 and h, and such that

max < max |U —uf[+ max [W] —w] ) < O(m*+h?),
0<n<N \ 1<5<u41 1<j<7+1
provided that 7 and h are small enough. The technique used is based on the construction of a §—modified
finite difference method (see Section B@) which follows from the finite difference method (IZ9)-(I—1M)
modifying properly the nonlinear terms (cf. [2%8]). The d—modified finite difference method has two
characteristics: (i) its nonlinearity is of Lipshitz-type and (ii) when their approximations are bounded
by ¢ then it concides to the finite difference method (I9)-(II). First, we derive an optimal order error
estimate for the §—modified finite difference approximations in the discrete L?(0, L)—norm and in the
discrete H'(0, L)—seminorm (see Proposition B and Proposition B3). Then, using a discrete Sobolev
inequality (see Lemma B) and assuming that 7 and h are small enough, we are able to keep the discrete
L*>°(0, L)—norm of the §—modified finite difference approximations less than d, for § greater than a mesh-
independent value. Thus, the §—modified finite difference approximations coincide to the approximations
of the original finite difference method (IZ9)-(CID) (see Lemma B=3), and the error estimates for the modi-
fied finite difference method hold also for the original finite difference method. We would like to stress
that our analysis avoids the usual mesh condition 7 = o(h#) (cf. Remark B) used in other works on the
analysis of numerical methods for problem (I2) or () in order to show convergence in a discrete L?
norm (see, e.g., [[@], [§]). Also, the error analysis presented in [8] and [[2] assumes that the final time T’
is small enough. Finally, in Section B, we explain implementation issues for our finite difference method,
and we show results from numerical experiments that confirm the order of convergence of the method.
In the work at hand, we propose and investigate an implicit-explicit finite difference method for problem
(W) with second order accuracy in space and time. Higher-order numerical methods of implicit-explicit-
type could be formulated by combining a properly chosen Runge-Kutta or multistep method for time-
discretization, with a finite element or a finite volume method for space-discretization. The development
and the analysis of such methods could be the object of a future research, taking into account that since
the Dirac system has an hyperbolic character the order of convergence of a higher order method may
faces optimality limitations (see, e.g., [I0]).

2. PROOFS OF THE EXISTENCE THEOREMS

2.1. Linear estimates. We shall base the proof of the local existence theorem for (I'8) on the following
estimates for the linear system ([Z4) with m = 0. These estimates are well known in the ‘non-periodic’
case and their proofs in the periodic case are very similar. We shall therefore be brief.

Proposition 2.1 (Conservation of Charge). Let ¢ be a L-periodic H*-solution of

O —adyp =0
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Then for all t, it holds that
(2.1) / i ) dr = / (a, 0)]? da.
0 0

Proof. Multiply the equation by v, the conjugate transpose of 1, and take the real part of the resulting
equation to get 0; (1 1) — 9, (¢ avp) = 0. Integrate over [0, L] and use the periodicity condition to get

8; [ T dw = 0. This implies (2T). O

Conservation of charge implies the following two estimates. Their role in the theory of the Dirac
equation is similar to the role of the Energy Estimates in the theory of the wave equation.

Proposition 2.2 (Charge Estimate). Let 1 be a L-periodic, H'-solution of the non-homogeneous system
o) —adyp =G
with initial data ¥(x,0) = Yo(x). Then, for allt > 0, it holds that

t
(2.2) ||”¢1(',t)||L2(o,L) < ||7/’0||L2<0,L> Jr/ ||G('77)|‘L2(0,L> dr.

0
Proof. In the special case G = 0 the result follows immediately from (E00). In the special case g = 0 we

can use Duhamel’s principle to get 1 (x,t) = fot o(x,t — s;5) ds, where ¢(z,t; s) is defined as the unique
solution of dy¢(x,t;s) — a0, ¢(x, t;8) = 0, ¢(x,0;s) = G(x,s). Then, we have

t
0t < [ 160t = 5592, ds
Ot
= [ 166,05 ds
Ot
- / 1G ()l azos, ds.

The result in the general case follows easily from these two special cases. 0

Proposition 2.3 (Generalized Charge Estimate). Let ) be a L-periodic, H*-solution of the non-homogeneous
system

oy —albpp=G
with initial data ¢ (x,0) = o(x). Then for allt >0,
t
(2'3) Hw('vt)”H’f(o,L) < ”wO”Hf(o,L) +A HG('7T)||HZ(O,L) dr.
Proof. Differentiate the equation and apply (22). O

We shall also need the following Moser-type Calculus Inequalities.

Lemma 2.1. The following inequalities hold:
1). Iff,g€ H;;er N L then

(2.4) 1£gllert 0,00 < C (it o,y N9l + lgllireco ey 1 l12oe ) -

2). If F is smooth on a domain G, u is continuous with uw(x) € G, CC G and u € H:,, N L™ then

per
(2:5) IF oulleon < C (D

Proof. [22], p.43 and [i4], p.108 discuss the case of H*(R™). The proofs in that case can easily be adapted
to the periodic setting. O

/—
N0 Pl ) Il el o

Of course, if n =1 and £ > 1 the above L>-norms can be estimated by the corresponding H*-norms.
6



2.2. Local existence for the nonlinear system. Existence results for Dirac systems are usually proven
using the abstract methods of [24] and [08], see for example [Z3]. Here we shall use a more direct method
based on the Generalized Charge Estimate. This line of proof has been used in the theory of nonlinear
wave equations where the main tools are Generalized Energy Estimates.

Proof of Theorem . Throughout this proof the letter C' will always denote either an absolute constant
or a constant which may depend on A, A or f but is otherwise independent of the initial data g and
may change from line to line.

Let ¢ € Hﬁer X Hﬁﬂ be given. Fix T" > 0. Smallness conditions on 7" will be imposed in the course

of the proof. Define
X = {1/) e Y ([O7T];H£er X Héer) : oiltlg ||77[}(-7t)||Hg(0yL) <2 ||1Z10||HE(OYL)}
STST

Then X is a ball in the Banach space C° ([O7 T);HS,, x HY )With the norm

per per

[¢]lx = sup ”w('vt)”Hz(o,L)'
0<t<T
We define an operator 7 : X — X as follows: Let ¢ € X. Since

T
(26) 1D + A F@ Dl dr < e,
0
the theory of the linear Dirac equation guarantees that the initial value problem

Oz — aOpz =1 A + i A f ()1,
z(z,0) = vo(z)

has a unique solution z € C° ([0, 77, Hﬁer X Hﬁer). We define T4 := z. To make sure that that T € X
we need to show

sup ||Z(.7t)HH['(O,L) <2 ||1/)0||H2(0,L) :
o<t<rt

To prove this we use the Generalized Charge Estimate (P=3), as follows:
12Co ) lieo,ny < tbollmeco,ry +/0 1@AD + A F (D)) ()t o0y T
T
(2.7) <lollutor, +CT[¢]x +C /O It oy dr

< HwOHH[(O,L) (1 + 2CT) +C /0 H(f(¢)¢)(a T)HHZ(O,L) dr.

We need to estimate the last term in (227). We have:

IF @GN0, SCNFC T e, 190 )z 0.
+ONF @G0, 196 T e 0.0

Since we are working in one space dimension and we are assuming that £ > 1, the L° norm is controlled
by the H norm. Therefore

(2.8) [f @) C T e,y < CUF@C T a0, 10C Tt o,1)-
Now ¢ € X therefore
(2.9) 190G Do,y < NPl < 21Wollaeco,ry-

7



Let B={weCxC: |w| <C¢ollue.r - Then, by (2ZH),

||f(w('7T))||H€(O,L) <C (Z Haaf”L“(B)) ||1/}(a T)l i;l(o,L) Hw(WT)”H[(o,L)

la|<s
(210) SCv||’(/}('77-)||£12((),L)
<Clwl%

4
<C ||w0||H2(0,L)'

Using (29) and (27M) in (28), we have
1F @) D0 < C ltbolli, -

Therefore for last term of we have

(z2)

(2.11) | I s dr < TS,
0

Using (Z10) in (224) we get

||Z('?t)||H‘3(0,L) < ||,(/)0||HZ(O,L) (1 +20T+CT”'¢0H[;114(0,L)> :

If T is small enough so that
20T + CT |l <1,

HY0,L) =
then
”Z('vt)HHf(o,L) <2 ||w0||H2(0,L)'
This estimate proves that T (¢) = z € X.
Our next aim is to show that 7 is a contraction. The proof is actually very similar to what we have
already done. We shall use Dy to denote any constant that depends on the H* norm of the initial data.

It is not essential for our purposes to keep track of the exact dependence of Dy on ||¢o| x¢ (.1
Let ¢, ¢ € X. Then T (¢) — T ({) satisfies

01 =ad)(TW)=T(Q) = iAW = +i(f(¥) = FOAY + i f(OAY = ()

(T() =T())(x,0) = 0.
Using (Z33) we have
(2.12) IT(@) = TOllx < /OT li AW =€) + i F(OAW =€)+ (f(¥) = FIO)AD ]l seo 1y dt.
For the first term in right hand side we have
(2.13) /OT [i A (1) = ¢t it ny dt < CT 9 = Cllx

For the second term we have

e FCC A1) = CCs o,y S CNFCC O e, 10( 1) = Cl )| 2oe 0,

+ CIFCC w0y 190 8) = CC D)t
SONFEE om0 1) = CE D) o,y
Working as above we find
IFCC Nt o,y < € Do,

therefore
(214) i FCC AW D) = oD Lty < O Do [[9—Cll
Thus for the second term in the right hand side of (212) we have:

(2.15) /OT [ f(CC A E) = €m0y dE < C Do T ¢ = (|

8



Working similarly with the third term in the right hand side of (212) we get:

(2.16) / WD) — S rony < CDoT 16—
Using (218), (E13) and (E13) in (Z12) we get
(2.17) 174 — TClx < (C+C Do) T — .

Therefore, if T' is small enough so that (C'+ C Dg)T < 1, then T is a contraction.
This completes the proof of existence in Theorem . Uniqueness follows from similar arguments. O

Remark 2.1. Using similar arguments one can show that

O, 0,0 € CF ([0, T); HEF x HEF), 0< k<L

per per

2.3. Global existence for the nonlinear system.

2.3.1. Proof of Theorem 2. It is well known that the global existence claim of Theorem 2 follows from
the a-priori estimate of the following Proposition. We only deal with the case £ = 1 because higher values
of £ can be treated by differentiating the equation and proving similar estimates in a standard way. The
proof uses an observation of Delgado [d].

Proposition 2.4. Suppose Ay = Xo. Let ¢ € C°([0,T); H},, x H},.) be a solution of (ILB) in some
time interval [0,T) with T < co. Then

sup [[¢(,1)]|s1 0,1, < 00
o<t<T

Proof. The plan of the proof is as follows: We first obtain an L°° estimate using integration along
characteristics. We then use this L™ estimate together with ‘charge estimates’ to prove an H' estimate.
In both cases a Gronwall argument is used. The hypothesis A\; = Ay is crucial as it results in a cancellation
thanks to which the proof works without any smallness assumptions. We shall use the letter C for all
constants which may depend on A, A, T , L or f but are independent of vy, and the symbol Dy for
constants which depend on [|t)o]| 410 1)-

Multiply () by T, the conjugate transpose of ¢, and take the real part of the resulting equation to
get

(2.18) 0:J° + 0, J =0,
where
IO =ty J'=—ylay
Equation (EI8) expresses conservation of charge. Now multiply (I¥) by 1fa and take the real part of
the resulting equation to get

O + 0, J° =iyt ((@d)” — ) +if ()Y! ((@A)" — al) 1.

We have (aA)* — aA = (A1 — A2) ( ? g

(2.19) oY + 0,J° = ipT((aA)* — aA)ip.
The system consisting of (218) and (ZT9) can easily be integrated along characteristics to give
Joz,t) =2 [z —t)+ iz —t)+ Jg(x+t) — Jy(z+t)]

) = 0 therefore

(2.20) t
—|—i/ [k(x —t+s,8) —k(z+t—s,9)] ds,
0
where
Jét(x):‘]“(z70)v ,LL:O,].,
and

k=o' (€A)” — ad) v,

9



We have
IO = [yl
178 (@)] < Clltoll 00y < C ol oy
and
[k(z,t)] < C ()7 o)
Therefore, taking the L* norm in (220) we get

t
||¢('at)||%°°<o,m < C HwOH?{l(O,L) +C /0 ”’l/}('vT)”%m(o,L) dr
and Gronwall’s lemma gives

()09 < C e ol
(2.21) <Ce“T 1Yol o,y
<CDy.

This is an a-priori estimate for the L> norm of . Combining it with the Generalized Charge Estimate
we shall now prove the desired a-priori estimate for the H! norm. Indeed, applying (233) to (IC8) we get

t
||1/’('7t>||H1(0,L> < ||7/’0HH1<0,L> +/0 ||(Z Ay + ZAf(w)l/’)(a T)HHl(o,L) dr
t
(2.22) < %olluro,ry +C / (0,0 dr
0

+C [ UG i dr
For the last term in (2222) we have:
(2.23) IF @O0 SIF@CTNOC T 20,00 + [102(F(C 7)Y T e200,1)-

Let B be the ball in C x C centered at the origin and of radius equal to the constant C'Dy in the last line
of estimate (2220). Then

IF @)Yz SCIF@C T o0 19620
(2.24) <O fllee s ||¢('?T)||L2(0,L)
<O,
(The constant C' depends on the initial data through the radius of the ball B). On the other hand
(225)  [10:(F( ()Y )20, S N0 (f 7)) YT 20,0 + 1F (@70t T) 200,19
For the first term in the right hand side of (ZZ2H) we have

10:(FW )Y T2y SN0 (F@C, T ez, 10 Tl .n)
(2.26) <C [ 10 o] 1900 ez 6Pl o
<CDo [ 7)1 0,n)-
For the second term in the righthand side of (E225) we have
1F @ )0 (5 )l 20,0y S T 0. 028 (5 T 20,0
SO )t o)

(The constant C' depends on the initial data through the radius of the ball B). Using (2221) and (EZ2H)
in (2229) we have

(2.28) 10 (f (@ () P Tz, < C Do 96Tt o.n)-

10
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Using (Z2R) and (ZZ2) in (E=23) we get

(2.29) If @Yo < C Dol ).
Therefore for the last term in (2222) we have

(2.30) /Hf o dT<CDo/ 160G, Pl sy dr-

Using (2230) in (2222) we finally get that, for all ¢ € [0, T7,

(231) 196G 8) Loy < 190l 0.0) + € Do / 16C, ) oy dr

and Gronwall’s Lemma gives, for all ¢ € [0, T,
||w(.’t)||H1(O,L) < C Dy eCDOt7

with constants depending on T'. This completes the proof.

O

2.3.2. Proof of Theorem I=3. To prove our second global existence theorem we use a technique of Glassey
[IT]. Tt suffices to handle the case £ = 1 since higher £ can be treated by differentiating the equation and
proving similar estimates. It is well known that it is enough to prove the a-priori estimate contained in

the following proposition.

Proposition 2.5. Suppose a1 = —ag, A1 = —Aa, f(u,w) = |u|? — |w|? and

(2.32) | / o (2)|? dx < L.

Let ¢ € C°([0,T); Hp,, x H},,) be a solution of (IL8) in some time interval [0,T) with T < co. Then

(2.33) sup [[¢(,1)]|s1 0.2, < 00
o<t<T

Proof. Since we need to diagonalize our system we might as well work directly with (

Define a new 2-spinor field ¢ by

(2.34) u=_C+¢, w={g— (.

Set

(2.35) M=—-X=)\ a=—-ay=—m.
Then () becomes

(2.36a) 0¢C1 + 0,01 = —im (s +4iARe (g@) Ca,
(2.36D) DiCo — 0xCa = —im G +4iARe (G1G2) G-
In matrix form we can write this system as

(2.37) ¢ = By¢ — im"¢ +4ig(0)°C,
where

(1) (1) woma

The continuity equation for the conservation of charge now takes the form

(2.38) (|G +1Gl) = e (1G] + 1) = 0.
From this we get the law of conservation of charge
L L
(239) vient)s [ lwoPd= [ 6@ d.
0 0

where (o(z) = ((z,0) is the initial data of (.
11
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Fix (z,t) € R x [0,T). Following [I7] we integrate (E=38) over the backward ‘cone’ C'(z,t) with tip at
(z,t) and ‘base’ on the z-axis,
Cla,t)={(="t):0<t' <t, |[v—2'|<t—t}
(this is simply a triangle in one space dimension) and use Green'’s Theorem to get:
T+

(2.40) 2/0 (I (@4t —5,8) +|Cale —t +5,5)) ds:/ o) 2 dy.

Suppose now that T' < L, in other words, suppose that the strip R x [0,7T) has height < L. Then the
interval [x —t, x +1] in the right hand side of (220) has length < 2L. We have [z —t,2+¢t] C [t — L,z + L]
therefore the following ‘cone estimate’ is true:

2/Ot(|<1(a:+t—s,s)|2+|C2(x—t+s,s)|2) dsg/z

—t

x+

)P dy

(2.41) » .
- / )P dy =2 / Co(w)I? d.
0 0

Now fix an arbitrary point (zg,tg) € R x [0,T) and consider the backward ‘cone’ Cy with tip (xo, tp) and
‘base’ on the z-axis,

Co = C(.To,to) = {({,CJ,) :0 S t S to s \:c—x0| S t() —t}.
We wish to estimate sup |(1|. This quantity is finite because Cy is compact and ¢ is continuous. Integrating
c

0
along characteristics we find that for any (z,t) € Cy,
¢
Gz, t) =CG(x—1t,0) —im / Gz —t+s,s)ds
0

t e —
—|—4i)\/ Re (Cl(x—t+s,s)C2(x—t+s,s)) Gz —t+s,s)ds.
0

Therefore

W=

61, 8)] <IlCrollawy + mVE (/ Cale —t 4 5,5)]2 ds)

t
+4|A|/ i@ — t 4 5,8)] [Cala — t + 5,8 ds
0

1
t 2
< Crollime +mVE (/ |<2<:ct+s,s>2ds)
0

t
FA (/ ol — t 4 5,8) ds) sup |G,
0 Co
where (19(z) = (1(,0). Using the cone estimate (Z21) we get
€1 (2, )] < [|Croll ooz + m\/z”COHLZ(o,L) + 4[| ||COH32(O,L) sup [(1
Co

and since (z,t) was an arbitrary point in Cp, we have shown:

sup |C1‘ < HCIOHL‘X’(]R) +mVi ||C0||L2(O,L) +4 |)‘| ||CO||%2(O,L) sup |<l‘
Cp Co

The smallness condition (E=32) implies
(2.42) 416072002y < 3

therefore
sup C1| < 2||¢1oll @ + 2m VE|Coll 2.1
Co

12



Since Cy was an arbitrary ‘cone’ in R x [0,T) we conclude

(2.43) sup |G| < 2||Crollzoe@ +2mVT [|Coll 20,1y
RX[0,T)
and therefore
sup |(1| < oo

RX[0,T)
This is an a-priori L> estimate for ¢; which was proven under the assumption 7' < L.
Suppose now that T > L. Since ¢ € C°([0,T); Hl,,) we have

per

sup ”C('vt)”Hl(o,L) < 00.
0<t<T—L

Sobolev’s inequality then implies
sup |{] < 0.

Rx[0,T—L]
It remains to estimate the L> norm of ¢ in R x [T'— L,T). This however is a strip with height L and
‘base’ at t = T — L, and we can repeat the argument we used above to get the following analogue of
(EZ3):

(2.44) sup |G <2 sup|¢i(x, T — L)+ 2m VT |C(, T — L) 1201
RX [T, T—L) xzER

provided that the following smallness condition is satisfied:

(2.45) AT = D)lFa0 < 5

Thanks to conservation of charge (2239)

(2.46) CC,T — L)H%Z(O,L) = ||C0||32(0,L>
and therefore the left hand side of (EZH) is exactly the same as the left hand side of (223). Therefore
(223) is indeed satisfied. Then (E24), Sobolev’s inequality and (EZ8) give

sup |Cl‘ <2 ”Cl('aT - L)HHl(D,L) + Qmﬁ HC0||L2(O,L)

RX[T,T—L)
< 0.

This completes the proof of the a-priori L*° estimate for {;. Working similarly we can prove an a-priori
L estimate for (5 and thus we have an a-priori L*° estimate for the 2-spinor field ¢, as required. O

3. CONVERGENCE ANALYSIS OF THE FINITE DIFFERENCE METHOD

3.1. Notation and preliminaries. In this section, we introduce notation to shorten the mathematical
formulas, and present some basic relations often used later.
First, we introduce a set of discrete operators which is described below:

o Space-discrete operators: We define a discrete space-derivative operator dp : X, — Xp by
VoeXy: Opu;i= %, ji=1,...,J+1,
the shift operators 02‘, 0, : Xn — X by
Vove Xy Q,ij =vj41 and 0, v;:=v;_1, j=1,...,J+1,
and the product operator -®- : X x X} — Xj by
VwveXp: (w®u);=wjv;, j=1,...,J+1L
e Time-discrete operators: For given (S™)2 _, and (V™)Y_, C X}, we define the discrete time-
derivative operators 9I"'* and 9, and the discrete time-average operators A™* and A, by
init g1 ._ S*—8° init g1 .__ S*'45°
pinitgl .= S1=8°  pinitgl . S'4s°
and , )
I Vi i I Vs i _
V"= r——, AV :=r—"F—, m=2,...,N.
Next, we introduce the following notation conventions and simplifications:
13



e For ¢ € N, any function g : C* — C and any y = (y',...,%") € (X3)? we define g(y) € X}, by

9@)i = 9(yjs -y, G=1. T+ 1L

e The function f : C x C — R appears in the formulation (ITT) of the continuous problem, will be
considered as a function f; : R* = R, i.e.,

Vz1,22 € C: f(z1,22) = fR(Re(zl),Im(zl),Re(zQ),Im(zg)).
e Forn=0,...,N, we define (u™,w")¥_, C Xp x X}, (cf. Section [3) by

(3.1) ul = u(rj,t,) and wj:=w(wj,t,), j=1,...,J+1,
where the functions v and w form the L—periodic solution pair of the continuous problem (ICIa)—
e For any € > 0 we set K. := [—¢,¢] C R.

Finally, we introduce some norms and an inner product:
e For £ € N, we shall consider the following standard norms in R’ |[|z]|o re = maxi<i</ |2;],

’ ‘ 3
]l re i= D05y 2] and [[z]|a e = (205, [il?)* for z € R
e The space X, is provided with a discrete L?(0, L)—inner product (-,-)o defined by

J+1

Vw,v€ Xp:  (w,v)on = thjoj,
j=1

inducing a discrete L*(0, L)—norm ||||o.5, given by ||vlo.n := 1/(v,v)o,5 for v € Xj. Also, we define
a discrete H'(0, L)—seminorm by |v|1p := ||6pv|lo,n for v € Xj, a discrete H'(0, L)—norm by
loll1,n = (||v||%’h+|v|ih)% for v € X}, and a discrete maximum norm by |v]s := maxi<j<,.1 |Vj]
for v € Xj,.

The discrete space derivative J;, satisfies a discrete version of the integration by parts:
(3.2) Vo,we Xy (dpv,w)on =—(v,0hw)o,n
and the following discrete product differentiation:
(3.3) Vo,we Xyt Sp(v®@w) =60 0w+ 0; v dw.

We close this section by showimg that a discrete Sobolev-type inequality holds.
Lemma 3.1. There exists a real constant Cs > 0, independent of h, such that
(3.4) voeXn: ol < Collollon (lollon + oha).

Proof. Let v € Xj,. Then there exists jo € {1,...,J+1} such that |v|s = |vj,|. Setting j. := jo+3(J+1),
we have [v|o = |v;,| and x5, € (3L,4L]. Now, we consider the auxillliary quantities (1;)7_, C R defined
by ¢ := 2-x; — 1 for j =0,..., .. Thus, we have: (i) g = —1, (ii) ¢1 < 0 since 2z, < 2L < z;_, (iii)

Y. =1, and (iv) ¥;, 1 > 0 since 2z;,_y > 6L > z;,. Also, it is, easily, seen that maxo<;<;, [1;] < 1.
Now, we introduce the auxiliary quantity S, := ;:*:711(|vj+1|2 Yit1 — |vj_1]? wj,l). First we observe
that
Jx Jx—2
Se= loilP v = > P vy
j=2 3=0
(3:5) = vy, P . + v -1 -1 — |va]* 91 — Jvo|* o
> |v.]* + Jvo|®
> Jof2,.

14



To derive an upper bound for S, first we observe that

Jx—1 Gu—1
S, = Z it (Vi1 — ¥j-1) + Z Vi—1 (Jvjp > = Jvj—1]?)
Jj=1 j=1
Jx—1 Ja—1
= % Z hlvjpi]? + Z Vi1 Re[(ij —vj_1) (m_yyji_l)}
j=1 j=1

Then, using the properties of (z/Jj);*:O and the Cauchy-Schwarz inequality we obtain

4(J+1) 4(J+1)

S < 3%: Z h ‘Uj+1|2 +2 Z h|6nvj| [vj11 4+ vj—1]
Jj=1 j=1
J+1 J41
<35 Y bl +8 3 hldney| fogan + vy
Jj=1 j=1
J41 3
< 28 Jollg.h +8V2 16nvllo.n <Zh (Jogaal? + oj-1[?) )
j=1
which finally yields
(3.6) Se < 3210l 5+ 16 [3nvllo.n lollo.n-
Combining (8H) and (BE), we arrive at (84) with Cy = 16 max{1, 5+ }. 0

3.2. The finite difference method is well-defined. Using the discrete operators introduced in Sec-
tion B, we formulate the finite difference method described in Section 3, as follows:
Step 1. Set

(3.7) U%:=u’ and W°:=uw’.

Step 2. Find U' € X}, and W' € X}, such that
MU 4 6 AW =i AMU +i N f(U, W) U,
O 5, AU = oy AW 4 N\, f(UO, W) @ WO
Step 3. For n =2,..., N, find U™ € X} and W™ € X}, such that
O, U™ + 6, AW™ =i AU™ + i)\ f(U L, W HeUun !
O W™ 4 6, AU™ = iag AW™ +idg f(U L, W ) @ Wt

(3.8)

(3.9)

Now, defining, for 8 € R3, a linear operator 'y (3;-) : X x Xj — Xp, x X}, by
- Ta(B; (vasvs)) i=( (1= 7 B2) va + 7 By v,
(310 (1—i753)v3+7515th), YV (va,v5) € Xp X Xy,
we, easily, conclude that
Tn (Ba (UL W) = (7 3 U0 = 5600 +idu 7 F(UO, W) @ U,
iT R WO =60+ f(U0, W) @ W)

and

T (Bs; (U™, W™)) :(iTal Ut —ro,Wht a2 r fUL W) @ Ut

iTas W — 18U 420 UL, W @ W"—l)
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forn =2,...,N, where 3, := (%, G, %) and By := (1,1, az2). Thus, the existence and uniqueness of
the finite difference approximations follows easily by the invertibility of I',(3;-) which is the outcome of

the following lemma.
Lemma 3.2. For all B € R3, the operator T'(B;-), defined by (BID), is invertible.

Proof. Let 3 € R3. Since the space X, x X} has finite dimension, the invertibility of the linear
operator I',(8;-) follows by showing that it is one-to-one. For that, let (wa,wp) € Xp x Xp such
that T'y(8; (wa,wps)) = 0. Then Re((1 — i7f2)wa + 7 S10pwr,wa)on, = 0 and Re((1 — i7 fB3)ws +
T 81 0pwa,wp)o,n = 0 which yield that

(3.11) ||wA||g7h + 7 1 Re(dpwp,wa)o,, =0 and ||wB||37h + 7 1 Re(dpwa,ws)o,n = 0.

Using (B2) we conclude that

(3.12) Re(dpws, wa)on = —Re(dpwa,ws)o,h-

Thus, (B0) and (B12) yield [|wall§, + [lws g, = 0, or, (wa,ws) = 0, which ends the proof. O

3.3. Consistency. Let {(p",0™)}N_; C X}, x X}, be defined by
a;nitul + (;h Ainitwl _ iOél Ainitul +Z)\1 f(uO,U)O) ®U0 + p17

( ) 6;n1tw1 =+ 6h Almtul — iOéQ Alnltwl +Z)\2 f(u(),w())@w() _|_0.1
and
(3 14) arun + 6h Awn _ ia1 Aun _’_7;)\1 f(un—l’wn—l) ®un—1 4 pn7

O-w"™ + 0 Au"™ = i ag Aw™ + 1 Ao f(u"il,wnfl) Qw1 + o

for n =2,..., N, where {(u",w™)}N_, C X x X}, have been defined by (8). Then, using the Taylor
formula, we obtain

(3.15a) |p1|oo—&—|01|oo < C(r+h%), max (|p”|oo—|—|cr"|oo) < C(1*+h?),
2<n<N
and
(3.15b) |<5hp1|OO + |(5h<71|oo < C(r+ h2), , nax (|5hp"\oo + |5h0"|oo) < C (7'2 + h2).
<n<N

3.4. A modified finite difference method. The development of a convergence analysis for the finite
difference method (BZ7)-(B™) pass through the efficient handling of the locally-Lipschitz nonlinearity of
the problem. Since we are not able to prove for the finite difference approximations an a priori bound in
the discrete maximum norm, we introduce and analyze a modified finite difference method which follows
from the finite difference method (B22)-(8™) after a modification of its nonlinear terms. Our modification
is based on the use of a j—parameter dependent cut-off function gs, choosen to achieve the following
basic effects:

e the nonlinear terms become globally Lipschitz (with a constant that depends on ) (cf. Sec-
tion BA) which allows the derivation of error estimates for the modified finite difference approxi-
mations, and

e the nonlinear terms remain unaffected for complex numbers belonging to an area around zero
with a radius less or equal to J, and thus it is possible to build-up a condition yielding that the
modified finite difference approximations are those of the finite difference method (822)-(B) (see
Lemma B3).

In particular, let

(3.16) O := sup [|ullzoeo,) + sup [[w|[Lo 0.y + 1
[0,T] [0,7]

and

(3.17) 0 > 6.
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Then, we consider a bounded, monotone increasing function gs € C%(R;R) with bounded derivatives up
to second order, satisfying

x, if Jx| <é q [, 26], if xe€ld,30]
9@ =025 i fol>35 M BEEN Lo s i e [-36 0]

E]
for x € R. Next, we define a function 5 : C — C by
(3.18) v5(%) == gs(Rez) + i gs(Imz) VzeC,
and the function f5: C x C — C by
fs(z1,22) := f(v5(21),78(22)), V21,2 €C.

It is easily seen that |ys(2)] < 2v/26 for z € C and

(3.19) v5(z) =2z forallzeC with |[z| <4.

The modified finite difference method, for n = 0,..., N, constructs an approximation (U%", W‘s’") €
X, x Xy, of (u™, w™), following the steps below:

Step I. Set
(3.20) U0 =’ and W0 ="

Step II. Find (U, W%') € X}, x X}, such that

8,irnitU6’1 + (Sh.AinitW(S’l _ ial AinitU(S’l 44 )\1 '](‘5(0'5707 W&,O) ®’}/5(U5’O),

3.21 . . .
( ) a‘lrnltwts,l + 5hA1n1tU5,1 _ iOZQ Alnltw(S,l +Z)\2 f5(U5,07 WtS,O) ®7§(w5,0>.

Step III. Forn =2,...,N, find (U™, W%") € X}, x X}, such that

aTUé,n =+ (Sh.AW(S’n — iOél AU&,n 44 )\1 f5(U6’n_1, Wé,n—l) ®'75(U67n_1)7

(8.22) D WO 4 5, AU™ = i cg AWO™ 4 Ny f5(UP L WOy @ s (WOR 1),

The existence and uniqueness of {(U%" Wo™)}N_, follows easily by the invertibility of the discrete
operator I'y, defined in (BTd). Also, (BTA) yields that vs(u}) = u} and ys(w}) = w} for n =0,..., N
and j € Z. This means that the consistency argument for the modified finite difference method (B=20)—
(B22) is the same to that of the finite difference method (822)—(B™). We close this section by presenting
a condition that allows to conclude that the approximations produced by the modified finite difference

method (BZ)—(B=Z2) are those of the finite difference method (BZ2)—(B3).

Lemma 3.3. Let 6, be the constant defined by (BIR), § > o, {(U™,W™)}N _, be the approrimations
of the finite difference method (822)-(89) and {(U>™, WO™)}N _ be the approzimations of the modified
finite difference method (8220)—(B8=22). If

,n o,n <
(3.23) nax max {|U%" o0, [W*"|oo } < 6,
then
(3.24) Ut =uU" and WO"=W", n=1,...,N.

Proof. Since § > §,, we obtain U9 = |[u%s < 6 and [W0| = |u®, < 6. Using the latter
inequalities along with the assumption (B223) and relation (BT9), we conclude that

(3.25) Y5(U™) = U and ~s(Wo™) = W™ n=0,...,N.

Finally, we arrive at (8724) using (B224) and a simple induction argument based on (B721) and (8222). O
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3.5. Lipschitz-type inequalities. In this section, we show several Lipschitz-type inequalities that will
serve later the error estimation of the modified finite difference method.

Lemma 3.4. Let £ > 0 and F. : C? — R defined by F.(z,w) := F.(Re(z),Im(z), Re(w), Im(w)) for z,
w € C, where F, € C*(RYR). If (v™)2 _, C X}, with maxi<m<a [V oo < €, then

m=1
(3.26) [Fe(v?,v?) = Fe(v®, v lon < Ce (Ilv" = v®[lon + [Iv? = v*lon )
where 6'5 = SUP g )4 [V E:|l2a-

Proof. Let z*, z” € R* with max{||2*||oo g4, [|2"||co.rs} < &. Using the Taylor formula for scalar functions
with integral remainder we conclude that F(z*)— Fy(2?) = fol VE(sz*+(1—s)x”)(z* —2”)ds, which
yields that |F,(z4) — Fu(2®)| < C. ||a* — 27 ll2,ra. Now, we combine last inequality and our assumptions
on (v™)% _; to obtain

J+1

||FC(U17U2) - FC(U37U4)HO,h < 66 hz (|U]1 - U?|2 + IU]2 - U?|2)
j=1

which obviously yields (B=28). O

Lemma 3.5. Let &, be the constant defined by (B8), 6 > 0, and vs : C — C be the function defined in
(BIR). Then, it holds that

(3.27) Vwaws € Xnt [1s(wa) = v5(ws)lon < Co lwa — wsllon,
where Cy = sup,, . |95!-

Proof. The inequality (B=27) follows easily by using the mean-value theorem on the function gs and
observing that g§(z) = 0 for 2 € R\ K3;. O

Lemma 3.6. Let £ > 0 and F. : C? — R defined by F.(z,w) := F.(Re(z),Im(z), Re(w), Im(w)) for z,
w € C, where F, € C2(RY;R). If (v™)4 _; C Xp, with maxi<m<4 |[v" | < €, then

m=1

6 Fe(v?, 0%) — 8, Fe(v®, 0*) o < Ci e [||5hv1 = 6n0°[lo,n + [1680% = nv*[lo,n

on) |,

(3.28)
+ (1080 oo + (002 ]00) ([0t = v [lon + [lv* —2?

with 6175 = max { Sup(K6)4 HVFR||27R4,IH3X1§J'S4 (sup(KE)z; ||V6ijR||27R4)}.

Proof. Let (x%)}_; C R* with maxj<;<4 ||2°| o g1 < e. Using the mean value theorem for scalar functions
we have

Fo(zh) — Fo(2?) — Fo(2®) + Fa(2?) :/01 VE(sz®+ (1—s)a?) (2" —2® — 2% + 2%) ds

4 1,1

+ Z(x]l — ) / / VO, Fa(r(s,s)) [s(z' — 2%) + (1 — s)(2® — )] dsds’
= o Jo

where 7(s,s’) == ss' 2! + 5’ (1 — s) 2% + (1 — §')s2® + (1 — s')(1 — s) 2*. Hence, we obtain

|Fu(a) = Fiu(@®) = Fo(a®) + Fula®)| < Cre [ lI@' = 22) = (0% = 2

+3let = 2%z (o' = 2 llams + ll2® = 2*flams ) |
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Using the inequality above, we get

J+1
||5hFc(vl,v2) - 5hFC(v3,v4)H0,h < 6175 { lhz ( \5hv} - 5hv§’|2 + |5hvj2- - th;»l|2)

j=1

N

_|_

J41
2
Y (10| +180031) " (1031 = vial® + 0f 0 = vja ) ]
j=1

1
J+1 2
2
+ | h E (|5hUJ1‘| + |5h1)32‘|) (‘Ugl‘fl - ?71|2 + |Ug2‘71 - U;‘L71|2) ]

Jj=1

which, easily, yields (B=23). O

Lemma 3.7. Let 6, be the constant defined by (BO8), § > 0, and vs : C — C be the function defined in
(BIR). Then, it holds that

(3.29) Vw,v € X, : Héhfy(;(w) — 5h75(fu)||07h < 6’1,5 (H5hw — opvllo.n + |0nW]oo |lw — v||07h>,

where Cy 5 := v/2 max { supg,, |95, supg,, 1951}
Proof. Proceeding as in the proof of Lemma BE we arrive at the following inequality
c
|95(21) — gs(22) — gs(x3) + gs(x4)| < =75 [ |1 — 22 — 23+ 24| + 3 w1 — @] (|21 — 23] + |22 — 24| ) |
for x1,x2, 3,24 € R. Applying the latter inequality, we obtain

J+1 %
(h > [onw; — 5hvj|2>

j=1

[6875(w) = On75(0)[lon < Cis

N
| S|

J4+1
2
+ % ( Z |6hwj|2 “ijrl - Uj+1‘ + |Wj,1 — Uj71|] )
j=1
that easily yields (B=29). -

3.6. Convergence analysis. As a first step of our analysis, we prove an optimal order convergence
result, in the norm || - ||o,x, for the approximations of the modified finite difference method.

N

Proposition 3.1. Let §, be the constant defined by (BIH), & > 4., {(U&m, V[/‘S’m)}m:0 be the approxi-
mations specified by the modified finite difference method (B=20)—~(B=22) and {(u™,w™)}N _, be defined by
(B). Then we have

(3.30) max (||U" —u"

0<n<nN

o + W™ —w™on) < Cos (72 + 1?)

where Cy 5 s a constant depending on J, but independent of 7 and h.

Proof. First, we set ef;m = u™ — U%™ and e?,;,m = w™ — W™ for m = 0,...,N. Then, we introduce
(uo™)N—1 C Xp, and (£5™)N_, C Xp, by

(3312) OGN | 5, AR — iy AP 4 P 4

(331b) aqi_niteg‘,/l + 5hAinite([5]71 =iao Ainiteé{/l + 56’1 + 0_1’

and

(332&) 87—6;5]’” + 5h./46€",n = iOél Aeg’" —+ ‘ué,n + pn7

(3.32Db) By e + 6 AeS™ = i oy AeS™ + €5 4 o7
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for n =1,..., N, where (p™)¥_, and (¢™)~_; are the consistency errors defined by (BI3)—(8BId). Sub-
tracting (B2211) from (B13), and (B722) from (BTA), we easily verify that

ué,n = — )\1 [fﬁ(Ué,nflv W&,nfl) ®’}/5(U6’n71) o fé(unfl’wnfl) ®76(un71) ]’
0 = —i Xy [f5(UO L WO T @45 (WO = fs(u ™ w™ ) @qs(w™ ) ]
forn=1,...,N. Also, we observe that (B8=20) yields

(3.34) ey’ =0, e’ =0 and p>' =0, &'=0.

(3.33)

Now, take the (-,-)o 5 inner product of (B=31d) by Ainite® ! and of (B3TH) by A™ited!, and then real
parts. We add the obtained relations, and then we use (82), the consistency estimate (8I5a) and (B=34)
to obtain

(3.35) lleg lo,n + lled
Next, set

C(T2 + Thz).

1
5 s, s, 5, s, 2
o= (g™ g n + Nlew™ I8 n + leg™ 5 + llew™ M5 n)*, m=1,...,N,

take the (-,-)o n inner product of (B33Zd) by Ael™ and of (B33ZH) by Ae%”, and then real parts. We
add the obtained relations, and then we use, again, (B3), the consistency estimate (B15a) and (B534) to
obtain

(V5,n)2 < (Vé,n—l)z +27 ||,u'5’n (1/6’" + Vé’n_l)
(3.36) +27 )18 lon (V(S,n + Vé,n—l)
+Cr1(r?+h?) (V‘S’" + 1/‘5’”‘1)7 n=2,...,N.

Let n € {2,...,N}. Our next step is to estimate the quantities ||u®"|os and [|€5"||o.s. First we
observe that
(3.37) 112 lon < M| (Efy + ELLy),
where

Eg,l = H [fé (U(;,n—l’Wé,n—l) _ f(S (un—17wn—l)]®,}/6(U(5,n—l) Ho’h
and
B = || (" w )@ =™ ]

Then, using the properties of gs, Lemma B and Lemma B3, we obtain

By < s (U Do [ £ (3 (U 71), 9 (W) = £ (3 ("1, 75 (0" 71) o

(338) < 2V28 || f(s (U 1) s (W) — f (v (u” ) ( ") Mo
< G5 (@) = ys(u™ g, + s (W1 =35 (w™ )|, )
< Cs ([led" lon +lled™ g )

and

Epy < [fu w0 oo s (U°" ) = 35 (u™ ) lon

(3.39) < IS{I:*péllfual vs (U™ 1) = 75 (u™ ) lo,n

< Cs €™ o

Thus, combining (8231), (B=38) and (8=39), it follows that

2™ lon < Cs (lled

< Cé I/J,n—l )
20

)

(3.40)



Finally, to estimate ||€5" ||y », we proceed in a similar way to get

1€ lo.n < Cs (e lo.n + lled " lo.n)

S C(S V(S,n—l.
Combining (8338), (82M) and (8Z), we get
<14+ Cs) o+ Cr (72 +h?), n=2,...,N.

(3.41)

Then, a standard discrete Gronwall argument yields

. sn < S 2 4 b2y
(3.42) ax v < Cs (V" 4+ 72+ h?)
Finally, the estimate (8230) follows combining (B22), (B=33) and (B=3d). O

Next we shall show that the approximations derived by the modified finite difference method are
bounded, in the seminorm |- |1 5, by a constant which is independent of 7 and h.

Proposition 3.2. Let 6, be the constant defined by (BIB), & > &, and {(US™ WO™)}N . be the
approximations of the modified finite difference method (B20)—(B8=22). Then, we have

(3.43) max  (|U"|1n+ [WO"11) < Cps

0<n<N

where Cy 5 is a constant depending on §, but independent of T and h.
Proof. First we set UX™ := §,U%™ and W™ = 6, W™ for m = 0,..., N. Now, we apply the operator
dp, on (B220) and (B=22) to obtain

ainith,l + 5h.Ainith’l _ ia1 Ainith,l + N’i,la

a;nitwf,l + 5hAinith71 _ ia2 Ainitwf,l + ff,l’
and

D US"™ + 5, AW =iy AUS™ + o™,

D W2 4+ 5, AUS™ = i oy AWI™ 4 €07 pn=2... N

) )

where
’ui,n =i\ 0p [f5(U6’"_17 W(S,n—l) ®’Y5(U6’"_1>},

i,n — i)\2 5h [fg(Ué’n_l, W&,n—l) ®’75(W6’n_1)].
Now, letting

1
a2 = (U™ 5 + W™ G 0 + UL MG + IW2mHE L) 5, m=1,.. N,

and proceeding as in the proof of Proposition BT we arrive at

1 1
(3.44) (UM + WG L) 2 < (Inu®lG 5+ 180wl5 ) * +7 (S o + 162 lo,n)
and
(3.45) ot <Al 27 (| ow + 1€ lok), n=2,...,N.

Let n € {1,...,N}. To derive a bound for [|u3"||o., we use (B3) to split it as follows
(3.46) 2o < Al (A" + MZ™),

where
MY = |6 (f (3 (U2, 1 (WO 1)) @6 (16 (U™ (] o

My" = [ 6 (f (U1, 3(W 1)) @6 (1T ) ||y
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Using Lemma BZ1 and Lemma B, we obtain

MP™ < | F(rsU™ ), 45 (W) oo 118875 (U2 o,

< sup [ ful [6475(0) — 85 (U ]|on
(3.47) (Ko o)
< C5 ||luSnt 0,h
and
MP™ < s (U2 oo 180 f (1 (U™ 1), 45 (WO 1)) o,
(3.48) < 2v26 1|81 f (75(0),75(0)) — G f (v (U 1), A5 (W2 1)) [on
< Cs (16075 (U™ Yllo,n + 16576 (W2 0.1)
< Cs (U Mo + IWE o).

Hence, (B20), (824) and (BZR) yield
(3.49) 1™ o < Cs (102" o + 1W2"o.n).-
Proceeding in a similar way we get

(3.50) 1€2m]

o < Cs (JUP" o + W

0h)-
From (BZ4), (B29) and (B30) we obtain

(3.51) ot < Cs ([|6nu®

o+ 1160w’ [lo,n)-
Combining (BZ3H), (829) and (B850) we get

N

3 3

ﬂf’” <1 —|—C'57')71'5’"717 n=2...

*

which, following a standard discrete Gronwall induction argument, yields

3.52 max 70" < Cs ol
(3.52) max "< o,

Observing that ||6,u°|o.n + [|6nw|lo,, = O(1), the bound (BZ3) follows as a simple consequence of (BZ51)
and (8312) . O

We are ready to prove an optimal order error estimate, in the norm || - ||o,5, for the approximations of
the finite difference method described in Section 3.

Theorem 3.1. Let d, be the constant defined by (BI8), dg > 204, {(U™, W™)}N _, be the approzimations
of the finite difference method (822)—(8M), Cy be the constant in the inequality (84), Co s, be the constant
in the inequality (BZ30) for 6 = dog, Cps, be the constant in the inequality (BZ) for & = dg, and
¢, := max {supy, ||tz || Lo 0,27 SUP g 1y |WallL 0.0y }- If T and h are small enough such that

(3.53) VIR /Cs Coy | Cog (7 + ) + Cpy + e VL] < 6,
then there exists a constant C > 0 independent of T and h, such that

(3.54) max (U™ —u"

0<n<nN

lon + W™ —w"|jon) < C (7% + h?).
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Proof. Let {(U% ™ W% ™)}~ _ be the approximations of the modified finite difference method (8=20)-
(B22) for § = dp. Then, using (B3), (8330), (BZ3) and (BH3), we obtain

|U60,n - < |un|oo + |U§0,n o un‘oo
<O+ VO U™ =g, (U = u"[lon + U™ —u"|1n)
<.+ /Cs Cos, (7'2 + h2)% (Co,éo (72 + h2) +Cpss, + |Un|1,h)

<0u+/Cs Cog, (72 + %)% [Co,ao (7% +h%) + Cu 5, + VL Huz(nt")llmm,w}

Wl ol

[

<20,

S(SQ, n:l,...,N.
Proceeding in a analogous way, we, also, obtain that |W‘50’"|oo < g for n =1,..., N. Thus, according
to Lemma B3, we conclude that U%"™ = U™ and W% = W" for n = 1,..., N, and the error estimate
(8312) follows from (B=30) and (B22). O

Remark 3.1. Let us assume that the a priori bound (BZ3) is not available. Using the inverse inequality
[]oo < h™2 |[0]|o.n for v € Xy, and the error estimate (B30), we arrive at

max (|U%" | + [W"|o) < 6y + Cos, (72 K™% 4+ h?).
0<n<nN

Requiring 8y > 20, and 7 = o(h™%), we can have Co,s, (T2 h=2 +h3) < 8, for 7 and h enough small, and
thus we obtain maxo<n<y (|U"|oo + [WO0"| ) < 8o which, along with Lemma B3, establishes (854).

Our next step is to prove an optimal order error estimate, in the seminorm |-|q j, for the approximations
derived by the modified finite difference method.

Proposition 3.3. Let 6, be the constant defined by (BIB), § > §,, {(US™ W™}~ _ be the approa-
imations of the modified finite difference method (8220)—-(B222) and {(u™,w™)}N _, be defined by (BI).
Then we have

(3.55) Jmax (U™ =™y + WO — "

1) < Cus (T2 + h2),

where C s is a constant depending on 6, but independent of T and h.

s 5 s s s s
Proof. For m = 0,...,N, we set eyy := dpey’" and ey, := dpew’”", where ey and ey, are the errors

defined in the proof of Proposition Bl. To construct the corresponding error equations, we apply the
operator 0, on the error equations (B231a)—(B33TH) and (B33Zd)—(B=32H) to obtain

init 5,1 init 6,1 _ - init 6,1 5,1 1
oFer, + o A ey = iay AMey, + 0pp” + Opp,

T

init 6,1 init _on _ - init 5,1 5,1 1
oFey , + on A ey, = ian AMey  + 68" + 0po,

i
and
Orel + n ety = i oy AT+ pp™ + Gap"
Orens’, + on A"l = iag Aeyl, + 648°" + dpo™
forn=2,...,N. Setting

1
v = (e + e lB i + e 13 + e 3)F, m=1, N,

moving along the lines of the proof of Proposition B and using (BI5H), we arrive at

(3.56) e o, + et lon < C (72 + 7 k)

and

(3.57) " < w2 27 (10wu® o + 104E° lon) + C 7 (72 + 1), n=2,...,N,
where we have used, also, the fact that (B23d) yields

(3.58) e‘fj’f)* =0, e‘vs",?* =0 and pu’t =0, 0,651 =0.
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Let n € {2,...,N}. To estimate 0, u®", we use (6233) and (833) to introduce the following splitting
4
(3.59) Spp®™ = =iy Y MM,

where

M™t

O (36U 1)) @ o fs (U1 W) = Gy f (w0

Mn,? — 5hf(un_1, wn—l) ®6}er (’75(U6’n_1) _ ,yé(un—l)) ,
Mn,B .= 9; (fg(U(s’n_l,W&’"_l)) ® [5}176([]5’”_1) _ 5h7§(un_1)] ,
Mn,4 = 9}: (fé(U(S,n—l’W&,n—l) _ fé(un—l’wn—l)) ®6hun—1-

Since maxj<p<y [0pu" o = O(1), using Lemma B4, Lemma B, Lemma B, Lemma B8, and (830),
we obtain

Mo < Clopu™ oo [ f5UO W1 = f(u ™ w™ )
ClFs(U 1), 35 (WO™ 1) = s (@), 35 (w™ ) o,

Cs [l @) = 5™ Yllon + sV ) = 75 (w™ Yo ]
Cs (™ Mo + [|e5™  lon)

Cs (72 + hz),

[M™3lo.n < [f(vs(U" 1), 36 (W) oo 16875 (U 1) = Spys(u” )]

Py [ fel 10m75 (U™ 1) = dnys (u™ ) o,
(3.61) 2v3s

IN

(3.60)

IAN A IA

0,h

IN

< Cs (e Mon + 10nu"™ oo €™ Hlon )
< Cs [lleg Hlon + (72 + A2 ],
and
1M on < 116 (U™ Hloo 160 f (v (U™, 45 (WO 1)) = 01 f (35 (u" 1), v (™)) lo.n
62) < Cjs [Héwa(U‘;’”fl) — 0nvs (W™ o + 10n7s (W) = 875 (w™ ) [lo,n

(1 oo + 1810 oo ) (5™ o+ b o) |
Cs [Nt 3 o+ (72 4+ 7))

In addition, since maxj<n<xy |5hf(u”*1, w"’l)|OO = O(1), using Lemma B and the error estimate (8230)
we have

I /\

1M 2[lo,n < [0nf (@ ") oo 76U 1) = A5(u™ )

(3.63) < Cllys(U" ) =35 llo,n
< Cs g™ o,
< Cs (12 +h?).
Thus, by (B29)—(B52), we arrive at
(3.64) ,ax [[0m 1™ (e lon + Nl o + (72 + B?) ]
Proceeding in a similar way we, also, get
(3.65) pmax 180> lo.n < Cs[ g Hlon + ey Hlom + (7% +A%) ].

Thus, combining (8737), (854) and (8B3), we get

W< (1+ syt Cr(r?+h%), n=2,...,N.
24



Then, a standard discrete Gronwall argument along with (850) yield

) s,n < 2 2.
(3.66) max p" < Cs(t2 + h%)
The estimate (B5H) follows combining (8BH), (B58) and (B35HH). O

We close this section showing an optimal order maximum norm error estimate for the approximations
of the finite difference method.

Theorem 3.2. Let d, be the constant defined by (BI8), dg > 204, {(U™, W™)}F _, be the approzimations
of the finite difference method (BZ0)—(B3), {(u™,w™)}Y _, be defined by (BA), Cs be the constant in the
inequality (B3) and C1,5, be the constant in the inequality (BBH) for § = do. If 7 and h are small enough
such that

(3.67) (7'2 + h2) \/CS Co,s, \/00750 +Cis, < 6y,

then there exist a constant C' > 0 which is independent of T and h, and such that

(3.68) max (|U" —u"|oe + |[W" —w"|s0 ) < C (7% + h?).
0<n<nN

Proof. Let {(U% ™ W% ™)1~ _ be the approximations of the modified finite difference method (8=20)—
(BZ22) for 6 = . The discrete Sobolev-type inequality (B4) and the error estimates (8230) and (B353),
yield that

(3.69) Jmax max { [U%" — u™|oo, [WP" — w"|o } < \/Cs Co,50 (Co,60 + Cr60) (T2 + h?).

Now, from (BHH) and (BTA), we conclude that

do,m do,m
OgmnaSXNmaX“U ooy |W

(3.70) <24,
< 5.

oo} <O+ pmax max { [u”|oo, [w"foo }

Thus, according to Lemma B33, (B77M) yields Udon = U™ and W% = W™ for n = 0,..., N, and the
error estimate (BHBR) is established by (BTH). O

Remark 3.2. In the proof of Theorem B3, we use condition (BTA) along with the error estimates (B=30)
and (B33) to secure that U%" = U™ and W™ = W™ forn =0,...,N and a given 5o > 20,. Thus, the
error estimates (B2d) and (B5H) with 6 = &g establish an optimal order error estimate in the discrete
HY(0,L)—norm || - [[1.n, i-e.,

max ([|U" = u"[lip+ [W" = w"lln) < C (7% +h7).
0<n<nN

4. NUMERICAL EXPERIMENTS

4.1. On the implementation of the finite difference method. Let n € {2,..., N}. Then, we have

(4.1a) W = -1 oU" + U,
(4.1b) U = =155 W™ + 27,
where
U™ = e [0 U+ (L i) W2 i X 27 f(U™H, WP W™ 1
"= A [~ WP (Lt ion ) UM i d 27 f(U W U™
Now, combining (E1d) and (EIH), we obtain
(4.2) U -\ U™ = F",
where A\, := Ww and F" := —ﬁ 0¥ 4®". Thus, we can compute W™ after computing

U™ avoiding the numerical solution of a linear system of algebraic equations. Observing that §7v; =
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Vj—2=20+V;42

T2 for j=1,...,J+1 and v € Xy, it is easily seen that (E2) is equivalent to the following
linear system:

A . . . . _
(4.3) Dz — 2 [ZJ et Zy et 2 el 29 et J+1] —pn

where: z, b € C’*' with z; = Ul and b} = FJ' for j = 1,...,J +1, D € CYVV*U* s a 5—diagonal
invertible matrix, and, for ¢ € 7 := {1,2,J,J + 1}, e/*** € R/** with (e/**%); =6;; for j =1,...,J+ 1.
Since D is invertible, (B33) is equivalent to

(4.4) z— Af‘ﬁ [ZJ D7 le 4z, DT el g DT TN gy Dile””“] =D 1pn,

Computing, first, the vectors D~1b" and (D~le’*'?);cz, we are able to compute z1, 29, 2, and z,,, by
solving a 4 x 4 system of algebraic equations consisting of the first two and the last two rows of (24). In
the sequel, we can compute the unknowns (z])j;g directly from (E2). We note that, since the matrix D is
independent of n, only the vector D~'b" has to be computed at each time step. However, the first upper
and the first low diagonal of matrix D has only zero elements. To use that sparsity of D to decrease the
memory needed and the complexity of computing the finite difference approximations, we consider the
case that J + 1 is even, i.e.,, J =2M —1 for some M € N. Then, we define 2* € C with 2§ = zy; for
j=1,...,M, and 2° € C™ with 2 = z9; for j =1,..., M. It is easily seen that (E=3) is equivalent to
the following M x M linear systems:

(45) Dzt — g [ ™+ af M ] = b

o _M,1 o _M,M] _ 1n,0
4}:2 [lee +Zle ]_b i

where: D € C** is a 3—diagonal invertible matrix, b™¢, b™° € CM with ¢ = Fyh and b7 = F3 4
for j =1,...,M, and, e, e”™ € C" with (e™?); = ¢;; for j =1,...,M and i € {1, M}. Using the
invertibility of D, we write (B3) equivalently as

(4.63) 2 4>\h*2 |:Z D LMo + eD 1 ]VIM:| — 5—1bn,e,
o A o P—1_Mm1 opn-1l,MM | _ p—1zn,0
(4.6b) p —W[ZMD Mty 20 D le }—D pre.

First we compute the vectors D=1bm¢, D=1pm°, D=1eM1 and D~1eM ™. Then, we compute 2¢ and 2,
solving a 2 x 2 system of algebraic equatlons COHSlstmg of the first and last row of system (E6d). Also,
we compute 27 and 29, solving a 2 x 2 system of algebraic equations consisting of the first and last row
of system (IBH). Finally, we compute the unknowns (2£);5," directly from (E%4d) and the unknowns

(2§)j= directly from (ETH). We note that, since the matrix D is independent of n, only the vectors

D=1pm¢ and D~1b™° have to be computed at each time step.
The case n = 1 is similar and thus is omitted.

4.2. Numerical results. We wrote a program, called DRC3FD, that computes the finite difference ap-
proximations implementing the algorithm that is based on the numerical solution of the linear systems
(E@) requiring J + 1 to be an even integer. The program uses the programming language FORTRAN
77 and double precision arithmetic; also it calls the LINPACK subroutine zgtsl to solve 3—diagonal
linear systems and the LINPACK subroutines zgefa and zgesl to solve general 2 x 2 linear systems.
When the exact solution is known, first we choose J + 1 = 2 N and then we compute the global dis-
crete L™ error Ex(N) := maxg<p<y max{|U" — u"|o, |[IW™ — w"|s } and the global discrete L? error
Eo(N) := maxg<p<ny max{||U" — u"|lo.n, [|[W" — w"|lo,n}. The experimental rate of convergence for two
successive values Ny and Ny of N with corresponding errors £(N;) and £(Nz), is then computed by the

formula: log <§E%1)> /log(Nz)

4.2.1. Exzample 1. For a parameter A € (—1,1), we define functions A, B : R — R by

cosh(p x) sinh(p z)
A(‘T) = Ma13R cosﬁ(Zuw) and B( ) = MB 17A cosﬁ(qu)
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for x € R, where p:= V1 — A%, p,y = +/2(1 4+ A)p and pp := /2(1 — A) p. Tt is well known (see, e.g.,
[2], [3]), that the functions

(4.7 uy(z,t) = e MA(x) and  wy(x,t) =ie M B(x)

form a solution pair of the Dirac system (II) when f(u, w) = |u|>—|w|?, \; = —X2 = land ap = —ay = 1.
Observing that |uy(x,0)| + |w.(z,0)] = O(1071%) for |z| > 50, we can consider that u, and w, have
compact support in the space interval [—50, 50]. Thus, we test the efficiency of our method, by computing
the finite difference approximations choosing L = 100, u(z,0) = u.(x 4+ 50,0) and w(x,0) = w,(x + 50,0)
for z € [0,100], and then by comparing them with the nodal values of the functions u(z,t) = u.(z+50,t)
and w(z,t) = w,(z + 50,t). In the numerical experiments, we set 7 = 8.0, A = 2 and N = £ =
64,128,256, 512,1024. The results obtained are displayed on Table 1 and Figure [, and confirm a second
order experimental order of convergence in the discrete L™ and L? norms. In Figure B and Figure B we
display the exact solution to the problem along with its finite difference approximation at the final time

T.

N Ex(N) Rate Eo(N) Rate
64 | 4.103744(-1) | — |[5.066743(1) | —
128 | 4.407355(-2) | 3.219 | 8.386832(-2) | 2.595
256 | 1.028941(-2) | 2.099 | 1.991953(-2) | 2.074
512 | 2.535220(-3) | 2.021 | 4.923096(-3) | 2.016
1024 | 6.327513(-4) | 2.031 | 1.229362(-4) | 2.030

TABLE 1. Example 1: Rates of convergence in the discrete L> and L? norms.
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FIGURE 1. Example 1: log(N)/log(Ex(N)) plot of errors along with their linear least
square fitting (slope = —2.115).
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FIGURE 2. Example 1: u(-,T) and UY with T = 8.0 and N = £ =512,
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FIGURE 3. Example 1: w(-,T) and W" with T'=8.0 and N = L1 = 512.

4.2.2. Example 2. Let u, and w, be the functions defined by (£=2) . Also, let v € (—1,1) and 7 := —=2

1—v2"
It is well known (see, e.g., [2], [Z7]) that the following functions

us(e,t) = (1) (v — vt),5(t — vx)) +sign(v) (52)

)
ws(z,t) = ("’—H)% wy(y(x —vt),y(t —va)) + sign(v) (7771) U (y(z —vt),y(t —vzx))
)

form another solution pair of the Dirac system (1) when f(u,w) = |u|?> — |w|?, \1 = —X2 =1 and ay =
—a1 = 1. Here, sign(v) := Iv\ when v # 0, and sign(v) := 0 for v = 0. We test our method, by computing
the finite difference approximations choosing L = 40, u(x,0) = ug(x + 20,0) and w(z,0) = ws(x + 20,0)
for x € [0,40], and then by comparing them with the nodal values of the functions u(z, t) = ug(x +20,1)
and w(z,t) = ws(z +20,t). In the numerical experiments, we set T =8.0, A =3, v =1 and N = £ =
64, 128,256,512, 1024,2028. The results obtained are displayed on Table 2 and Flgure A and confirm a
second order experimental order of convergence in the discrete L> and L? norms. Finally, Figure B and
Figure B display the exact solution to the problem along with its finite difference approximation at the
final time 7.

1
2

wi(y(x —vt),y(t — v ),

(NI

N Exo(N) Rate Eo(N) Rate
64 | 1.351699(-1) | — | 2.377012(-1) | —
128 | 2.971434(-2) | 2.185 | 5.842444(-2) | 2.024
256 | 7.302886(-3) | 2.025 | 1.449370(-2) | 2.011
512 | 1.821913(-3) | 2.003 | 3.616602(-3) | 2.003
1024 | 4.582936(-4) | 1.991 | 9.090737(-4) | 1.992
2028 | 1.161667(-4) | 2.008 | 2.305187(-4) | 2.008
TABLE 2. Rates of convergence in the discrete L> and L? norms for Example 2
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FIGURE 4. Example 2: log(N)/log(E.(NN)) plot of errors along with their linear least
square fitting (slope= —2.025).
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