
ACMAC’s PrePrint Repository

On the parabolic Stefan problem form Ostwald ripening with kinetic
undercooling and inhomogeneous driving force

D. C. Antonopoulou and Georgia D Karali and N. K. Yip

Original Citation:

Antonopoulou, D. C. and Karali, Georgia D and Yip, N. K.

(2011)

On the parabolic Stefan problem form Ostwald ripening with kinetic undercooling and
inhomogeneous driving force.

Journal of Differential Equations.

(In Press)

This version is available at: http://preprints.acmac.uoc.gr/60/
Available in ACMAC’s PrePrint Repository: February 2012

ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

http://preprints.acmac.uoc.gr/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ACMAC

https://core.ac.uk/display/10853733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preprints.acmac.uoc.gr/60/
http://preprints.acmac.uoc.gr/


On the parabolic Stefan problem for Ostwald ripening with kinetic undercooling

and inhomogeneous driving force

D.C. Antonopoulou

Department of Applied Mathematics, University of Crete, GR–714 09 Heraklion, Crete, Greece, and Institute of Applied and Computational

Mathematics, IACM, FORTH, Greece.

G.D. Karali

Department of Applied Mathematics, University of Crete, GR–714 09 Heraklion, Crete, Greece, and Institute of Applied and Computational

Mathematics, IACM, FORTH, Greece.

N.K. Yip

Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067 USA.

Abstract

Ostwald ripening is the coarsening phenomenon caused by the diffusion and solidification process which occurs in the

last stage of a first-order phase transformation. The force that drives the system towards equilibrium is the gradient of

the chemical potential that, according to the Gibbs-Thomson condition, on the interface, is proportional to its mean

curvature. A quantitative description of Ostwald ripening has been developed by the LSW theory. We extend the

work of Niethammer [14] which deals with kinetic undercooling in the quasi-static case to the parabolic setting with

temporally inhomogeneous driving forces on the solid-liquid interfaces. By means of a priori estimates, local and

global existence results for the parabolic Stefan problem, we derive a first order approximation for the dynamical

equations for the heat distribution and particle radii and then prove the convergence to a limiting description using a

mean-field equation.
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1. Introduction

1.1. The physical model

Ostwald ripening or coarsening [15] is a diffusion and solidification process occurring in the last stage of a first-

order phase transformation. Usually, any first-order phase transformation process results in a two phase mixture

with a dispersed (solid) second phase in a background (liquid) phase ([16, 17]). Initially the average size of the

dispersed particles is very small. Hence the interfacial energy of the system is very large and the mixture is thus

not in thermodynamical equilibrium. The force that drives the system towards equilibrium is the gradient of the

chemical potential. According to the Gibbs-Thomson condition, on the interface between the two phases, the value

of this driving force is proportional to the mean curvature of the interface. As a result, matter diffuses from regions

of high curvature to regions of low curvature. This leads to the growth of large particles at the expense of small ones

which eventually shrink to vanish. The outcome of this process, known as the Ostwald ripening is the increase of the

average particle size and the reduction of their number so that the mixture becomes coarser over time. A quantitative

description of this process was first developed by Lifschitz and Slyozov [11] and independently by Wagner [18] under

the assumption that the relative volume fraction of the dispersed phase is very small. The idea of the LSW theory is

to make use of the growth velocity of an isolated particle. The interaction between the particles is captured through

the average value of the background temperature field. This approach is thus called the mean field approximation.
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More specifically, the LSW theory produces an equation for n = n(R, t) the number density of the particles at time

t as a function of radius R. This function is shown to satisfy the following equation:

∂n(R, t)

∂t
+

∂

∂R

(
V(R, t)n(R, t)

)
= 0 (1)

where V is the growth rate of a particle of radius R:

V(R, t) =
1

R(t)

(
1

R(t)
−

1

R(t)

)
(2)

and R(t) is the average particle radius:

R(t) =

∫
Rn(R, t)dR∫
n(R, t)dR

. (3)

Note that by definition, n(R, t)dR gives the number of particles at time t with radius in the range [R,R + dR]. Hence∫
n(R, t) dR is the total number of particles present at time t. The system (1) − (3) is analyzed in [11, 18]. It is argued

that there exist infinitely many self-similar solutions, but only one is believed to describe the typical behavior of the

system for large times. This is given by:

ns(R, t) �
1

t
4
3

G

(
R(t)

R(t)

)
where G(·) is some scaling function. (4)

Based on this, the following temporal laws are derived for the average radius and the total number of particles:

R(t) �

(
R

3
(0) +

4

9
t

) 1
3

and N(t) �

(
R

3
(0) +

4

9
t

)−1

. (5)

There have been many mathematical works concerning the above description. It is a nontrivial step to connect

statements (1) and (5) rigorously to the underlying diffusion and solidification process. The work [13] has given a

mathematical justification for (1) and (2) by considering an isotropic approximation which allows the author to restrict

attention to the class of spheres with center locations fixed throughout the evolution. In [1, 2, 8] the authors obtained

precise expressions for the equations of the centers and the radii by taking also into account the geometry of the

distribution thus removing these restrictive hypotheses.

It is the purpose of the present work to contribute further to the overall theory by incorporating kinetic undercooling

and temporally inhomogeneous driving forces in the parabolic setting. Our results extend the work of [14] which deals

with the quasi-static case.

1.2. Mathematical formulation — free boundary value problem

Now we describe the mathematical set-up for the diffusion and solidification process. In the following, we consider

the growth of the solid phase of a substance in an undercooled liquid phase of the same substance. Assuming isotropic

growth, one possible model is the following Stefan problem for the temperature field θ and the solid-liquid-interface

Γ [7, 10]:
C∂tθ = K∆θ in Ωl

HV = −K∇θ · n on Γ

V = −M(θMσk + H(θ − θM)) on Γ

(6)

where the liquid and solid phases are denoted by Ωl and Ωs = R3\Ωl and Γ = ∂Ωs is the solid-liquid interface. Note

that these sets are all time dependent. In the above, K is the thermal diffusivity, C is the heat capacity, θM is the

melting temperature at a flat interface, H is the latent heat, σ is the surface tension, M is a mobility coefficient, k

denotes the mean curvature of Γ (which is positive for a ball), n is the outward normal to the solid phase, and V is

the normal velocity of the interface. The first interfacial condition on Γ, also known as the Stefan condition, ensures

local conservation of heat. The second condition, known as the kinetic undercooling, couples the geometry of the

interface with the evolution of the temperature in the liquid phase Ωl. The curvature term forces the system to reduce
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the surface area of the interface Γ. But in the case of undercooled liquid, the second term gives a growing tendency

for the solid phase. In other words, these two terms compete against each other. The following equilibrium condition

θMσk + H(θ − θM) = 0 (7)

formally derived by setting V = 0 or M = ∞ is called the Gibbs-Thomson law on the interface. It predicts that the

melting temperature is reduced for small particles. It is this effect which provides the barrier for nucleation of solid

and thus allows for the existence of undercooled liquid phase. Since during Ostwald ripening interfacial velocities

are relatively small, the Gibbs-Thomson condition is often used as an approximation of the general growth law.

Nevertheless, even for small interfacial velocities, the kinetic term in the boundary condition has a strong regularizing

effect on small particles.

The above is one type of free boundary value problems. There are many mathematical works that tackle such

problems. A local existence result relevant to our present work is [3]. Furthermore, there are many results on the

Dirichlet problems in perforated domains. In order to derive the average equations that capture the behavior of the

solutions in large spatial scales, it is found out that the capacity of the holes is a crucial quantity. Most closely related

is the work [4] that considers Dirichlet problems in domains with holes in a similar setting. It proves that if the

capacity does not vanish, the type of the limit equation changes. In [5], a simpler Stefan problem with zero boundary

was studied in which the solid phase is not allowed to melt completely. This last mentioned work handles the case of

finite capacity and hence it does not get a mean-field model in the limit.

1.3. Motivation for the current work

The motivations of the current work are two folds. First we want to extend the work of [14] to the parabolic setting.

The cited work deals with kinetic undercooling in the quasi-static case. The work [13] studies both the quasi-static

and parabolic case but without the effect of kinetic undercooling. Even though the strategy of attack follows closely to

[13, 14], due to the combined presence of the parabolicity and the kinetic undercooling, some additional terms appear

in the derivation of energy estimates and the construction of sub- and super-solutions. These terms require extra care

in the analysis. Thus we feel that it is worthwhile to investigate more rigorously this case.

In addition, we want to consider the effect of inhomogeneous driving forces both in the spatial and temporal

setting. Ideally, we would like to incorporate stochastic perturbations. Possible modification of (6) is the following:

C∂tθ = K∆θ + ξ(x, t) in Ωl

HV = −K∇θ · n on Γ

V = −M(θMσk + H(θ − θM)) + ζ(x, t) on Γ

(8)

where ξ and ζ are stochastic driving forces. A choice often used is some white noise in time and/or space (even though

this is far from clear from a modeling point of view). However, a general theory of stochastic perturbation in moving

boundary value problems is still not available at present, in particular the incorporation of white noise term into the

free boundaries.

In order to understand the estimates involved, in the current paper, we restrict our attention to deterministic driving

forces which perturb in time the dynamics of the solid-liquid interface Γ. Specifically, we set ξ ≡ 0 and ζ to be some

time dependent function which can take on different values on separate parts of Γ. We believe the results obtained

here can lead to useful understanding to the ultimate, more general stochastic case.

2. Mean field approximation

To simplify the analysis, it is convenient to non-dimensionalize equation (6). Let

y→
H

σ
y, t →

θMKH

σ2
t, v :=

θM − θ

θM

, λ :=
CθM

H
, and β :=

K

MHσ
.

Then (6), together with some inhomogeneous driving force g(t) acting on the interface Γ can be written as

λ∂tv = ∆v in Ωl

V = ∇v · n on Γ

v + g(t) = k + βV on Γ

(9)
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We will construct an approximation of the solution by making use of the idea that in the vicinity of a particle

the solution should look approximately like the one for a single particle. Hence we first consider the single particle

problem when the particle is a ball BR of radius R centered at the origin:

λ∂tv = ∆v in R3\BR

Ṙ = ∇v · n on ∂BR

βṘ = − 1
R

+ v + g(t) on ∂BR

lim
r→∞

v(r, t) = v∞(t).

(10)

Note that the mean-field value v∞(t) is imposed as a boundary condition at infinity.

In the elliptic (quasi-static) case λ = 0, the solution of problem (10) at any time t > 0 can be explicitly given by

v(r, t) = v∞(t) +
R(t)

(
1 − R(t)v∞(t) − R(t)g(t)

)
r(β + R(t))

(11)

and

Ṙ(t) = −
1 − R(t)v∞(t) − R(t)g(t)

R(t)(β + R(t))
. (12)

We first mention that the positivity of β indeed has a profound effect on the dynamics of particles, in particular

near the time when the radius is about to vanish. When R � 1, if β > 0 (12) becomes:

Ṙ ≈ −
1

Rβ
and hence R(t) ≈

(
C −

2t

β

) 1
2

while for β = 0,

Ṙ ≈ −
1

R2
and hence R(t) ≈ (C − 3t)

1
3 .

Even though the solution forms (11) and (12) are for the single particle case in the quasi-static situation, we expect

them to be still a good approximation with multiple particles if λ � 1 and all the particles are far away from each

other. In this case, the overall solution v of (10) is roughly given by the linear combination of the individual solutions:

v(y, t) ≈ v∞(t) +
∑

i

Ri(t)
(
1 − Ri(t)v∞(t) − Ri(t)gi(t)

)(
β + Ri(t)

)
|y − yi|

, (13)

where i is the index of the particle with center at yi and radius Ri.

To complete the picture, we need to specify the quantity v∞(t) and its dynamics. Note that it is a spatially constant

variable describing the heat distribution far away from the solid-liquid interfaces. This justifies the terminology mean-

field description. Due to the assumption of small volume fraction (to be prescribed later), the overall background

domain Ω is very close to the region Ωl occupied by the liquid phase. Hence we have

v∞ ≈
1

|Ω|

∫
Ωl

v.

We now compute

∂t

∫
Ωl

v =

∫
Ωl

∂tv −

∫
∂Ωl

Ṙv =

∫
Ωl

1

λ
∆v −

∫
∂Ωl

Ṙv = −

∫
∂Ωl

1

λ
∇v · n −

∫
∂Ωl

Ṙv = −
1

λ

∫
∂Ωl

Ṙ −

∫
∂Ωl

Ṙv,

so that

∂tv∞ ≈ −
1

|Ω|λ

∫
∂Ωl

Ṙ −
1

|Ω|

∫
∂Ωl

Ṙv.

Since λ is small, the second term is negligible. Note that ∂Ωl = ∪i∂B(yi,Ri), by (12) we then get

∂tv∞ ≈
1

|Ω|λ

∑
i

(
1 − Riv∞ − Rigi(t)

Ri(β + Ri)

)
4πR2

i (14)

The purpose of the current work is to derive rigorously the solution formulae (12), (13) and (14) from the free

boundary value problem (9) and give a limiting homogenized description for a large number of particles.
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3. Rescaling of the problem

In this section, we introduce the spatial rescaling of the Stefan problem (9) so as to derive a limiting homogenized

equation.

We consider the case that the solid phase Ωs = Ω\Ωl consists of a collection of N disjoint balls, i.e.

Ωs =

N⋃
i=1

B(yi,Ri) and Γ =

N⋃
i=1

∂B(yi,Ri). (15)

We further assume that the centers of the balls do not move and the spherical shapes are preserved during the evolution

(see Remark 3.1 for a discussion). Strictly speaking, there is no solution satisfying the above assumptions. As in

[13, 14], we replace the second condition of (9) by the following integral condition:

Vi := V
∣∣∣
∂Bi

=
1

|∂Bi|

∫
∂Bi

∇v(y, t) · nds (where ds is the area element and Bi = B(yi,Ri).) (16)

Since Vi = Ṙi, ki := k|∂Bi
=

1

Ri

, and gi := g
∣∣∣
∂Bi

, the third condition of (9) is transformed into

v = βṘi(t) +
1

Ri(t)
− gi(t) on ∂B(yi,Ri(t)). (17)

Note that now v is constant on each of ∂B(yi,Ri(t)).

To model the facts that the volume occupied by the solid phase is very small compared to the vessel’s volume (i.e.

Vol(∪iBi) � Vol(Ω)) while the inter-particle distances are very large compared with the particle size, we apply the

same spatial rescaling as in [13, 14]. We use δ and δa to denote the typical length scales for the inter-particle distance

and the particle radii and consider the regime 0 < δa � δ. Now introduce the following change of variables

x = δay and u(x, t) = v(y, t); (18)

Rδ
i
(t) :=

Ri(t)

δa and Bδ
i
(t) := B

(
xi, δ

aRδ
i
(t)

)
= B

(
yi,Ri(t)

)
. (19)

Let further

Nδ(t) :=
{
i : 1 ≤ i ≤ N such that Rδ

i (t) > 0
}

and tδi := sup
{
t : Rδ

i (t) > 0
}

be the index of particles at time t and the maximum existence time of Bδ
i
. Define also the following domains:

Ωδ(t) := Ω\
⋃

i∈Nδ(t)

Bδ
i
(t), Ωδ

T :=
⋃

t∈(0,T )

(
Ωδ(t) × {t}

)
and ΩT := Ω × (0,T ), (20)

where T is some finite fixed time instant.

With the above scaling variables, we are working in the regime that the particles are separated from each other by

distances of at least of order O(δ). Hence
∣∣∣Nδ(t)

∣∣∣ = O
(
δ−3

)
. A simple such setting is to have the particles located on a

regular three dimensional lattice of lattice length δ although this is not absolutely necessary.

Now using the variables x and Rδ
i
’s, upon choosing δa = δ4 (see the Remark 3.1 right afterward), the system of

equations (9), adjoined with the Neumann condition on ∂ΩT = ∂Ω × (0,T ) leads to the following initial boundary

value problem (IBVP):

λδut = δ8∆u, in Ωδ
T ,

u(x, t) + gi(t) =
1

Rδ
i
(t)

+
β

4πδ4(Rδ
i
(t))2

∫
∂Bδ

i
(t)

∇u · nds, x ∈ ∂Bδi (t), t ∈ (0, tδi ),

Ṙδ
i (t) =

1

4πδ4(Rδ
i
(t))2

∫
∂Bδ

i
(t)

∇u · nds, t ∈ (0, tδi ),

Rδ
i (t) = 0, t > tδi , (21)

∇u · n = 0, on ∂ΩT ,

u(x, 0) = u0(x), in Ωδ(0),

Rδ
i (0) = Rδ

i0, for i ∈ Nδ(0).
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The main purpose of this paper is to give a limiting description as δ converges to zero. The following are some

remarks about scalings and assumptions used in the problem.

Remark 3.1.

1. As the size of the solid grains is assumed small compared with the mean distance between them, the direct

interactions between the particles are thus negligible and they behave as if they were isolated. Hence, we

assume that they stay spherical and their centers do not move in space. On the other hand, models incorporating

the non-spherical shape and the particle motion have been considered [1, 2, 8] in which it is shown that these

additional features only constitute to higher order effects and hence they will not affect the mean field limit.

2. In this model we consider a large number of particles with small volume fraction. We assume that the centers

of the spherical particles are separated by the length scale δ, i.e. inf
i, j
|xi − x j| > cδ for some fixed constant c > 0.

Furthermore, the size of the particles is of the order δa with a > 1 leading to the well-separatedness of the

particles.

The quantity δa−3 gives the order of the capacity of the balls in Ω. In order to obtain the mean-field model in

the limit δ −→ 0 it is necessary for the capacity to vanish. Hence we take a = 4. In this case the capacity is of

order δ and the volume fraction is of order δ9.

The choice of a scaling λ = δ9 will be clear from the energy type identities derived in Section 5.

3. The initial data u0 takes the following form:

uδ0 = uδ0∞ +
∑

i

(
1 − Rδ

i0
u0∞ − Rδ

i0
gi0

)
δ4Rδ

i0(
Rδ

i0
+ β

)
|x − xi|

η

(
|x − xi|

δ

)
(22)

for some constant uδ
0∞

. In the above, η is a smooth cut-off function such that η(r) ≡ 1 for 0 ≤ r ≤ 1
8

and η(r) ≡ 0

for r ≥ 1
4
. Furthermore, the initial radii Rδ

i0
’s satisfy

sup
i

Rδ
i0 ≤ Rδ

0 < ∞ (23)

4. The inhomogeneous driving forces satisfy:

sup
i

sup
t≥0

{
|gi(t)| ,

∣∣∣Rδ
i (t)ġi(t)

∣∣∣ } ≤ M < ∞. (24)

The above are sufficient to derive the a priori estimates. However, in order to have a limit equation in closed

form, we do need to make the assumption that each gi is a function of the radius Ri. This is stated as follows:

there exists a function G ∈ C1(R+ × R+) and a function h ∈ C1(R+) such that gi(t) = G(t,Rδ
i
(t)) + h(t). (25)

See Remark 9.3 for further discussion.

The rest of the paper is organized as follows: In Section 4 local existence of a unique solution for the problem

(21) is established under the assumption of regular initial data, while a priori estimates are presented in Section 5.

Section 6 refers to the radii regularity; we first present an appropriate maximum principle and construct super- and

sub-solutions for our problem in order to derive a global regularity theorem for the heat distribution and the evolving

radii. After this, our approach follows quite closely to that of [13]. More specifically, in Section 7 we construct a

first order approximation for the heat distribution, while the construction of a first order approximation for the radii is

analyzed in Section 8. Finally the derivation of the limit equations as δ −→ 0 is presented in Section 9.

The overall strategy is briefly explained here. We extend the local in time solution to globally existing solution,

i.e. beyond the times when some balls disappear, by establishing a priori estimates using integral inequalities and

maximum principle. When both λ and β are positive, as in the case of the parabolic problem with kinetic undercooling,

when deriving these estimates we need to control the appearing terms involving Rδ
i
Ṙδ

i
uniformly in δ and globally in

time, even after some balls have vanished.
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We estimate the growth and decay of the radii Rδ
i
(t)’s. First we analyze the one single particle case. The important

issue is to investigate the solution as R −→ 0+ when δ � 1. The main conclusion is that |RṘ| < C < ∞ and

lim
R→0+

RṘ = −
1

β
(these results state the regularizing effect of kinetic undercooling) and thus R ∈ W1,p([0,T ]) for any

1 ≤ p < 2. The previous is established by constructing proper sub- and super-solutions. It is first done for the case

R � 1 and Ṙ < 0. If R > O(1), we show that
∣∣∣Ṙ∣∣∣ is uniformly bounded. Moreover, we prove that once R(t) reaches

below some small value, Ṙ will become negative and will stay negative until the extinction time of R(t). We then

employ the previous analysis to prove a priori bounds for the multiple particle case. The extension of solution beyond

vanishing time follows by the energy estimates from Proposition 5.3 and standard parabolic theory.

In order to derive the limiting equation for the dynamics of the mean field variable and radii as δ −→ 0, we produce

a first order approximation for the heat distribution. In particular, we prove that far away from the particles, the heat

distribution uδ is close to the mean field variable uδ∞. Further, we establish the main result of this paper in Theorem

8.1 which gives the dynamics of the radii as δ −→ 0: the radii satisfy the following dynamical equation in the weak

sense:

Ṙδ
i = −

1 − uδ∞Rδ
i
− giR

δ
i

Rδ
i
(Rδ

i
+ β)

+ O(δγ), 0 < γ <
1

2
.

Finally, we discuss the limit of uδ and Rδ
i
’s as δ→ 0. In order to obtain an equation which is closed in the limit, we

do need to invoke the assumption (25) on the form of the inhomogeneous forces gi’s. We denote that this assumption

is useful for the definition of a white noise model.

4. Local in Time Existence and Uniqueness

We assume that for T > 0 the evolution of the radii Rδ
i

for any 1 ≤ i ≤ N is given in (0,T ), and Rδ
i
, gi are

sufficiently smooth. We define first for any t ∈ (0,T ) the vectors Rδ := (Rδ
1
, · · · ,Rδ

N
), Ṙδ := (Ṙδ

1
, · · · , Ṙδ

N
). By the

following Theorem, we prove the existence of a unique weak solution for the problem (21) under the assumption of

regular initial data. We define as ‖ f ‖ :=
( ∫ T

0
| f (t)|2dt

)1/2
the L2-norm in (0,T ) and let H1(0,T ) :=

{
f ∈ L2(0,T ) :∫ T

0

(
‖ f ‖2 + ‖ ft‖

2
)
dt < +∞

}
be the usual Sobolev space in (0,T ). For t fixed let H1

(
Ωδ(t)

)
be the Sobolev space in

Ωδ(t), while L∞
(
0,T ; L2

(
Ωδ

))
:=

{
g : Ωδ

T
→ R such that

∥∥∥∥ ∫
Ωδ(t)
|g(x, t)|2 dx

∥∥∥∥
L∞(0,T )

< +∞
}

and L2
(
0,T ; H1

(
Ωδ

))
:={

g : Ωδ
T
→ R such that

∫ T

0
‖g(·, t)‖2

H1(Ωδ(t))
dt < +∞

}
.

Theorem 4.1. Let Rδ
i

and gi be given such that for some T > 0 and 0 < c < ∞, they satisfy:

sup
i∈N

(
‖Rδ

i ‖L∞(0,T ) +
∥∥∥∥ 1

Rδ
i

+ βṘδ
i

∥∥∥∥
L∞(0,T )

+ ‖(Rδ
i )−1‖L∞(0,T ) + ‖gi‖L∞(0,T )

)
< c. (26)

Consider the problem

λut = δ8∆u, in Ωδ
T
,

u(x, t) = 1

Rδ
i
(t)

+ βṘδ
i
(t) − gi(t), x ∈ ∂Bδ

i
(t),

∇u · n = 0, on ∂ΩT ,
u(x, 0) = u0(x), in Ωδ(0).

(27)

If u0 ∈ H1
(
Ωδ(0)

)
, then the above problem admits a unique weak solution u ∈ L∞

(
0,T ; L2

(
Ωδ

))
∩ L2

(
0,T ; H1

(
Ωδ

))
.

We first give some remark before the proof. Note that as 1

Rδ
i

, 1

Rδ
i

+ βṘδ
i

are uniformly bounded it follows that

Rδ
i
∈ H1(0,T ) for any 1 ≤ i ≤ N. In [12], B. Niethammer proved the analogous local existence result for the case

β = g = 0. In our case, the proof follows the same steps, under the assumption that the terms Rδ
i
, 1

Rδ
i

+ βṘδ
i
, Ṙδ

i
,

gi, appearing at the phase boundary condition are uniformly bounded in (0,T ) for any 1 ≤ i ≤ N. The first step is

to transform the time-dependent space domain of the problem into the initial space domain at t = 0 consisting of N

spheres of radii Rδ
i
(0), 1 ≤ i ≤ N. This may be achieved if Rδ

i
(t) and 1

Rδ
i
(t)

are uniformly bounded for any i and any

7



t ∈ (0,T ) (i.e. T is less than the first extinction time). The problem then is transformed for t fixed into an initial and

boundary value problem where the boundary value along the phase boundary is defined by 1

Rδ
i
(t)

+βṘδ
i
(t)−gi(t). Under

the assumption (26) it follows by standard parabolic theory that if Rδ
i
∈ H1(0,T ) for any 1 ≤ i ≤ N then a unique

solution u exists.

Proof. We first transform the domain Ωδ
T

to a fixed domain by means of some diffeomorphism

φ
(
·,Rδ

)
: Ωδ(0)→ Ωδ(t),

and define

Φ(x, t) := φ
(
x,Rδ(t)

)
, ṽ(x, t) := u

(
Φ(x, t), t

)
,

where Φ is smooth in space if Rδ
i
, 1

Rδ
i

are uniformly bounded.

Differentiating in space we get ∇u = DΦ−T∇ṽ, and

|∂Bδi (t)|−1

∫
∂Bδ

i
(t)

∇u · n = |∂Bδi (0)|−1

∫
∂Bδ

i
(0)

DΦ−T∇ṽ · n,

while taking the derivative in time the next equalities follow

ṽt = ∇u · ∂tΦ,

∂tΦ =
∂φ

∂Rδ
1

Ṙδ
1

+ · · · +
∂φ

∂Rδ
N

Ṙδ
N

= (∇Rδφ) · (∂tR
δ).

The function ṽ solves

λ
√

det(DΦT DΦ)∂tṽ − δ
8div

( √
det(DΦT DΦ)(DΦT DΦ)−1∇ṽ

)
= λ

√
det(DΦT DΦ)DΦ−T∇ṽ · ∂tΦ, in Ω0

T ,

ṽ =
1

Rδ
i

+ βṘδ
i − gi, x ∈ ∂Bδi (0),

∇ṽ · n = 0, on ∂ΩT ,

ṽ(x, 0) = u0(x), in Ωδ(0),

where Ω0
T

:=
(
Ω \ ∪iB

δ
i
(0)

)
× (0,T ).

For any t ∈ (0,T ) fixed we consider the solution w of the problem

div
( √

det(DΦT DΦ)(DΦT DΦ)−1∇w
)

= 0, in Ωδ(0),

w =
1

Rδ
i

+ βṘδ
i − gi, x ∈ ∂Bδi (0),

w · n = 0, on ∂Ω.

If Rδ
i
, 1

Rδ
i

, 1

Rδ
i

+ βṘδ
i
, gi are uniformly bounded for any 1 ≤ i ≤ N then w = w(x,Rδ(t)), ∇Rδw are smooth. We note that

∂tw = ∇Rδw · ∂tR
δ, thus ∂tw and ∂tR

δ have the same regularity if the term ∇Rδw is smooth. Setting v := ṽ − w, then v

satisfies

λ∂tv −
δ8√

det(DΦT DΦ)
div

( √
det(DΦT DΦ)(DΦT DΦ)−1∇v

)
= f1 · ∇v + f2,

v = 0, x ∈ ∂Bδi (0),

where f1 ∈
(
L2(L∞)

)3
and f2 (including the term ∇Rδw∂tR

δ) is in L2(L∞), as long as Rδ
i
∈ H1(0,T ), 1 ≤ i ≤ N. If

u0 ∈ H1
(
Ωδ(0)

)
, then by standard theory for parabolic problems, [9], it follows that there exists a unique solution v

or equivalently as long as w is smooth, there exists unique ṽ = v + w ∈ L∞
(
L2

(
Ωδ

)
; 0,T

)
∩ L2

(
H1

(
Ωδ

)
; 0,T

)
. But for

Rδ
i
, 1

Rδ
i

uniformly bounded for any i and any t ∈ (0,T ), the function Φ is smooth, consequently using the definition

ṽ(x, t) := u(Φ(x, t), t), it follows that u ∈ L∞
(
0,T ; L2

(
Ωδ

))
∩ L2

(
0,T ; H1

(
Ωδ

))
. �
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4.1. Weak Formulation of Solution

Let ξ = ξ(x, t) such that ξ equals a constant on ∂Bδ
i

for any i, and let (·, ·)Ωδ be the inner product in L2(Ωδ). For

simplicity we use the symbol Ri in place of Rδ
i
. Multiplying the parabolic equation of (21) by ξ and integrating in Ωδ,

then by means of the boundary condition on ∂Ω and of the fact that ξ = ci(t) on ∂Bδ
i

for any i we arrive at

0 =(λut, ξ)Ωδ − δ8(∆u, ξ)Ωδ = (λut, ξ)Ωδ + δ8(∇u,∇ξ)Ωδ + δ8

N∑
i=1

∫
∂Bδ

i

∇u · nξds

=(λut, ξ)Ωδ + δ8(∇u,∇ξ)Ωδ + δ8

N∑
i=1

ξ|∂Bδ
i

∫
∂Bδ

i

∇u · nds.

(28)

We multiply the second equation of (21) by ξ|∂Bδ
i

and integrate on ∂Bδ
i

to get∫
∂Bδ

i

(
u(x, t) + gi(t) −

1

Ri(t)

)
ξds − βδ4

|∂Bδ
i
|

|∂Bδ
i
|
ξ|∂Bδ

i

∫
∂Bδ

i

∇u · nds = 0. (29)

Replacing in (28) the term ξ|∂Bδ
i

∫
∂Bδ

i

∇u · nds by (29) leads to

λ(ut, ξ)Ωδ + δ8(∇u,∇ξ)Ωδ +
δ4

β

N∑
i=1

∫
∂Bδ

i

ξ
(
u −

1

Rδ
i
(t)

)
ds +

δ4

β

N∑
i=1

gi(t)

∫
∂Bδ

i

ξds = 0,

which gives the following weak formulation for any t smaller than the first extinction time:

λ(ut, ξ)Ωδ + δ8(∇u,∇ξ)Ωδ +
δ4

β

N∑
i=1

∫
∂Bδ

i

u ξ ds =
δ4

β

N∑
i=1

( 1

Rδ
i
(t)
− gi(t)

) ∫
∂Bδ

i

ξds. (30)

In order to extend the local in time solution to globally existing solution, in particular beyond the times when

some balls disappear, we would need a priori estimates. They will be established by means of integral inequalities

and maximum principle.

In the following, for simplicity, we omit the super-script δ if it is clear from the context. They will be recovered

in the later parts. In addition, we will use M or M(T,Ω) to denote general constants that might depend on the time

interval [0,T ] and the domain Ω but not on δ.

5. Preliminary Identities

In this section, we present some preliminary identities in line of energy type estimates. As the domain Ωδ = Ωδ(t)

is time dependent, we find it convenient to extend u to the whole domain Ω ⊃ Ωδ by means of:

u
∣∣∣
Bi

= u
∣∣∣
∂Bi
, for all i.

The extended function is still denoted by u. Furthermore, we use introduce the notation fi(t) = Ri(t)Ṙi(t).

Proposition 5.1. Let u be the solution of (21). Then we have

λ

∫
Ω

u(t) +
λ2πδ12

3

N∑
i=1

R2
i (t) +

4πδ12

3

N∑
i=1

R3
i (t) + λ4πδ12β

N∑
i=1

∫ t

0

f 2
i (r) dr

= λ

∫
Ω

u(0) +
λ2πδ12

3

N∑
i=1

R2
i (0) +

4πδ12

3

N∑
i=1

R3
i (0) +

λ4πδ12β

3

 N∑
i=1

R2
i (t) fi(t) −

N∑
i=1

R2
i (0) fi(0)


−
λ4πδ12

3

N∑
i=1

R3
i (t)gi(t) +

λ4πδ12

3

N∑
i=1

R3
i (0)gi(0) + λ4πδ12

∫ t

0

N∑
i=1

Ri(r) fi(r)gi(r) dr.

(31)

9



Proof. We integrate (21) on Ω to get

λ

∫
Ω

ut − λ

∫
Ω\Ωδ

ut = δ8

∫
∂Ωδ

∂u

∂n
,

Note that the part of ∂Ωδ on solid-liquid interfaces, we use the outward normal to the Bi’s. Hence

λ
d

dt

∫
Ω

u − λ
∑

i

4π

3
(δ4Ri)

3

(
1

Ri

− gi + βṘi

)
t

= −
∑

i

4πδ12R2
i Ṙi

λ
d

dt

∫
Ω

u −
λ4πδ12

3

∑
i

R3
i

− Ṙi

R2
i

− ġi + βR̈i

 + 4πδ12
∑

i

R2
i Ṙi = 0

λ
d

dt

∫
Ω

u +
λ4πδ12

3

∑
i

(
RiṘi + R3

i ġi − βR3
i R̈i

)
+

4πδ12

3

∑
i

d

dt
R3

i = 0

λ
d

dt

∫
Ω

u +
λ4πδ12

3

∑
i

(
1

2

d

dt
R2

i + R3
i ġi − βR3

i R̈i

)
+

4πδ12

3

∑
i

d

dt
R3

i = 0

Upon integrating in time from 0 to t and employing integration by parts, we obtain (31). �

Remark 5.2. For conceptual understanding and to compare with known results, we simplify the above identity for

the case gi(t) ≡ 0.

1. For the quasi-static problem λ = 0 with β ≥ 0 the following volume conservation condition is obtained:

δ3

N∑
i=1

R3
i (t) = δ3

N∑
i=1

R3
i (0),

as in [13, 14].

2. For the parabolic case λ > 0:

(a) If β = 0, then setting λ := δ9 in (31), we obtain the result of [13]:∫
Ω

u(t) +
4

3
π

N∑
i=1

δ3R3
i (t) +

2

3
π

N∑
i=1

δ12R2
i (t) =

∫
Ω

u(0) +
4

3
π

N∑
i=1

δ3R3
i (0) +

2

3
π

N∑
i=1

δ12R2
i (0).

(b) If β > 0, then (31) gives

λ

∫
Ω

u(t) +
λ2πδ12

3

N∑
i=1

R2
i (t) +

4πδ12

3

N∑
i=1

R3
i (t) + λ4πδ12β

N∑
i=1

∫ t

0

f 2
i (r) dr

= λ

∫
Ω

u(0) +
λ2πδ12

3

N∑
i=1

R2
i (0) +

4πδ12

3

N∑
i=1

R3
i (0) +

λ4πδ12β

3

 N∑
i=1

R2
i (t) fi(t) −

N∑
i=1

R2
i (0) fi(0)

 .
(32)

Next we derive the identity for ||u||L2(Ω).
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Proposition 5.3. Let u be the solution of (21). Then we have

λ

2

∫
Ω

u2(t) + δ8

∫ t

0

∫
Ω

|∇u|2(s) ds + 2πδ12
∑

i

R2
i (t) + λ

4πδ12

3

∑
i

Ri(t)

+4πδ12β

∫ t

0

∑
i

f 2
i (s) ds + λ4πδ12β

∫ t

0

∑
i

f 2
i

(s)

Ri(s)
ds

=
λ

2

∫
Ω

u2(0) +
4πδ12

2

∑
i

R2
i (0) + λ

4πδ12

3

∑
i

Ri(0) + λ
4πδ12

3
β
∑

i

Ri(t) fi(t)

−λ
4πδ12

3
β
∑

i

Ri(0) fi(0) + λ
2πδ12

3
β2

∑
i

Ri f 2
i (t) − λ

2πδ12

3
β2

∑
i

Ri f 2
i (0)

−λ2πδ12β2

∫ t

0

∑
i

f 3
i

(s)

Ri(s)
ds + 4πδ12

∫ t

0

∑
i

Ri figi(s) ds

−λ
4πδ12

3

∑
i

R2
i (t)gi(t) + λ

4πδ12

3

∑
i

R2
i (0)gi(0) + λ4πδ12

∑
i

∫ t

0

fi(s)gi(s) ds

−λ
4πδ12

3
β
∑

i

R2
i (t) fi(t)gi(t) + λ

4πδ12

3
β
∑

i

R2
i (0) fi(0)gi(0) + λ4πδ12β

∑
i

∫ t

0

f 2
i gi ds

+λ
2πδ12

3

∑
i

Ri(t)
3g2

i (t) − λ
2πδ12

3

∑
i

Ri(0)3g2
i (0) − λ2πδ12

∫ t

0

∑
i

Ri fig
2
i (s) ds.

Proof. Multiplying (21) by u and integrating on Ωδ, we get

λ

∫
Ωδ

utu = δ8

∫
Ω2

4uu

λ

∫
Ω

utu − λ

∫
Ω\Ωδ

utu = −δ8

∫
∂Ωδ

∂u

∂n
u − δ8

∫
Ωδ

|∇u|2

Using the boundary conditions in (21), it follows that

λ

2

d

dt

∫
Ω

u2 + δ8

∫
Ω

|∇u|2 − λ
4πδ12

3

∑
i

R3
i

(
1

Ri

− gi + βṘi

)
t

(
1

Ri

− gi + βṘi

)
+ 4πδ12

∑
i

R2
i Ṙi

(
1

Ri

− gi + βṘi

)
= 0

λ

2

d

dt

∫
Ω

u2 + δ8

∫
Ω

|∇u|2 − λ
4πδ12

3

∑
i

R3
i

− Ṙi

R2
i

− ġi + βR̈i

 ( 1

Ri

− gi + βṘi

)
+ 4πδ12

∑
i

(
RiṘi − R2

i Ṙigi + βR2
i Ṙ2

i

)
= 0

λ

2

d

dt

∫
Ω

u2 + δ8

∫
Ω

|∇u|2 + 4πδ12
∑

i

 d

dt

R2
i

2
+ βR2

i Ṙ2
i − R2

i Ṙigi


+ λ

4πδ12

3

∑
i

(
RiṘi + R3

i ġi − βR3
i R̈i

) ( 1

Ri

− gi + βṘi

)
= 0

Expanding the above, and integrating in time from 0 to t together with integration by parts gives the stated identity. �
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Remark 5.4. Again, we give the simplified form of the above in the case gi(t) ≡ 0.

1. λ = 0, β = 0. ∑
i

δ3R2
i (t) +

1

2πδ

∫ t

0

∫
Ω

|∇u|2 ds =
∑

i

δ3R2
i (0);

as in [14].

2. λ > 0, β = 0.

1

2

∫
Ω

u2(t) +
1

δ

∫ t

0

∫
Ω

|∇u|2 ds + 2πδ3
∑

i

R2
i (t) +

2

3
πδ12

∑
i

Ri(t)

=
1

2

∫
Ω

u2(0) + 2πδ3
∑

i

R2
i (0) +

2

3
πδ12

∑
i

Ri(0).

(in accordance to [13]) where we have set λ := δ9.

3. λ = 0, β > 0.

δ3
∑

i

R2
i (t) +

1

2πδ

∫ t

0

∫
Ω

|∇u|2 ds + 2β

∫ t

0

∑
i

δ3 f 2
i ds = δ3

∑
i

R2
i (0),

as in [14].

4. λ > 0, β > 0.

λ

2

∫
Ω

u2(t) + δ8

∫ t

0

∫
Ω

|∇u|2(s) ds + 2πδ12
∑

i

R2
i (t) + λ

4πδ12

3

∑
i

Ri(t)

+4πδ12β

∫ t

0

∑
i

f 2
i (s) ds + λ4πδ12β

∫ t

0

∑
i

f 2
i

(s)

Ri(s)
ds

=
λ

2

∫
Ω

u2(0) +
4πδ12

2

∑
i

R2
i (0) + λ

4πδ12

3

∑
i

Ri(0) + λ
4πδ12

3
β
∑

i

Ri(t) fi(t)

−λ
4πδ12

3
β
∑

i

Ri(0) fi(0) + λ
2πδ12

3
β2

∑
i

Ri f 2
i (t) − λ

2πδ12

3
β2

∑
i

Ri f 2
i (0)

−λ2πδ12β2

∫ t

0

∑
i

f 3
i

(s)

Ri(s)
ds. (33)

Note that when both λ and β are positive, as in the case of parabolic problem with kinetic undercooling, when

deriving the a priori estimates extra care is needed due to the terms involving fi = RiṘi which appear on the right

hand sides of (32) and (33). Their estimates will be derived next using maximum principle. These will be used in

combination with the integral identities to derive estimates which are uniform in δ and global in time, even after some

balls have vanished.

Solving for
∫ t

0

∫
Ω
|∇u|2(s) ds in the estimate of Proposition 5.3, we observe that if all quantities are smooth (to be

proved in our analysis) then ∫ t

0

∫
Ω

|∇u|2(s) ds ≤ c
λ

δ8
+ cδ4 −

λ

2δ8

∫
Ω

u2(t) ≤ c
λ

δ8
+ cδ4.

Since we expect that in the limit δ → 0 the mean field solution is constant in space, then the right-hand side of the

previous inequality must tends to zero, hence we set λ = δ9 as mentioned in Remark 3.1. From now on in our proofs

we use the value λ = δ9. Recall also the form of the initial condition (22).
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6. Regularity of the radii Ri’s

6.1. Preliminaries

We first record the following lemma on the maximum principle suitable for our problem. It is the parabolic version

of Lemma 4.2 in [14].

Lemma 6.1. Let
{
Ω(t)

}
t≥0 be a time dependent Lipschitz domain and

⋃
i

{
Bi(t)

}
t≥0 be a finite collection of disjoint

balls such that
⋃

i Bi(t) ⊂ Ω(t) for all t ≥ 0.

Let u be a function which is constant on each ∂Bi and satisfy for all t ≥ 0 the following statements

ut − 4u ≥ (≤) 0 in Ω(t)\ ∪i Bi(t),

u − ci

∫
∂Bi(t)

∇u · n ≥ (≤) 0 on ∂Bi(t), for all i,

∇u · n ≥ (≤) 0 on ∂Ω(t),

where ci ≥ 0 for all i. If u(x, 0) ≥ (≤) 0, then u ≥ (≤) 0 in Ω(t)\
⋃

i Bi(t) for t > 0.

The rigorous proof of the above can be produced following the steps in [14] and hence it is omitted. It can also be

intuitively understood. For example, if u ≥ 0 at t = 0, then by strong maximum principle, it cannot reach zero inside

the domain Ω(t)\
⋃

i Bi(t). By means of Hopf lemma, the boundary conditions also prevent the occurrence of zero on

∂Ω(t) and ∂Bi(t). Hence u will be strictly positive for all t > 0.

Equipped with the above result, we are ready to construct sub- and super-solutions which will be used to control

the growth and decay of the radii Rδ
i
(t)’s. First we present an a priori bound using the maximum principle.

Lemma 6.2. There exist two constants M1(T,Ω) and M2(T,Ω) such that for any solution uδ of (21) with initial data

(22), we have

M1(T,Ω) ≤ uδ(x, t) ≤ M2(T,Ω) + uδ∞,0 +
∑
i∈Nδ

δ4

|x − xi|
, (34)

(In general, M1 might be negative.) The above leads to that for some constant M > 0,

1. at any particle boundary: for x such that |x − xi| = δ4Ri,

u

∣∣∣∣
∂Bi

≤ M +
1

Ri

; (35)

2. away from any of particle boundary: for x such that |x − xi| ≥
δ
4

for all i,

|u| ≤ M. (36)

Proof. The proof of the lower bound in (34) is simply due to the fact that a negative constant with large magnitude

(−M) satisfies:

(−M) ≤ −gi(t) +
1

Ri

+
β

4πδ4R2
i

∫
∂Bi

∇(−M) · n

and hence is a sub-solution.

The proof of the upper bound in (34) is similar to [13, Lemma 17]. It turns out that the function V denoting the

right hand side of (34) is automatically a super-solution for large enough M2(T,Ω). The main reason is as follows.

• For any i ∈ Nδ(t),

V

∣∣∣∣
∂Bi

= M2 + uδ∞0 +
1

Ri

+
∑
j,i

δ4∣∣∣x j − xi

∣∣∣ ≥ M2 + uδ∞0 +
1

Ri

+ O(1)
∑
j,i

δ4

δ

≥ M2 + uδ∞0 +
1

Ri

+
O(1)

δ3

∑
j,i

δ3 ≥ M2 + O(1) +
1

Ri

In the above, we have used the fact that Nδ(t) = O(δ−3) and
∣∣∣xi − x j

∣∣∣ ≥ cδ for any i , j.
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• Next we compute the gradient term: again for any i ∈ Nδ(t),

β

4πδ4R2
i

∫
∂Bi

∇V · n =
β

4πδ4R2
i

∫
∂Bi

∇

 ∑
j∈Nδ(t)

δ4∣∣∣x − x j

∣∣∣
 · n

=
β

4πδ4R2
i

∫
∂Bi

∇

[
δ4

|x − xi|

]
· n +

β

4πδ4R2
i

∫
∂Bi

∇

∑
j,i

δ4∣∣∣x − x j

∣∣∣
 · n

≥
β

4πδ4R2
i

− δ4

δ8R2
i

 4πδ8R2
i +

O(1)

δ3

β

4πδ4R2
i

[
δ4

δ2

]
4πδ8R2

i = −
β

R2
i

+ O(δ3)

Hence we always have (with M2 chosen big enough and δ being small):

V ≥ −gi +
1

Ri

+
β

4πδ4R2
i

∫
∂Bi

∇V · n.

(In principle, we also need to modify the boundary value of V so that it satisfies the Neumann boundary condition

on ∂Ω. This is similar to [13, Lemma 17]. Let h =
∑
i∈Nδ

δ4

|x − xi|
and w be the solution of the following equation:

δwt = 4w, in ΩT ,

∇w · n = −∇h · n on ∂ΩT ,

w(0, ·) = w0 in Ω,

where w0 solves:

−4w0 =

∫
∂Ω

∇h · n

∇w0 · n = −∇h · n∫
Ω

w0 = 0.

By [13, Lemma 17], w0 and w satisfy the estimates ‖w0‖∞ ≤ M
√
δ and ‖w‖∞ ≤ M. Due to our kinetic undercooling

boundary condition, we will also need to estimate ∇w. This can also be done in a way similar to [13, Lemma 20] so

that ‖∇w‖∞ ≤ Mδγ for any γ < 1
2
. Hence by choosing M2 large enough, we have:

(V + w)
∣∣∣∣
∂Bi

≥ gi −
1

Ri

+
β

4πδ4R2
i

∫
∂Bi

∇(V + w) · n

so that the desired result is still true.) �
Now we proceed to construct sub- and super-solutions so as to control the growth and decay rates of the particle

radii.

6.2. Single Particle Scenario

We first consider the case of one single particle which forms the building block for the general multiple particle

scenario. In this case, problem (21) is formulated in the following form:

δut = 4u, on
{
|x| ≥ δ4R(t)

}
,

u =
1

R
− g(t) +

β

4πδ4R2(t)

∫
∂Bδ4R

∇u · n, on
{
|x| = δ4R(t)

}
, (37)

Ṙ =
1

4πδ4R2

∫
∂Bδ4R

∇u · n.
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The key is to investigate the solution as R −→ 0+ in the regime δ � 1. The main conclusion is that |RṘ| < C < ∞

and lim
R→0+

RṘ = −
1

β
. Hence R ∈ W1,p([0,T ]) for any 1 ≤ p < 2. This will be established by constructing sub- and

super-solutions. It is first done for the case R � 1 and Ṙ < 0. If R > O(1), we will show that
∣∣∣Ṙ∣∣∣ is uniformly bounded.

However, once R(t) reaches below some small value, Ṙ will become negative and will stay negative until the extinction

time of R(t).

6.2.1. Construction of Sub-solution (Ṙ ≤ 0, R � 1)

Given R(t), then U(x, t) is a sub-solution if

δUt ≤ 4U, on
{
|x| ≥ δ4R(t)

}
,

U ≤
1

R
− g(t) +

β

4πδ4R2(t)

∫
∂Bδ4R

∇U · n, on
{
|x| = δ4R(t)

}
,

For any constant C, consider the function

UC,R(x) = C +

(
1 − RC − Rg

R + β

)
δ4R

|x|
. (38)

By simple computations, UC,R satisfies the following properties:

UC,R(x) > 0 for |x| ≥ δ4R,

UC,R(x) ≥ C for |x| ≥ δ4R and R(C + g) ≤ 1,

UC,R(δ4R) =
1 + βC − Rg

R + β
,

UC,R(δ4R) =
1

R
− g +

β

4πδ4R2

∫
∂Bδ4R

∇UC,R · n,

lim
R−→0+

UC,R(δ4R) = C +
1

β
,

lim
|x|→∞

UC,R(x) = C.

Note that
∣∣∣UC,R

∣∣∣ is uniformly bounded by some constant M(C,G) < ∞. Furthermore,

∂UC,R

∂C
= 1 −

δ4R2

(R + β)|x|
≥ 1 −

R

R + β
=

β

R + β
> 0 if |x| ≥ δ4R. (39)

so that we can use the constant C to adjust the far-field value in order to ensure that at t = 0, UC,R is smaller than the

initial data.

Now let R = R(t) be given from the solution of (37) and C = C(t) be some time dependent function (to be

specified). Then ∆UC,R = 0 and

∂UC(t),R(t)(x)

∂t
=

δ4Ṙ

(R + β)2|x|

[
(R + β)(1 − 2RC − 2Rg) − R + R2C + R2g

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ

=
δ4Ṙ

(R + β)2|x|

[
β − R2C − 2RβC − 2R2g − 2Rgβ

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ.

Recall the assumptions that Ṙ ≤ 0 and R � 1 and also (24) on g. The above can be made negative by choosing C(t)

such that Ċ(t) is much bigger that |Rġ|. Thus UC,R is a sub-solution. So if C(0) is chosen small enough (possible with

negative value), we have u0 ≥ UC(0),R(0) and hence u ≥ UC,R for t > 0. This leads to

Ṙ =
1

4πδ4R2

∫
∂Bδ4R

∇u · n =
1

β

[
u −

1

R
+ g

]
≥

1

β

[
UC,R(R) −

1

R
+ g

]
=

1

β

[
1 + Cβ − Rg

R + β
+ g −

1

R

]
& −

1

βR
. (40)
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6.2.2. Construction of Super-solution (Ṙ < 0,R � 1)

Again let R(t) be taken from the solution of (37), then V(x, t) is a super-solution if

δVt ≥ ∆V, on
{
|x| ≥ δ4R(t)

}
, (41)

V ≥
1

R
− g +

β

4πδ4R2(t)

∫
∂Bδ4R

∇V · n on
{
|x| = δ4R(t)

}
. (42)

Consider the function

VC(t),R(t)(x) =
δ4a(t)

|x|
+ C(t) +

(1 − RC(t) − Rg)δ4R

(R + β)|x|
, (43)

where a(t) and C(t) are to be determined. Note that ∆VC(t),R(t) = 0 and

∂VC(t),R(t)

∂t
=

δ4ȧ

|x|
+

δ4Ṙ

(R + β)2|x|

[
β − R2C − 2RβC − 2R2g − 2Rgβ

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ

≈
δ4ȧ

|x|
+
δ4Ṙ

β|x|
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ.

To make (41) hold, we choose a(t) and C(t) such that

ȧ +
Ṙ

β
≥ 0 or a(t) = a0 −

R(t)

β
> 0, and Ċ is much bigger than ġ (recall again (24)).

As Ṙ < 0, a convenient choice is

a(t) =
R(0)

β
−

R(t)

β
.

The condition (42) is equivalent to
a(t)

R(t)
> βδ4δ4a(t)(−1)

1

δ8R2(t)
,

which is always true as long as a(t) > 0. Hence V is a super-solution. So if C(0) is chosen big enough, we have

u0 ≤ VC(0),R(0) and also u ≤ VC(t),R(t) for t > 0.

Now considering the dynamics of R(t), we have

Ṙ =
1

4πδ4R2

∫
∂Bδ4R

∇u · n =
1

β

[
u −

1

R

]
≤

1

β

[
V −

1

R
+ g

]
=

1

β

[
a

R
+

1 + Cβ

R + β
−

1

R
+ g

]
=

1

βR

[
a(t) − 1 +

R(1 + Cβ) + gR(R + β)

(R + β)

]
=

1

βR

[
a0 −

R(t)

β
− 1 +

R(1 + Cβ) + gR(R + β)

(R + β)

]
=

1

βR

[
−1 +

R(0)

β
−

R(t)

β
+

R(1 + Cβ) + gR(R + β)

(R + β)

]
. −

1

βR
. (44)

Combining (40) and (44), we finally have,

−
1

βR
≤ Ṙ ≤ −

1 − O(1)

βR
. (45)
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6.2.3. Construction for Big Radius.

This section considers the case when R is not small. The idea is to modify the previous construction of sub- and

super-solutions by a term with small L∞-norm but large Laplacian value (see also [13, Lemma 18]).

Let (R, u) be the solution of (21). In addition, we assume for some fixed constants δ0, A1, A2 and B such that
δ ≤ δ0;

A1 < R(t) < A2;

Ṙ is uniformly bounded by B
δ

.

(46)

For super-solution, we consider the following function:

ṼC,R(x, t) = C +
(1 − RC − Rg)δ4R

(R + β)|x|
−

1

2
|x − xi|

2 + ε (47)

where ε � δ. It holds that

δ
∂ṼC(t),R(t)

∂t
− 4ṼC(t),R(t)

= δ

{
δ4Ṙ

(R + β)2|x|

[
β − R2C − 2RβC − 2R2g − 2Rgβ

]
+

[
1 −

δ4R2

(R + β)|x|

]
Ċ −

δ4R2

(R + β)|x|
ġ

}
+ 3 (48)

and

ṼC,R ≥ −g
1

R
+

β

4πδ4R2

∫
∂Bδ4R

∇Ṽ · n. (49)

Under the assumption (46), the right hand side of (48) is positive. Hence V is a super-solution. As before we obtain

that

Ṙ ≤
1

βR

[
−1 −

R

β
+

R(1 + Cβ) + gR(R + β)

R + β

]
< M (50)

for some constant M independent of δ.
For sub-solution, similarly, we consider

ŨC,R(x, t) = C +
(1 − RC − Rg)δ4R

(R + β)|x|
+

1

2
|x − xi|

2 − ε. (51)

Again by (46), ŨC,R will be a sub-solution. So we have

Ṙ ≥
1

βR

[
−1 −

R

β
+

R(1 + Cβ) + gR(R + β)

R + β

]
> −M. (52)

Hence we obtain ∣∣∣Ṙ∣∣∣ < M. (53)

6.3. Multi-particle case

Now we employ the above single particle analysis to prove a priori bounds for the multiple particle case. Consider

the initial data u0 given by (22). By Theorem 4.1, the solution exists locally in time. The key is to extend the solution

globally in time, beyond the vanishing times of some balls.

Let T be some fixed constant. By the uniform estimate (36), on the set K =
{
x : |x − xi| ≥

δ
4

for all i
}

(i.e. away

from each ∂Bδ4Ri
), |u|0≤t≤T is bounded uniformly by some fixed constant. Hence if C̃−

i
(0) and C̃+

i
(0) are chosen

sufficiently small and large respectively, using (47) and (51), we have ŨC̃−
i

(0),Ri(0) ≤ u0 ≤ ṼC̃+
i

(0),Ri(0) and hence

ŨC̃−
i

(t),Ri(t)
≤ u ≤ ṼC̃+

i
(t),Ri(t)

for as long as A1 ≤ R ≤ A2 and
∣∣∣Ṙ∣∣∣ ≤ B

δ
. By (53), it follows that

∣∣∣Ṙ∣∣∣ ≤ M. Now

given any finite time interval [0,T ], choose A2 = R0 + 2MT . Then the upper bounds are always true for time interval

[0,T ] (independent of δ).
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If some Ri(t) ever reaches some small value A1, by (50), Ṙi will be negative. Similarly choose C−
i

and C+
i

to be

sufficiently small and large such that UC−
i

(t),Ri(t) and VC+
i

(t),Ri(t) from (38) and (43) satisfy

UC−
i

(t),Ri(t) ≤ ŨC̃−
i

(t),Ri(t)
(≤ u) and (u ≤) ṼC̃+

i
(t),Ri(t)

≤ VC+
i

(t),Ri(t)

Now by (44), Ṙ will stay negative and hence UC−
i

(t),Ri(t) and VC+
i

(t),Ri(t) remain to be sub- and super-solutions up to the

vanishing moment ti of Ri. Finally estimates (45) hold.

Let t∗ be the first vanishing time of some ball. We have∣∣∣RiṘi

∣∣∣ ≤ M < ∞, and sup
i

sup
t<t∗

Ri(t) ≤ M < ∞ (54)

hence R ∈ W1,p([0, t∗]) for all 1 ≤ p < 2.

With the above, the extension of solution beyond t∗ follows as in [13, pp. 158-159, 165]: by the energy estimates

of Proposition 5.3, we have supt<t∗ ‖u‖L2(Ω(t)) and ‖∇u‖L2(Ωt∗ )
bounded independently of δ. Hence standard parabolic

theory leads to u(·, t) −→ u(·, t∗) in L2(Ω) as t −→ t∗. However, in general u(·, t∗) does not belong to H1(Ω) so that

we cannot directly invoke the local in time existence result Theorem 4.1. On the other hand, the H1 condition is

only needed near each existing particles. Near the location where a ball has just vanished, a regular heat equation is

well-posed with L2 initial data. A localization procedure is used to construct the solution starting from u(·, t∗).

6.4. Iteration Step

The purpose of this step is to improve the constant 1−O(1) in the right-hand side of (45). This is not necessary for

the later part from the point of view of estimates – all is needed is that R ∈ W1,p([0,T ]), but we feel it is of independent

interest as it gives the limiting asymptotics of R(t) near its extinction time in the strong form.

From the form of the super-solution, we need to progressively reduce a0 in (43). The expression for the super-

solution is simplified as

V0(x, t) =
δ4

β|x|
(R(0) − R(t)) + A + Bt.

for some A and B large enough (but independent of time and δ).

Let t1 be such that R(t1) =
R(0)

2
, then

V0(x, t1) =
δ4R(0)

2β|x|
+ A + Bt1 ≥ u(x, t1) (where u is the true solution).

Note that
1

β
+ A + Bt1 +

δ4

β|x|
(R(t1) − R(t)) ≥

δ4R(0)

2β|x|
+ A + Bt1 for all t ≥ t1 and |x| ≥ δ4R(t).

Hence by the similar argument as before, the function

V1(x, t) =
1

β
+ A + Bt1 +

δ4

β|x|
(R(t1) − R(t)) + A + B(t − t1) =

1

β
+ 2A + Bt +

δ4

β|x|
(R(t1) − R(t))

is again a super-solution for t ≥ t1. Now we have for t ≥ t1 that

Ṙ ≤
1

β

[
V1 −

1

R
+ g

]
=

1

β

[
1

β
+ 2A + Bt +

δ4 (R(t1) − R(t))

βδ4R(t)
−

1

R
+ g

]
=

1

βR(t)

[
−1 +

R(t1)

β
+ R(t) (2A + Bt + g)

]
.

To continue, let t2 be the time such that R(t2) =
R(0)

4
. Set

V2(x, t) =
1

β
+

1

β
+ 2A + Bt2 +

δ4

β|x|
(R(t2) − R(t)) + A + B(t − t2) =

2

β
+ 3A + Bt +

δ4

β|x|
(R(t2) − R(t)).
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It is again a super-solution for t > t2. By induction, let

Vn(x, t) =
n

β
+ (n + 1)A + Bt +

δ4

β|x|
(R(tn) − R(t)) where R(tn) =

R(0)

2n
.

Finally, let

V∗(x, t) = inf
n

Vn(x, t), (55)

which stands as a super-solution for all t > 0, and therefore we obtain

Ṙ ≤
1

βR

[
−1 +

R(tn)

β
+ R(t)

(
n

β
+ (n + 1)A + Bt + g(t)

)]
for tn ≤ t ≤ tn+1.

The above shows that

RṘ ≤ −
1

β
as R −→ 0+.

Combining all the previous analysis of sub- and super-solutions together with the energy estimates from Section

5, we have the following regularity theorem for solution of (21).

Theorem 6.3. Let the initial data uδ
0
, Rδ

i0
and the inhomogeneous driving forces gi satisfy the conditions (22), (23)

and (24), then for any time T > 0 and δ small enough:

1. there is a solution u of (21) in L∞
(
0,T ; L2(Ω)

)⋂
L2

(
0,T ; H1(Ω)

)
satisfying:

sup
t∈[0,T ]

‖u(t)‖2
L2(Ω)

+
1

δ

∫ T

0

‖∇u(t)‖2
L2(Ω)

dt ≤ M < ∞ (56)

2. the radii Ri’s satisfy supi supt≥0 Ri(t) < ∞ and supi ‖Ri‖W1,p([0,min(ti,T )]) ≤ M < ∞ for any 1 ≤ p < 2 (where ti is

the vanishing moment for the i-th particle). Furthermore, we have that∣∣∣RiṘi

∣∣∣ ≤ M < ∞ and lim
t→ti

RiṘi = −
1

β
, (57)

so that Ri(t) ≈ A (ti − t)
1
2 as t → ti.

With the above regularity result for the heat distribution and evolving radii, our approach now follows quite closely

to that of [13]. The steps include: (i) construction of a first order approximation for the heat distribution (Section 7);

(ii) construction of a first order approximation for the radii (Section 8); and (iii) derivation of the limit equations

as δ −→ 0 (Section 9). We will still outline the main steps to keep the paper self-contained and to emphasize the

essential features, in particular the derivation of the limit equations. On the other hand, there are some differences in

the procedure which we will point out in appropriate places.

7. First Order Approximation

The goal here is to produce a good approximation for the heat distribution which are then used to derive the

limiting equation for the dynamics of the mean field variable and radii as δ −→ 0. This is facilitated by the following

expression:

ζδ = uδ∞(t) +
∑

i

(
1 − Ri(t)u

δ
∞(t) − Ri(t)gi(t)

Ri(t) + β

)
δ4Ri(t)

|x − xi|
. (58)

Using the above, we will construct sub- and super-solutions to control the difference between the actual solution uδ

and the approximation ζδ.
For this, we define:

uδ± = ζ + w + z ± Mδγ (59)
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where the corrections wδ and zδ satisfy:

δwt = 4w − δ∂tu
δ
∞(t) in Ω (60)

∇w · n = −∇ζ · n on ∂Ω

w(0, ·) = w0(·)

and

δzt = 4z − δ
∑

i


(
1 − Ri(t)u

δ
∞(t) − Rigi(t)

)
Ri(t)

Ri(t) + β


t

δ4

|x − xi|
in Ωδ

t (61)

z =
β

4πδ4R2
i
(t)

∫
∂Bδ

i

∇z · n on ∂Bδi

∇z · n = 0 on ∂Ω

z(0, ·) = z0(·)

which deal with various inhomogeneous terms of the equation. Their initial data are chosen as z0 ≡ 0 and w0 = u0− ζ0

so that all the boundary conditions are satisfied at t = 0. The Mγ is initially chosen so that uδ− ≤ u0 ≤ uδ+.

The estimates for wδ are summarized by the following lemma.

Lemma 7.1. If we choose the mean-field variable uδ∞(t) according to

∂tu
δ
∞(t) = 4πδ3

∑
i

(
1 − Ri(t)u

δ
∞(t) − Ri(t)gi(t)

) Ri(t)

Ri(t) + β
, uδ∞(0) = uδ∞0, (62)

then for any 0 < γ < 1
2
, there exists a Mγ such that:

‖w‖L∞(ΩT ) and ‖∇w‖L∞(ΩT ) ≤ Mγδ
γ. (63)

The proof is omitted as it is exactly the same as [13, Lemma 20] using careful energy type estimates from parabolic

regularity theory. But for completeness we will indicate the origin of (62). This equation is to ensure that
∫

Ω
w = 0

so that the behavior of uδ far away from the interfaces is indeed captured by the mean-field variable uδ∞. In addition,

technically speaking, the estimate for ∇w is proved first which together with the zero mean condition then gives the

estimate for w.

With the above in mind, we integrate (60) and obtain:

0 = δ
d

dt

∫
Ω

w =

∫
∂Ω

4w − δ∂tu
δ
∞ =

∫
∂Ω

∇w · n − δ∂tu
δ
∞.

Hence

δ∂tu
δ
∞ =

∫
∂Ω

∂w

∂n
= −

∫
∂Ω

∂ζ

∂n
= −

∫
∂Ω

∑
i

(
1 − Ri(t)u

δ
∞(t) − Ri(t)gi(t)

Ri(t) + β

)
δ4Ri(t)∇

1

|x − xi|
· n.

As
∫
∂Ω
∇ 1
|x|
· n = −4π, the above gives (62).

The estimates for zδ are stated in the following lemma.

Lemma 7.2. In the following MT denotes some generic finite constant independent of δ.

1. Let tδ
i

be the vanishing time of Bδ
i
. Then,

|z(t)|∂Bδ
i
≤ MT

∣∣∣log(tδi − t)
∣∣∣ for t < tδi . (64)
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2. Let Aδ = Ω\ ∪i B(xi,
δ
4
).

sup
t∈[0,T ]

1

δ2

∫
Ω

(z(t))2 +
1

δ3

∫ T

0

∫
Ω

|∇z|2 +
1

δ

∫ T

0

∫
Aδ

∣∣∣D2z
∣∣∣2 ≤ MT . (65)

By Sobolev embedding theorem, the above gives

‖z‖L2(L∞(Aδ)) ≤ MT

√
δ. (66)

Proof. The proof is similar to [13, Lemma 21], again using energy type estimate for parabolic equation, but in the

current case with the effect of kinetic undercooling in the parabolic setting, some additional terms appear in the

derivation of some energy identity. This leads to the need of estimates of the type (64).

Using h to denote the inhomogeneous term in (61) (without the δ factor), we have:

δzt = 4z − δh.

Multiplying the above equation by z and extending z from Ωδ to Ω by z
∣∣∣
Bδ4Ri

= z
∣∣∣
∂Bδ4Ri

lead to

δ

∫
Ωδ(t)

ztz =

∫
Ωδ(t)

4zz − δ

∫
Ωδ(t)

hz

δ

∫
Ω

ztz − δ

∫
Ω\Ωδ(t)

ztz =

∫
∂Ωδ(t)

z
∂z

∂n
−

∫
Ωδ

|∇z|2 − δ

∫
Ω

hz

δ

∫
Ω

ztz − δ
∑

i

4πδ12R3
i

3

 żizi = −
∑

i

4πδ8R2
i zi(zn)i −

∫
Ωδ

|∇z|2 − δ

∫
Ω

hz

As z = βδ4 ∂z

∂n

∣∣∣∣∣
∂Bδ

i

, the above becomes:

δ

∫
Ω

ztz +
∑

i

4πδ8R2
i
z2

i

βδ4
+

∫
Ωδ

|∇z|2 = δ
∑

i

4πδ12R3
i

3

 żizi − δ

∫
Ω

hz (67)

or

δ
d

dt

∫
Ω

1

2
z2 +

4πδ4

β

∑
i

R2
i (t)z2

i (t) +

∫
Ω

|∇z|2 =
4πδ13

3

∑
i

R3
i (t)

 z2
i

2


t

− δ

∫
Ω

hz (68)

Integrating in time then gives

δ

∫
Ω

1

2
z2(t) +

4πδ4

β

∫ t

0

∑
i

R2
i (s)z2

i (s) ds +

∫ t

0

∫
Ω

|∇z|2 + δ

∫ t

0

∫
Ω

hz

=
4πδ13

3

∑
i

R3
i (t)

 z2
i

2

 (t) −
4πδ13

3

∫ t

0

∑
i

3R2
i (s)Ṙi(s)

 z2
i

2

 (s) ds + δ

∫
Ω

1

2
z2(0) −

4πδ13

3

∑
i

R3
i (0)

 z2
i

2

 (0).

(69)

From the above, we see that the zi(t)’s appear in the right hand side which force us to consider their estimate.

As supt∈[0,T ] supi Ri(t), |Ri(t)gi(t)| < ∞ we simplify equation (61) as:

δzt = 4z − δ
∑

i

δ4
(
Ai(t) + Bi(t)Ṙi(t)

)
|x − xi|

(70)

for some uniformly bounded smooth function Ai and Bi. The desired sub- and super-solutions are given by

zsub(t) = M1 +
∑

i

δ4ai(t)

|x − xi|
and zsuper(t) = −M1 −

∑
i

δ4ai(t)

|x − xi|
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where ȧi(t) = M2 + M3

∣∣∣Ṙi

∣∣∣. M1, M2 and M3 are large enough constants. (This is similar to the construction of the

super-solution V in (43).) Then (64) follows from:

|zi(t)| ≤ M1T +

∫ t

0

ȧ(s)

Ri(s)
ds ≤ M1T +

∫ t

0

M2 + M3

∣∣∣Ṙ(s)
∣∣∣

Ri(s)
ds = M1T +

∫ t

0

M2Ri + M3

∣∣∣Ri(s)Ṙi(s)
∣∣∣

R2
i
(s)

ds

≤ M1T + M

∫ t

0

1

R2
i
(s)

ds ≤ M1T + M

∫ t

0

1

(tδ
i
− s)

ds ≤ M1T + M
∣∣∣log(tδi − t)

∣∣∣ .
By Theorem 6.3(2), we see that the right hand side of (69) is bounded by a finite constant. Then the same

computations of [13, Lemma 21, pp 172-173] can be applied. They first give∫
Ωδ

z2 +
1

δ

∫ t

0

∫
Ω

|∇z|2 ≤ MTδ
2

and then the higher order regularity:

sup
t∈[0,T ]

1

δ2

∫
Ω

(z(t))2 +
1

δ3

∫ T

0

∫
Ω

|∇z|2 +
1

δ

∫ T

0

∫
Aδ

∣∣∣D2z
∣∣∣2 ≤ MT

concluding the proof of (66).

(Note here that we do not need to any give special consideration for new initial data right after some balls have

vanished such as in [13, p 167]. This is because the summands in ζδ (58) corresponding to the vanishing Ri’s auto-

matically become zero.) �
Estimates (63) and (66) together with (58) and (59) give the following corollary which says that far away from the

particles, the heat distribution uδ is close to the mean field variable uδ∞.

Corollary 7.3. For any 0 < γ < 1
2
, there is a constant Mγ such that∥∥∥uδ − uδ∞(t)

∥∥∥
L2([0,T ],L∞(Aδ))

≤ Mγδ
γ (71)

8. Approximation of the Dynamics of Ri(t)’s

The following is the main theorem of this paper which gives the dynamics of the radii as δ −→ 0.

Theorem 8.1. Let uδ∞ be given as in (62). Then for any ϕ ∈ W1,1([0,T ]), it holds that∣∣∣∣∣∣
∫ T

0

ϕ
[
Ri(Ri + β)Ṙi − (uδ∞Ri + giRi − 1)

]
dt

∣∣∣∣∣∣ ≤ Cγδ
γ ‖ϕ‖W1,1 . (72)

The above means that in the weak sense, the radii satisfy the following dynamical equation:

Ṙi = −
1 − uδ∞Ri − giRi

Ri(Ri + β)
. (73)

The proof is the same as [13, Theorem 2.b]. As this is the key result, we present the steps here to illustrate the

main idea and estimates.

Proof. Define:

ψi(x, t) =
δ4Ri(t)

|x − xi|
η

(
|x − xi|

δ

)
where η is a smooth function such that η(s) ≡ 1 for 0 ≤ s ≤ 1

8
and η(s) ≡ 0 for s ≥ 1

4
. This function satisfies:

ψi

∣∣∣∣
∂Bδ

i

= 1,
1

4πδ4

∫
∂Bδ

i

∇ψi · n = −Ri
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and the identity, ∫
Ωδ

ψi4u = −

∫
∂Bδ

i

ψi

∂u

∂n
+

∫
∂Bδ

i

u
∂ψi

∂n
+

∫
Ωδ

u4ψi.

By the dynamics of Ri(t), we have
d

dt

(
1

3
R3

i (t)

)
=

1

4πδ4

∫
∂Bδ

i

∇u · n from which we compute

d

dt

(
1

3
R3

i

)
=

1

4πδ4

∫
∂Bδ

i

ψi∇u · n =
1

4πδ4

∫
∂Bδ

i

u
∂ψi

∂n
−

1

4πδ4

∫
Ωδ

ψi4u +
1

4πδ4

∫
Ωδ

u4ψi

=
ui

4πδ4

∫
∂Bi

∂ψi

∂n
+

1

4πδ4

∫
Ωδ

(u − uδ∞(t))4ψi −
δ

4πδ4

∫
Ωδ

ψiut +
uδ∞(t)

4πδ4

∫
Ωδ

4ψi (as δut = 4u)

= −Riui −
uδ∞(t)

4πδ4

∫
∂Bi

∂ψi

∂n
+

1

4πδ4

∫
Ωδ

(u − uδ∞(t))4ψi −
δ

4πδ4

∫
Ωδ

ψiut

= −Ri

(
1

Ri

− gi + βṘi

)
+ uδ∞(t)Ri(t) +

1

4πδ4

∫
Ωδ

(u − uδ∞(t))4ψi −
δ

4πδ4

∫
Ωδ

ψiut (as ui =
1

Ri

− gi + βṘi).

Hence

Ri(Ri + β)Ṙi − (uδ∞Ri + giRi − 1) =
1

4πδ4

∫
Ωδ

(u − uδ∞(t))4ψi −
δ

4πδ4

∫
Ωδ

ψiut. (74)

Now let ϕ be a test function on [0,T ]. Then we have∫ T

0

ϕ
[
Ri(Ri + β)Ṙi − (uδ∞Ri + giRi − 1)

]
dt =

∫ T

0

ϕ

[∫
Ωδ

(u − uδ∞(t))4ψi

4πδ4

]
dt − δ

∫ T

0

ϕ

[∫
Ωδ

ψiut

4πδ4

]
dt. (75)

The first term of the right hand side of (75) is estimated as,∫ T

0

ϕ

[∫
Ωδ

(u − uδ∞(t))4ψi

4πδ4

]
dt ≤ ‖ϕ‖L∞(0,T ])

∥∥∥u − uδ∞(t)
∥∥∥

L∞(supp(4ψi))
×

1

4πδ4

∫
supp(4ψi)

|4ψi| ≤ Cγδ
γ ‖ϕ‖L∞([0,T ]) .

For the second term, we compute,∫ T

0

ϕ

∫
Ωδ

ψiut

4πδ4
dt =

∫ T

0

ϕ

4πδ4

[∫
Ωδ

(
(uψi)t − uψit

)]
dt

=

∫ T

0

ϕ

4πδ4

[∫
Ωδ

(uψi)t −

∫
Ωδ

u
δ4Ṙi

|x − xi|
η

(
|x − xi|

δ

)]
dt.

Note that

∫
Ωδ

(uψi)t =

(∫
Ωδ

uψi

)
t

+ (uψi)
∣∣∣∣
∂Bδ

i

(δ4Ṙi)(4πδ
8R2

i ). Hence we obtain

∫ T

0

ϕ

∫
Ωδ

ψiut

4πδ4
dt

= −

∫ T

0

ϕt

∫
Ωδ

uψi

4πδ4
dt − ϕ(0)

∫
Ωδ

u(·, 0)ψi

4πδ4
+

∫ T

0

ϕδ8

4π

(
1

Ri

− gi + βṘi

)
ṘiR

2
i dt −

∫ T

0

ϕṘ

4π

∫
Ωδ

uη

|x − xi|
dt

= −

∫ T

0

ϕt

∫
Ωδ

uψi

4πδ4
dt − ϕ(0)

∫
Ωδ

u(·, 0)ψi

4πδ4
+

∫ T

0

ϕδ8

4π

(
RiṘi − giR

2
i Ṙi + βṘ2

i R2
i

)
dt −

∫ T

0

ϕṘ

4π

∫
Ωδ

uη

|x − xi|
dt.

By the fact that:

‖u‖L∞(L2(Ωδ)) ,

∥∥∥∥∥ 1

|x|

∥∥∥∥∥
L2(Ωδ)

,

∥∥∥∥∥ ψi

4πδ4

∥∥∥∥∥
L∞(L2(Ωδ))

,
∥∥∥RiṘi

∥∥∥
L∞([0,T ])

,
∥∥∥Ṙi

∥∥∥
L1([0,T ])

≤ M

we finally have the conclusion:∣∣∣∣∣∣
∫ T

0

ϕ
[
Ri(Ri + β)Ṙi − (uδ∞Ri + giRi − 1)

]
dt

∣∣∣∣∣∣ ≤ Mγδ
γ ‖ϕ‖W1,1([0,T ]) . (76)
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9. Limit problem as δ → 0

This section discuss the limit of uδ and Rδ
i
’s as δ −→ 0. With the estimates derived so far, in principle, all the

results of [13, 14] carry over. However, in order to obtain an equation which is closed in the limit, we do need to

invoke the assumption (25) on the form of the inhomogeneous forces gi’s. This will also motivate the incorporation

of white noise in the future work so that the machinery of stochastic analysis is applicable.

Since the estimates are the same as in [13, 14], we will omit the proof of the existence of a limit which is a

consequence of general compactness result. Instead, we will concentrate on the derivation of the limit equations. For

this, we introduce the empirical measure νδ ∈ L1
(
0,T ; C0(0,KT ])

)∗
of the radii:

〈
νδ, ϕ

〉
=

∫ T

0

1

Nδ
a(t)

∑
i∈Nδ

a (t)

ϕ(t,Rδ
i (t)) dt for ϕ ∈ L1([0,T ]; C0[0,KT ]) (77)

where KT = supi,δ

∥∥∥Rδ
i

∥∥∥
L∞(0,T )

. Then we have the following convergence result:

Lemma 9.1. Given any T < ∞, there exist a ν ∈ L1
(
0,T ; C0([0,KT ]

)∗
and u∞ ∈ W1,p(0,T ) (1 ≤ p < ∞) such that

for a subsequence of δ −→ 0, the following hold:

νδ ⇀ ν in the weak∗ topology of L1
(
0,T ; C0[0,KT ]

)∗
(78)

uδ∞ −→ u∞ uniformly in (0,T ) (79)

uδ −→ u∞ in L2(0,T ; H1(Ω)). (80)

Furthermore, there exists a family of probability measures
{
ν(t)

}
t≥0 ⊂ C0[0,KT ]∗ and a non-negative function α ∈

L∞(0,T ) such that

〈ν, ϕ〉 =

∫ T

0

∫
ϕ(t,R) dν(t)(R)α(t) dt for ϕ ∈ L1

(
0,T ; C0[0,KT ]

)∗
. (81)

In the above, α(t) = limδ→0
|Nδ

a |
N

represents the percentage of active particles in the system.

The proof of the above is some application of convergence of measures and Lp spaces. The specific concept used is

that of Young measures. For details, see [13, Lemmas 7, 8] and [14, Lemma 5.1].

In order to have a closed equation in the limit, we state here again the assumption about the functional form for

the gi(t)’s:

there exists a function G ∈ C1(R+ × R+) and a function h ∈ C1(R+) such that gi(t) = G(t,Ri(t)) + h(t). (25)

We will make some remarks about this assumption after presenting the main theorem which is stated as:

Theorem 9.2. The mean field variable u∞ and the distribution ν satisfy:

∂tu∞(t) = 4π

∫ ∞

O

(
1 − Ru∞(t) − RG(t,R) − Rh(t)

) R

R + β
dν(t)(R)α(t) (82)

and ∫ T

0

∫ {
∂tϕ(t,R) + V(t,R)∂Rϕ(t,R)

}
dν(t)(R)α(t) dt +

∫
ϕ(0,R)dν0(R) = 0 (83)

for all ϕ ∈ C∞
0

([0,T ] × R+), where

V(t,R) = −
1 − Ru∞(t) − RG(t,R) − Rh(t)

R(R + β)
(84)

and ν0 is the limit of the empirical measure of the initial radii Rδ
i0

.
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Proof. For (82), let η ∈ C1
0
(0,T ). Then∫ T

0

η(t)
(
uδ∞

)
t

dt =

∫ T

0

η(t)

4πδ3
∑

i

(
(1 − Rδ

i uδ∞ − Rδ
i gi

) Rδ
i

Rδ
i

+ β

 dt.

For the left hand side of the above, we have∫ T

0

η(t)
(
uδ∞

)
t

dt = −

∫ T

0

ηt(t)u
δ
∞ dt −→ −

∫ T

0

ηt(t)u∞ dt =

∫ T

0

η(t) (u∞)t dt.

For the right hand side, we express it in terms of the empirical measure νδ:∫ T

0

η(t)

4πδ3
∑

i

(
(1 − Rδ

i uδ∞ − Rδ
i gi

) Rδ
i

Rδ
i

+ β

 dt =
〈
νδ, Φδ

〉
where Φδ(t,R) = 4πη(t)

[
1 − Ruδ∞(t) − R(G(t,R) + h(t))

] R

R + β
. By the strong convergence of uδ∞ to u∞ and the form

of gi’s, we have that〈
νδ, Φδ

〉
−→

∫ T

0

η(t)

∫
4π

(
1 − Ru∞ − RG(t,R) − Rh(t)

) R

R + β
dν(t)(R)α(t) dt

which gives (82).

For (83), consider for any φ ∈ C∞
0

([0,T ],R+):∫ T

0

η(t)

 1

|N |

∑
i∈N

d

dt
φ(t,Rδ

i (t))

 dt +
1

|N |

∑
i∈N

φ(0,Rδ
i0) dt = 0.

The convergence of the second term is trivial. For the first term, we compute:∫ T

0

η(t)

 1

|N |

∑
i∈N

d

dt
φ(t,Rδ

i (t))

 dt =

∫ T

0

η(t)

 1

|N |

∑
i∈N

φt(t,R
δ
i (t))

 dt +

∫ T

0

η(t)

 1

|N |

∑
i∈N

φR(t,Rδ
i (t))Ṙδ

i

 dt.

The first term on the right becomes:∫ T

0

η(t)

 1

|N |

∑
i∈N

φt(t,R
δ
i (t))

 dt =
〈
νδ, η∂tφ

〉
−→ 〈ν, η∂tφ〉 .

For the second term, we compute:∫ T

0

η(t)

 1

|N |

∑
i∈N

φR(t,Rδ
i (t))Ṙδ

i

 dt

=

∫ T

0

η(t)

 1

|N |

∑
i∈N

φR(t,Rδ
i (t))

(
Ṙδ

i − V(t,Rδ
i )
) dt +

∫ T

0

η(t)

 1

|N |

∑
i∈N

φR(t,Rδ
i (t))V(t,Rδ

i )

 dt.

As φ has compact support, only the values of the radii which are bounded away from zero matter in the computation.

Hence a trivial modification of the proof of Theorem 8.1, in particular the steps (74) and (75) give∫ T

0

η(t)

 1

|N |

∑
i∈N

φR(t,Rδ
i (t))

(
Ṙδ

i − V(t,Rδ
i )
) dt −→ 0.

Finally we have the converge: ∫ T

0

η(t)

 1

|N |

∑
i∈N

φR(t,Rδ
i (t))V(t,Rδ

i )

 dt −→ 〈ν, ηφR〉

which all together gives (83) completing the proof of the Theorem.
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Remark 9.3. Here we explain the need to impose the functional form (25) for the inhomogeneous forces. From the

derivation of the limit equations, we are forced to deal with summations in the form of∫ T

0

ϕ(t)
∑

i

F
(
t, Ri(t), {R j(s)} j, 0≤s≤t, gi(t)

)
dt for some nonlinear function F.

The dependence on {R j(s)} j, 0≤s≤t is due to the mean-field uδ∞(t) variable. In principle the above can all be expressed in

terms of some Young measures. But it is not clear if there is any meaningful equation we can obtain to describe these

Young measures. The limit equations will thus not be closed – the usual problem when dealing with weak convergence

in nonlinear equations. Imposing some probabilistic independence among the gi does not help immediately due to the

non-local dependence in time. A reasonable alternative is to consider white noise for the gi’s so that techniques from

It̂o’s calculus can be used to take advantage of the stochastic cancellation in time. Such an approach is used in many

works deriving continuum equations from particle systems with mean-field or long range interactions. This will be

investigated in some future works.
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