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1. INTRODUCTION 

The function of vertical axis wind turbine is converted the wind power to electricity. 

Particularly this type of turbine has the main rotor shaft arranged vertically. For it a 

power study is made in which the size of the wind turbine is defined.  

Nowadays there are several types of vertical axis wind turbine: Sabonius, Darrieus and 

Giromill. 

The Sabonius turbine is one of the simplest turbines. Looking down on the rotor from 

above, a two-scoap machine would look like a ¨S¨ shape in cross section. Sabonius 

turbines are used whenever cost is much more important than efficiency. 

The Darrieus turbine consists of a number of curved and vertical aerofoils which are 

attached to the central mast by horizontal supports. The advantages of variable pitch are: 

high starting torque; a wide, relatively flat torque curve; a lower blade speed ratio; a 

higher coefficient of performance; more efficient operation in turbulent winds; and a 

lower blade speed ratio which lowers blade bending stresses. 

The giromill turbine is a subtype of Darrieus turbine, this turbine has a straight blades. 

This turbine is the type of wind turbine that I am designing. It is typically formed by 

two or three vertical aerofoils but these aren’t the only options. Giromill turbine is 

cheaper and easier to build than a standard Darrieus turbine, but also requires strong 

winds (or a motor) to start. However, they work well in turbulent wind conditions and 

are an affordable option where a standard horizontal axis windmill type turbine is 

unsuitable. 

One advantage of this arrangement is that the turbine does not need to be pointed into 

the wind to be effective. The Giromill blade design is much simpler to build, but results 

in a more massive structure than the traditional arrangement, and requires stronger 

blades, for reasons outlined above. 

The disadvantage of this type of wind turbine is the performance that present. They 

have a low performance, because to turn all the wind energy to electrical energy is 

impossible, but sometimes this solution is cheaper than to take the electrical network to 

the wiring, the cost of kW·generated h is minor that in the case of contracting the 
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services of a company. And it is a process of transformation of energy that does not 

cause environmental damages. 
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2. AIMS OF THE PROJECT 

The main objective of this project is to design a new vertical axis wind turbine, 

specifically one Giromill wind turbine. 

The project development requires performing a previous study of the vertical axis wind 

turbines currently development. This study has to be performed before starting to design 

the wind turbine. 

Other very important aim is the development of a new vertical axis wind turbine. The 

after analyses that will result in the final design of the wind turbine will be made from 

this first design. 

The project requires performing the analysis of efforts and the analysis of performance. 

These analyses will be made with the help of the softwares Gambit and Fluent. The 

final design of the vertical axis wind turbine will be made from the results obtained in 

these analyses. 

Finally the main objective of this project is the design of the vertical axis wind turbine 

based on the results obtained in the analysis of efforts and performance performed on 

the first design of the wind turbine. This final design will be carried out with 

SolidWorks. 
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3. REVIEW OF LITERATURE 

3.1. Giromill rotor 

3.1.1. Historical background 

The straight-bladed wind turbine, also named Giromill or H-rotor, is a type of vertical 
axis wind turbine developed by Georges Darrieus in 1927. 

This kind of VAWT has been studied by the Musgrove’s research team in the United 
Kingdom during the ’80. 

In these turbines the “egg beater” blades of the common Darrieus are replaced with 
straight vertical blade sections attached to the central tower with horizontal supports. 
These turbines usually have 2 or 3 vertical airfoils. The Giromill blade design is much 
simpler to build, but results in a more massive structure than the traditional arrangement 
and requires stronger blades. 

In these turbines the generator is located at the bottom of the tower and so it can be 
heavier and bigger than a common generator of a HAWT and the tower can have a 
lighter structure. 

While it is cheaper and easier to build than a standard Darrieus turbine, the Giromill is 
less efficient and requires motors to start. However these turbines work well in turbulent 
wind conditions and represent a good option in those area where a HAWT is unsuitable. 

 

3.1.2. Parts of the rotor 

The structure of all Giromill rotors can be splitted in three components: 

- Central axis of rotation: This component is also called central mast. This is 

in the middle of the rotor. The other components of the rotor rotate around it. 

Generally it is metallic and its section is circular. 

- Blades: In Giromill rotors the blades are vertical airfoils like in the Darrieus 

rotors, but in Giromill rotors the blades are straight. The main function of the 

blades is spin by the action of the wind. The blades are fixed and are connected 

to the rotor shaft, which rotates with them in the wind.  

The number of blades is a significant issue. You generally have a decision 

between two and three blades, but these aren’t the only options. These 

machines may suffer some efficiency loss, but adding more blades means that 



Analysis and design of a vertical axis wind turbine                                                      Joseba Goyena 

10 

 

the machine is dealing with more drag. The VAWTs with large numbers of 

blade define rotation speeds relatively low. The torque ripple is reduced by 

using three or more blades which results in a higher solidity for the rotor in 

Darrieus wind turbine. The disadvantage to adding more blades is the cost. 

- Radial arms: These components are horizontal supports which attach the 

blades to the central axis of rotation. It can be attached to the blades and to the 

central mast by welding or by means of a screwed union. 

 

Figure 3.1. 

Parts of the rotor 

3.1.3. How Darrieus rotor works 

The working principle of Darrieus rotor can be simplified as below. First, assume that 

the retarded wind in front of the rotor still remains straight. When the blades are moving 

much faster compare to the original undisturbed wind speed i.e. ratio of blade speed to 

free stream wind speed, tsr > 3, the picture above shows the velocity vector of the airfoil 

blades at different angular position. With such a high tsr, the airfoils will be ‘cutting 

through’ the wind with small angle of attack. The resulting lift force always assists the 

rotor rotation while the drag force always opposes the rotation. As the lift zeroing at the 

left side (0 degree) and right side (180 degree) where the symmetrical airfoil moves 

paralleled to wind, the torque changes to negative around these position. At the near 

front (90 degree) and far back (270 degree) position, the lift component is much higher 

than the drag component, so positive torque is produced. The total torque per revolution 

will be positive with a good set of airfoils so the rotor will accelerate at the right 

direction. 
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During start-up, the starting torque depends on the angular position of rotor with respect 

to the wind direction, so the rotor might rotate at the right direction straight away or 

wobble a bit before starting. Normally, the rotor will need some form of assistance to 

reach higher revolutions  before it begins to rotate by itself as the Darrieus rotor has 

very low torque at low tsr which can be easily worsened (till negative) by friction in the 

system. 

To summarize the operation way of a Giromill VAWT is not different from that of a 

common Darrieus turbine. The wind hits the blades and its velocity is split in lift and 

drag component. The resultant vector sum of these two components of the velocity 

makes the turbine rotate. The swept area of a Giromill wind turbine is given by the 

length of the blades multiplied for the rotor diameter. 

 

Figure 3.2. 

How Darrieus rotor work 

Below I add other figure which shows the direction of rotation of the rotor due to wind 

speed. 
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Figure 3.3. 

Rotational direction of the rotor 

One problem with the design is that the angle of attack changes as the turbine spins, so 

each blade generates its maximum torque at two points on its cycle (front and back of 

the to a sinusoidal power cycle that complicates design. 

Another problem arises because the majority of the mass of the rotating mechanism is at 

the periphery rather than at the hub, as it is with a propeller. This leads to very high 

centrifugal stresses on the mechanism, which must be stronger and heavier than 

otherwise to withstand them. The most common shape is the one similar to an egg-

beater, which can avoid in part this problem, having most of the rotating mass not far 

from the axis. 

3.2. The effect of number of blades 

The number of blades is a significant issue. You generally have a decision between two 

and three blades, but these aren’t the only options. The benefit of adding more blades 

depends on a trade off between the various required performance characteristics and 

manufacturing costs. 

These machines may suffer some efficiency loss, but adding more blades means that the 

machine is dealing with more drag. The VAWTs with large numbers of blade define 

rotation speeds relatively low. The torque ripple is reduced by using three or more 

blades which results in a higher solidity for the rotor in Darreus wind turbine 

The disadvantage to adding more blades is the cost. 
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Other parameters that may be affected by the number of blades include, rotor weight 

and balance, structural loading, torque ripple, starting torque, and fatigue resistance. It 

should be noted here that the number of blades was increased, but the chord of those 

blades was not reduced so the solidity rises substantially. 

Particularly I have chosen design a vertical axis wind turbine with three blades. 

 

3.3. Theory of aerodynamics 

From an aerodynamic point of view, the different VAWT, have a number of aspects in 

common that distinguish them from the HAWT. 

The blades of a VAWT rotate on a rotational surface whose axis is at right angle to the 

wind direction. The aerodynamic angle of attack of the blades varies constantly during 

the rotation. Moreover, one blade moves on the downwind side of the other blade in the 

range of 180° to 360° of rotational angle so that the wind speed in this area is already 

reduced due to the energy extracted by the upwind blades. Hence, power generation is 

less in the downwind sector of rotation. Consideration of the flow velocities and 

aerodynamic forces shows that, nevertheless, a torque is produced in this way which is 

caused by the lift forces. The breaking torque of the drag forces in much lower, by 

comparison. 

In one revolution, a single rotor blade generates a mean positive torque but there are 

also short sections with negative torque. The calculated variation of the total torque also 

shows the reduction in positive torque on the downwind side. 

The alternation of the torque with the revolution can be balanced with three rotor 

blades, to such an extent that the alternating variation becomes an increasing and 

decreasing torque which is positive throughout. However, torque can only develop in a 

vertical axis rotor if there is circumferential speed: the vertical axis rotor is usually not 

self starting. 

The qualitative discussion of the flow conditions at the vertical axis rotor shows that the 

mathematical treatment must be more complex than with propeller type. This means 

that the range of physical and mathematical models for calculating the generation of 

power and the loading is also wider. 
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Various approaches, with a variety of weightings of the parameters involved have been 

published in the literature. Most authors specify values of 0,40 to 0,42 for the maximum 

Cp for the Darrieus type wind turbine. 

In order to analyze the aerodynamics of a rotor and to get information about its power 

generation, it’s necessary to start by considering that a wind turbine works converting 

the kinetic energy of a wind flow in electricity, following several steps: 

 

Figure 3.4. 

Conversion process of energy 

From the wind flow the turbine gets the energy to rotate the blades. The energy 

produced by this rotations is given to the main shaft (or to a gearbox, if it is present) and 

from here to the electrical generator, that provide the electricity to the grid. 

 

3.4. Power in the wind 

Another point to consider during the design of any wind turbine is how calculate the 

wind power in the blades. But the available wind power is different from the usable 

wind power. Firstly I show the expression to calculate the available wind power: 

                                               P= �
� � G A V3                                                                        [3.1.] 

P = Wind power in watts 

 G = Air density in kg/m3 

 A = area perpendicular to the wind direction formed by the rotor in m2 

 V = wind speed in m/s 

The expression to calculate the usable wind power is: 
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                                                   P= �
� � G A V3 Cp

                                                                           [3.2.] 

 

In this expression Cp is the power coefficient that depends on the type of machine and 

for each variable in turn to the relationship between the peripheral speed of the blades 

and wind speed.  

To calculate the wind speed exist this expression: 

                                               V=V0(h/h0)
n                                                                                 [3.3.] 

V is the wind speed at height h above ground in m/s 

V0 is the known wind speed at a height h0 m/s 

h is the height at you want to calculate the wind speed in m 

h0 is the reference height in m 

n is the value which depends on the terrain roughness: 

 -Smooth (sea, sand, snow): 0.10-0.13 

 -Moderately rugose: 0.13-0.20 

 -Rugose (forest, neighborhoods): 0.20-0.27 

 - Very rugose (cities, tall buildings): 0.27-0.40 

Below I show a map with annual wind mean speed at 25 m above ground level in 

United Kingdom: 
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Figure 3.5. 

Annual mean Wind Speed 

3.5. Power coefficient 

The power output of a wind turbine rotor changes with the rpm so the rotor performance 

is normally presented in power coefficient versus tip to wind speed ratio graph. 

Sometimes, the same information is also expressed in form of torque coefficient vs. tip 

speed ratio curve. For a Darrieus wind turbine: 

The power coefficient is defined as: 

                                                               

�� =
�

1
2 ��
�

                                                                    [�. �. ] 

 

Where P = rotor power 

The tip to wind speed ratio, or tip speed ratio, or tsr is defined as: 
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� =
��

�
                                                                           [�. �. ]  

Where R = maximum rotor radius 

 w = rotor rpm 

The torque coefficient is defined as: 

�� =
�

1
2 ��
�

                                                                     [�. �. ] 

Where T = rotor torque 

The relation between these two coefficients is: 

�� =
�

1
2 �����

∗
�

�
∗

1
�
�

=
��

1
2 ��
� ∗

��
�

=
�

1
2 ��
��

 

 

�� =  
��

�
                                                                   [�. �. ]    

 

In this project the torque coefficient will be calculated with the analysis carried out in 

Fluent. 

 

3.6. Betz´s law 

Betz's law is a theory about the maximum possible energy to be derived from a 

"hydraulic wind engine", or a wind turbine such as the Éolienne Bollée (patented in 

1868), the Eclipse Windmill (developed in 1867), and the Aermotor (first appeared in 

1888 to pump water for cattle, and is still in production). Decades before the advent of 

the modern 3-blade wind turbine that generates electricity, Betz's law was developed in 

1919 by the German physicist Albert Betz. According to Betz's law, no turbine can 
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capture more than 59.3 percent of the kinetic energy in wind. The ideal or maximum 

theoretical efficiency n max (also called power coefficient) of a wind turbine is the ratio 

of maximum power obtained from the wind to the total power available in the wind. 

The factor 0.593 is known as Betz's coefficient (from the name of the man who first 

derived it). It is the maximum fraction of the power in a wind stream that can be 

extracted. The power coefficient is defined as: 

 

����  !��""#!#�$� = �� =
����  �%��%� " �& �#$' &(!ℎ#$�

����  (*(#+(,+� #$ �#$'
                      [�. -. ] 
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4. DESIGN PROCESS 

4. 1. Introduction 

The type of aerofoils that I have studied to apply in my wind turbine is a four-digit 

NACA wing section. In this type of NACAs aerofoils the first digit describing 

maximum camber as percentage of the chord, the second digit describing the distance of 

maximum camber from the airfoil leading edge in tens of percents of the chord and the 

last two describing maximum thickness of the airfoil as percent of the chord. 

Particularly the NACAs aerofoils that I have analyzed in my project are symmetrical 4-

digit NACAs aerofoils. The main characteristic of these NACAs is that their first two 

digits are 0. The formula for the shape of a NACA 00xx foil, with "xx" being replaced 

by the percentage of thickness to chord, is: 

[4.1.] 

where: 

c is the chord length 

x is the position along the chord from 0 to c 

y is the half thickness at a given value of x (centerline to surface) 

t is the maximum thickness as a fraction of the chord (so 100 t gives the                 

last two digits in the NACA 4-digit denomination) 

This formula will be very important to draw the airfoils in Gambit by the coordinates 

generated by one generator of points. 

Exactly I have analyzed the behavior in 2D of these three symmetrical NACAs airfoils: 

NACA 0012, NACA 0015 and NACA 0020. I have chosen these three NACAs because 

they have given good results in previous studies carried out about Giromill turbines. 
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4.2. Gambit 

4.2.1. Geometry 

First of all, I have drawn in Gambit the possible airfoils. I have got draw them with the 

help of this generator available on internet: 

http://www.ppart.de/aerodynamics/profiles/NACA4.html 

 

Figure 4.1. 

Generator of coordinates 

This generator gives you the coordinates of the NACAs that you need. How the Figure 

4.1. shows you have to indicate the main characteristics of your NACA and choose the 

number of points that you need to draw your airfoil. To my project I have considered to 

generate 60 points for each airfoil.  The next step is copy the coordinates in one text file 

and then import it in Gambit to create the airfoil.  

To analyze the NACAs and choose the most appropriate of them I have drawn in 2D 

three Giromill wind turbines, one for each NACA, formatted for three airfoils separated 

120º each one. This position of the airfoils in the turbine is because previous studies say 

this position reduces the vibrations of the wind turbine. The ratio of these 2D turbines is 

2 meters. 
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The study requires draw one wind tunnel to indicate the direction of the wind flow, I 

have considered appropriated, to this case, draw one square tunnel whose sides are 12 

meters each one. The two circles have been drawn to allow the rotation of the mesh. The 

littlest one has 1.5 meters of ratio and the other circle´s ratio is 2.5 meters. In the next 

figure I show the sketch in meters: 

 

Figure 4.2. 

Sketch of one 2D model 

First of all, I have set the different points to guide the edges of the models. Then I have 

created the faces with these edges. 

When all faces are drawn it is necessary do some operations which will allow the 

correct working of the model. In this model it is necessary, firstly, split the square with 

the biggest circle and then create other similar circle. The next step is to subtract of this 

circle the airfoils. And the last step is split the biggest circle with the smallest and then 

create other circle similar to the small one. Finally there are three faces: wind tunnel 

(the square without the biggest circle), the rotational ring and the central circle. 

In the picture below we can see an example of how was designed the models. 
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Figure 4.3. 

2D model drawn in Gambit 

The process is very similar designing the prototypes in 3D. First of all, I have set the 

different points to guide the edges of the blades, connecting these edges I have created 

the faces which will form the volumes of each blade. Then I have created the brick and 

the cylinders. When these volumes have been created it is necessary do some operations 

which will allow the correct working of the prototypes. In these models it is necessary, 

firstly, split the brick with the biggest cylinder and then create other similar cylinder. 

And the last step is to subtract of this cylinder the blades and the central axis. Finally 

there are two volumes: wind tunnel (the brick without the biggest cylinder) and the 

rotational part (the biggest cylinder without the blades and the central axis). 

 

Figure 4.4. 

Sketches of tunnels of the prototypes 
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In the picture below we can see the design of one of my prototypes in Gambit. 

 

Figure 4.5. 

Prototype drawn in Gambit 

4.2.2. Mesh 

Once the 2D models and 3D prototypes are already built, is time to mesh them. This 

process is different between the 2D models and the 3D prototypes. 

During this stage, first of all the edges will be meshed followed by the faces. First I 

have meshed the edges and then the faces of the simulation to get more accurate near 

the airfoils. The more accurate the mesh would be the better results I would get later.  

The mesh applied in the edges depends on the edge where is applied: 

- In the edges of de square the mesh type is Successive Ratio with ratio 1 and 

interval size 0.1. 

- In the edges of the two circles the mesh type is Successive Ratio with ratio 1 

and interval size 0.07. 
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- In the edges of the airfoils the mesh type is Successive Ratio with ratio 1 and 

interval size 0.01. 

The size of the cells in the faces depends on each design, but the elements are in 

all of them Tri and the type Pave. This is a very important key for analyzing the model 

because as the design is going to be iterated as a k-epsilon viscous model. The look of 

the mesh of one model is shown below: 

 

Figure 4.6. 

2D model meshed in Gambit 

Like in the 2D models, the more accurate the mesh would be the better results I would 

get later to mesh the prototypes in 3D I have meshed the volumes directly: 

- In the tunnel the elements of the mesh are Tet/Hybrid and  its type is TGrid 

with interval size 0.2. 

- In the rotational part the elements of the mesh are Tet/Hybrid and its type is 

TGrid with interval size 0.1. 
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This is a very important key for analyzing the model because as the design is going to 

be iterated as a k-epsilon viscous model. The look of the mesh of one model is shown 

below: 

 

Figure 4.7. 

Prototype meshed in Gambit 

 

4.2.3. Boundary conditions 

The last stage in Gambit, before to export to Fluent, is to establish the boundary 

conditions of each  edge and the continuum conditions of each face in Gambit in the 2D 

models: 
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- Boundary conditions: 

- top and bottom: WALL 

- inlet: VELOCITY_INLET 

- outlet: PRESSURE_OUTLET 

- blades: WALL 

- Circles (a, b, c, d): INTERFACE 

- Continuum conditions: 

- airflow: FLUID 

- rotar: FLUID 

 

In the design of the prototypes in 3D the last stage in Gambit, before to export to Fluent, 

is to establish the boundary conditions of each face and  the continuum conditions of 

each volume : 

- Boundary conditions: 

- blades: WALL 

- inlet: VELOCITY_INLET 

-outlet: PRESSURE_OUTLET 

- caras: WALL 

Cylinder (a, b, c, d, e, f): INTERFACE 

- Continuum conditions: 

- fuera: FLUID 

- rotar: FLUID 

When the mesh, the boundary conditions and the continuum conditions are established 

the last step in Gambit is export the mesh to can open  it in Fluent. 
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4.3. Analysis in Fluent 

After the mesh has been exported to Fluent, it is time to set the last parameters before 

running the design. 

First of all it is necessary Grid all the interfaces defined in Gambit and  then the grid has 

to be checked and scaled in order to make sure the mesh was well built in 2D models 

and prototypes in 3D both. 

 

Figure 4.8. 

Grid interfaces in Fluent 

Later, the model has to be defined. These are a 2D and 3D, respectively, steady analysis 

as we can see in the picture below. And the viscous model has to be changed to k-

epsilon. 
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Figure 4.9. 

Setting solver parameters in 2D 

The next step is set the operation conditions where the gravity is not taken in account 

and the operating pressure is 101325 Pa. And the boundary conditions are set, obviously 

these parameters changes from one design to another. 

It is important in the process of analysis of the three 2D models I have to take into 

account that in the reference values in the gap area I take the diameter of the rotor 

instead of the area and in the gap length I take the ratio of the rotor. We can see, in the 

below figure, the table of the reference values which I have used in the analysis of the 

three 2D models. This table is the same in the three analysis because the three have the 

same diameter and the same velocity inlet: 
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Figure 4.10. 

 Report > Reference values  

Before running the analysis the model has to be initialized from the boundary condition 

inlet. The wanted results in Fluent are draw coefficient, lift coefficient and moment 

coefficient. To know these coefficients it is necessary print, plot and write them in 

Fluent how I show in the below figure: 

 

Figure 4.11. 

Solve > Monitors > Force 



Analysis and design of a vertical axis wind turbine                                                      Joseba Goyena 

30 

 

With this operation text files are created by Fluent one for each coefficient which 

represent the evolution of the coefficients in the iterations. Then I have opened in Excel 

these text files to analyze the results obtained. 

And finally the design is ready to iterate. 

Once the iterations are done its time to get the results, from the menu display there are 

several options of obtain different graphs. The static pressure, velocity and other useful 

graphs can be obtained from this menu. 

 

4.4. Final design in SolidWorks 

4.4.1. Introduction 

SolidWorks is a Parasolid-based solid modeler, and utilizes a parametric feature-based 

approach to create models and assemblies. 

Parameters refer to constraints whose values determine the shape or geometry of the 

model or assembly. Parameters can be either numeric parameters, such as line lengths or 

circle diameters, or geometric parameters, such as tangent, parallel, concentric, 

horizontal or vertical, etc. Numeric parameters can be associated with each other 

through the use of relations, which allow them to capture design intent. 

Design intent is how the creator of the part wants it to respond to changes and updates. 

For example, you would want the hole at the top of a beverage can to stay at the top 

surface, regardless of the height or size of the can. SolidWorks allows you to specify 

that the hole is a feature on the top surface, and will then honor your design intent no 

matter what the height you later gave to the can. 

Features refer to the building blocks of the part. They are the shapes and operations that 

construct the part. Shape-based features typically begin with a 2D or 3D sketch of 

shapes such as bosses, holes, slots, etc. This shape is then extruded or cut to add or 

remove material from the part. Operation-based features are not sketch-based, and 

include features such as fillets, chamfers, shells, applying draft to the faces of a part, etc. 
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Building a model in SolidWorks usually starts with a 2D sketch (although 3D sketches 

are available for power users). The sketch consists of geometry such as points, lines, 

arcs, conics (except the hyperbola), and splines. Dimensions are added to the sketch to 

define the size and location of the geometry. Relations are used to define attributes such 

as tangency, parallelism, perpendicularity, and concentricity. The parametric nature of 

SolidWorks means that the dimensions and relations drive the geometry, not the other 

way around. The dimensions in the sketch can be controlled independently, or by 

relationships to other parameters inside or outside of the sketch. 

In an assembly, the analog to sketch relations are mates. Just as sketch relations define 

conditions such as tangency, parallelism, and concentricity with respect to sketch 

geometry, assembly mates define equivalent relations with respect to the individual 

parts or components, allowing the easy construction of assemblies. SolidWorks also 

includes additional advanced mating features such as gear and cam follower mates, 

which allow modeled gear assemblies to accurately reproduce the rotational movement 

of an actual gear train. 

Finally, drawings can be created either from parts or assemblies. Views are 

automatically generated from the solid model, and notes, dimensions and tolerances can 

then be easily added to the drawing as needed. The drawing module includes most paper 

sizes and standards (ANSI, ISO, DIN, GOST, JIS, BSI and SAC). 

 

4.4.2. Design 

The final design will be carried out in SolidWorks thanks to geometries can be exported 

and imported between Gambit and SolidWorks exporting and importing IGES 

geometries. 

After study the results obtained in the analysis carried out with CFD I have designed in 

SolidWorks the final rotor. How we can see in the below figure the rotor is formed for 

three blades which are joined to the vertical axis for two aluminum circular sticks each 

one.  
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Figure 4.12. 

 Final design 

To get the final design in SolidWorks the first step is import the geometry from Gambit. 

Here there is one problem because in Gambit the decimal numbers are indicated with 

the symbol ¨.¨ and in SolidWorks the decimal numbers are indicated with the symbol ¨,¨. 

So I have to import in Gambit the geometry, apply it the scale 0.001 and export it again 

before import the geometry in SolidWorks. 

The imported geometry in SolidWorks consists in the three vertical straight blades. To 

create the central vertical axis I have drawn one ring of 30 mm of thickness and 200 mm 

of exterior diameter and then I have extruded it 3 meters.  

The next step has been, creating the plane 1 in the top faces of the three blades and the 

central vertical axis, empty the three blades given them their thickness. After it, I have 

closed the top faces of the three blades and the central vertical axis. To close the bottom 

face of the central vertical axis it has been necessary create the plane 2. 

The last step in the final design of the vertical axis wind turbine is to create the 

horizontal circular sticks. The way to get them it is, drawing in one of the blades two 

rings with 100 mm of exterior diameter and 10 mm of thickness. They are separated for 

2 meters and situated symmetrically. The sticks of the other blades have been created by 

one matrix. Below I add two figures which show the interior details of the rotor: 
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Figure 4.13. 

Detail SolidWorks horizontal 

 

Figure 4.14. 

Detail SolidWorks vertical 

It is important say the thickness of the parts of the rotor are not final because I have not 

done the appropriate study of efforts. 
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5. RESULTS AND DISCUSSION 

5.1. CFD 

In order to develop this project I have done the calculations with CFD, which is one of 

the branches of fluid mechanics that uses numerical methods and algorithms to solve 

and analyze problems that involve fluid flows. The fundamental basis of any CFD 

problem is the Navier-Stokes equations, which define any single-phase fluid flow. 

These equations can be simplified by removing terms describing viscosity to yield the 

Euler equations. This software gives you the power to simulate flows, heat and mass 

transfer, moving bodies, etc, through computer modeling. 

The CFD began in the 60’s in the aerospace industry, and nowadays has become into a 

vital tool for many industries for the prediction of fluid flow. It has been expanded 

significantly to different industrial applications and industrial processes involving heat 

transfer, chemical reactions, two-phase flow, phase changes and mass transfer, among 

others. 

In order to obtain an approximate solution numerically, a discretization method have to 

be used to approximate the differential equations by a system of algebraic equations, 

which can later be solved with the help of a computer. The approximations are applied 

to small domains in time and/or space. The accuracy of numerical solutions depends on 

the quality of the discretizations used as much as the accuracy of experimental data 

depends on the quality of the tools used. 

It is important to bear in mind that numerical results are always approximate because 

there are reasons for differences between computed results and reality like: 

� The differential equations might contain approximations or idealizations. 

� The approximations made in the discretization process. 

� Iterative methods are used in solving the discretizated equations. So, unless they 

are run for a very long time, the exact solution of the discretizated equations is 

not produced. 

Discretization errors can be reduced by using more accurate interpolation or 

approximations or by applying the approximations to smaller regions, but this usually 

increases the time and cost of obtaining the solution. 
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Compromise is needed in solving the discretized equations. Direct solvers, which obtain 

accurate solutions, are not very used because they are too expensive. Otherwise iterative 

methods are more common but the errors produced by stopping the iteration process too 

soon need to be taken into account. 

5.1.1. Fluent 

Fluent is a package of simulation computational fluid dynamics (CFD) and the most 

used in the world, with a background of more than 25 years of development carried out 

by Fluent Inc. who are certified under the international standards of ISO 9001 and 

TickIT. 

The structure of Fluent allows you to incorporate a lot of models for different physical 

and chemical processes. Not only can you perform simulations of laminar or turbulent 

flow, Newtonian or non-Newtonian, compressible or incompressible, single phase or 

multiphase, but also processes of heat transfer by radiation, conduction and convection 

of course, as well as melting processes and chemical reactions such as burning of gases, 

liquids and solid fuels. 

The general capabilities of Fluent simulation are: 

• 3D simulations, 2D map, 2D axisymmetric, 2D axisymmetric with swirl. 

• Unstructured meshes (triangles and quadrilaterals in 2D, tetrahedra, prisms and 

pyramids in 3D) 

• Simulations of steady or unsteady flow. 

• Any speed system (subsonic, transonic, supersonic and hypersonic). 

• Laminar flows, turbulent, non-viscous. 

• Newtonian and non Newtonian flows. 

• Wide variety of turbulence models, including k-epsilon, k-omega, RSM, DES, 

and LES. 

• Heat transfer, including natural convection, forced or mixed; solid conjugate 

heat transfer / fluid, including solar radiation. 
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• Mixing and reaction of chemical species, including models of homogeneous and 

heterogeneous combustion reaction models / deposition on surfaces. 

• Models multiphase and free surface, including heat transfer and chemical 

reactions. 

• Lagrangian trajectory calculations for the dispersed phase (particles, drops, 

bubbles), including models for sprays and thin films. 

• Models of phase change for solidification and casting applications, cavitation 

model and model of wet steam. 

• Medium permeability porous non-isotropic, inertial resistance, heat conduction 

in solids, and option to calculate interstitial velocity. 

• Models for fans, radiators and heat exchangers. 

• Dynamic mesh capability for modeling flow around moving objects during the 

simulation. 

• Inertial reference frames (stationary) or non-inertial (rotating or accelerating). 

• Multiple frames of reference and sliding mesh options. 

• Mixed model planes for rotor-stator interactions. 

• Collection of tools for aeroacoustic models. 

• Volumetric source terms for mass, momentum, heat and chemical species. 

• Database of material properties. 

• Dynamic coupling (two-way) with GT-Power and WAVE. 

• Additional modules for fuel cells, magnet hydrodynamics and fiber continuum 

model. 

• Extensive customization capability via user-defined functions (c programming). 
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5.1.2. Gambit 

Gambit is Fluent’s software for geometry and mesh generation. The interface for 

geometry creation and meshing brings together most of Fluent's preprocessing 

technologies in one environment. Advanced tools for journals can conveniently edit and 

repeat the session for the construction of parametric studies. 

Gambit combines CAD interoperability, geometry cleanup tools CAD, decomposition 

and meshing tools that result in one of the easiest ways of preprocessing, fast and direct 

CAD to mesh quality. 

Gambit can import geometry from any CAD / CAE, Parasolid formats, ACIS, STEP or 

IGES. Additional modules are also available to integrate CATIA V4, Pro / E. The 

tolerance and repair capabilities provide geometries automatically connected during the 

import process. 

 

5.2. Choice of the most appropriate airfoil 

5.2.1. Analysis in Fluent 

The NACAs used in the 2D models which I have analyzed are: NACA 0012, NACA 

0015 and  NACA 0020. In the analysis of these models the operating conditions of them 

are: 

- Operating pressure: 101325 Pa 

- Velocity inlet: 10 m/s 

- Rotational speed: -10 rad/s 

The rotational velocity is negative due to direction of rotation of the airfoils. 

The results of the moment coefficients of each model obtained iterating in Fluent are the 

pictures shown below: 
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Figure 5.1. 

 Moment coefficient of NACA 0012 

 

Figure 5.2. 

 Moment coefficient of NACA 0015 
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Figure 5.3. 

 Moment coefficient of NACA 0020 

These graphs are oscillating due to rotation of the blades.  Each maximum and 

minimum appears when the airfoils are in the same position that other airfoil.  

5.2.2. Results in Excel 

To can analyze the results obtained in Fluent is necessary open the text files created by 

Fluent in Excel. 

Once I have opened it in Excel I have done the graph shown below to know what 

NACA is better. In this graph I have represented only three oscillations because they 

represent one full circle of the rotor of the vertical axis wind turbine. Fluent gives you 

the values of the moment coefficient but I need know the values of the power 

coefficient of the 2D models so I have to apply the equation which relates the power 

coefficient with the moment coefficient of the rotor how I have explained before: 

� =
��

�
                                                                               [�. �. ]  

Where w = 10 rad/s 

 R = 2 m 

 U = 10 m/s 
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So the tip speed ratio of these three 2D models is: 

� =
��

�
=

10 ∗ 2

10
= 2 

The tip speed ratio of these three 2D models is 2, it means the velocity of the airfoils is 

double of the velocity of the wind. So I have to multiply all values of the moment 

coefficient by 2 to know the values of the power coefficient following the below 

equation: 

�� =  
��

�
                                                                          [�. �. ]    

After this, I have calculated the average value of each line to know exactly the value of 

the power coefficient of each 2D model. The result obtained for each 2D model is: 

 - NACA 0012: Cp = 0.037 

 - NACA 0015: Cp = 0.117 

 -NACA 0020: Cp = 0.079 

Finally I have chosen the NACA 0015 to my final design because in my study these 

NACAs have a power coefficient upper than the others NACAs. 

 

Figure 5.4. 

 Power coefficients of 2D models 
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5.3. Choice of the best prototype 

5.3.1. Criteria on the prototypes 

Effects of solidity on performance 

Solidity is one of the main parameters dictating the rotational velocity at which the 

turbine reaches its maximum performance coefficient. Higher solidity usually dictates 

lower tip-speed ratio and lower efficiency. At low tip-speed ratios, the rotor blades do 

not interact as strongly with much of the air flow passing through the volume swept out 

by the proceeding blades, but at high tip-speed ratios, rotor blades begin to interact with 

the wakes strongly from upstream blades. 

The equation to calculate the solidity of each prototype is the following: 

/ =  
0 ∗ !

1
                                                             [5.1. ] 

Where S = solidity 

 N = number of blades 

 c = chord length (m) 

 D = diameter (m) 

For each one of the three prototypes the solidity will be: 

/3 =  
0 ∗ !

1
=

3 ∗ 0.4

2
= 0.6 

/� =  
0 ∗ !

1
=

3 ∗ 0.2

2
= 0.3 

/
 =  
0 ∗ !

1
=

3 ∗ 0.15

1.5
= 0.3 
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 Effects of swept area  

The swept area of a Giromill wind turbine is given by the length of the blades 

multiplied for the rotor diameter: 

� = 7 ∗ 1                                                                       [5.2. ] 

Where A = swept area (m2) 

 L = blades lenght (m) 

 D = diameter (m) 

For each one of the three prototypes the swept area will be: 

�3 = 7 ∗ 1 = 3 ∗ 2 = 6 &�  

�� = 7 ∗ 1 = 2 ∗ 2 = 4 &� 

�
 = 7 ∗ 1 = 2 ∗ 1.5 = 3 &� 

Effects of chord length  

 The chord line is a straight line connecting the leading and trailing edges of the airfoil, 

at the ends of the mean camber line. And the chord is the length of the chord line and is 

the characteristic dimension of the airfoil section.  

 

Figure 5.5. 

 Characteristics of airfoils 
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The chord lengths of the blades in each prototype are: 

- Prototype 1: c = 0.4 m 

- Prototype 2: c = 0.2 m 

- Prototype 3: c = 0.15 m 

5.3.2. Analysis in Fluent 

The three prototypes have been analyzed in the same conditions of working to be 

compared and knowing the results obtained I have could chose the best prototype of 

them. These operating conditions are: 

- Operating pressure: 101325 Pa 

- Velocity inlet: 10 m/s 

- Rotational speed: -12.5 rad/s 

The rotational speed of the rotor is negative due to the direction of working of it, how I 

have explained when I was analyzing the 2D models. 

To check the correct working of the rotor in the figure shown below we can see the 

direction of the movement of the wind and the direction of rotation of the blades, 

through pathlines option: 

 

Figure 5.6. 

 Movement of the wind 
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After doing the iterations, in the following picture, the velocity vectors coloured by 

velocity magnitude (m/s) of the fluid close to the blades is shown: 

 

Figure 5.7 

Velocity vectors coloured by velocity magnitude (m/s)  

 

5.3.3. Results in Excel 

To can analyze the results obtained in Fluent is necessary open the text files created by 

Fluent in Excel. The process of analysis is similar to the 2D models. 

Once I have opened it in Excel I have done the graph shown below to know what 

prototype is better. Fluent gives you the values of the moment coefficient but I need 

know the values of the power coefficient of the three prototypes so I have to apply the 

equation which relates the power coefficient with the moment coefficient of the rotor 

how I have explained before: 

� =
��

�
                                                                         [3.5. ] 
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Where w = 12.5 rad/s 

 R1 = R2 = 1 m 

 R3 = 0.75 m 

 U = 10 m/s 

So the tip speed ratios of these three prototypes are: 

�3 =
� ∗ �3

�
=

12.5 ∗ 1

10
= 1.25 

�� =
� ∗ ��

�
=

12.5 ∗ 1

10
= 1.25 

�
 =
� ∗ �


�
=

12.5 ∗ 0.75

10
= 0.9375 

So I have to multiply all values of the moment coefficient of each prototype by its tip 

speed ratio respectively to know the values of the power coefficient of each prototypes 

following the below equation like in the analysis of 2D models: 

�� =  
��

�
                                                                            [3.7. ] 

After this, I have calculated in Excel the average value of each line to know exactly the 

value of the power coefficient of each prototype. The result obtained for each prototype 

is: 

 - Prototype 1: Cp = 0.077 

 - Prototype 2: Cp = 0.047 

 -Prototype 3: Cp = 0.01 

Finally I have chosen the proportions of the prototype 1 to my final design because in 

my study this prototype has its power coefficient upper than the others two prototypes. 

In this graph I have represented only three oscillations because they represent one full 

circle of the rotor of the vertical axis wind turbine like in the analysis of 2D models: 
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Figure 5.8. 

 Power coefficients of prototypes 

In conclusion, I show the below figure which shows the characteristics of each 

prototype and its power coeffient (Cp): 

 

Figure 5.9. 

Characteristics of prototypes 

5.4. Analysis of T.S.R. 

5.4.1. Introduction 

Once determined the proportions of the final design of the rotor, the next step is 

determine the best T.S.R. of operation of the wind turbine. The letters T.S.R. are the 

acronym of Tip Speed Ratio (�) which is the relationship between the velocity of blades 

and the velocity of wind, how I have explained before. We can see the power coefficient 
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of the rotor depends of its tip speed ratio. So to design the final rotor firstly it is 

necessary know what Tip Speed Ratio give to the rotor the largest power coefficient. 

5.4.2. Analysis in Fluent 

To know what T.S.R. is the best, I have carried out one study in which I have applied to 

the rotor one wind of 5 m/s and I have done rotate to the wind turbine with different 

rotational speeds in Fluent. So I have forced to the rotor to work with different Tip 

Speed Ratios. How we can see in the graph shown below, exactly I have studied the 

rotor working with five different Tip Speed Ratios: 0.5, 1, 1.5, 2 and 2.5. Being 

101325Pa the operating pressure. 

Knowing the wind velocity, the ratio of the rotor, and the Tip Speed Ratios which I 

want to analyze the wind turbine, it is necessary apply the equation of the Tip Speed 

Ratio (�) to determinate the rotational velocity of the blades. So I have to realize the 

following calculations: 

� =
:;

<
=

:∗3

=
= 0.5                           w = 0.5*5 = 2.5 rad/s 

� =
:;

<
=

:∗3

=
= 1                              w = 1*5 = 5 rad/s 

� =
:;

<
=

:∗3

=
= 1.5                            w = 1.5*5 = 7.5 rad/s 

� =
:;

<
=

:∗3

=
= 2                               w = 2*5 = 10 rad/s 

� =
:;

<
=

:∗3

=
= 2.5                           w = 2.5*5 = 12.5 rad/s 

Fluent gives you the values of the moment coefficient but I need know the values of the 

power coefficient of the rotor, so I have to apply the equation which relates the power 

coefficient with the moment coefficient of the rotor how I have explained before: 

�� =  
��

�
                                                                            [3.7. ] 
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5.4.3. Analysis in Excel 

To can analyze the results obtained in Fluent is necessary open the text files created by 

Fluent in Excel. After this, I have calculated in Excel the average value of each line to 

know exactly the value of the power coefficient of the rotor when it is working in each 

condition. This process is repeated each time that I have to do one analysis of the Fluent 

results .The result obtained for each conditions of work is shown in the below graph 

created in Excel where it is proved that the performance due to work of the rotor are 

when its Tip Speed Rotor is 2: 

 

Figure 5.10. 

 Power coefficient versus T.S.R. 

In conclusion, the next analysis will be realized with the rotor working with Tip Speed 

Ratio 2. 

 

5.5. Find out the power curve of the wind turbine  

5.5.1. Introduction 

Once the Tip Speed Ratio is known, how I explained before to this rotor the Tip Speed 

Ratio of work will be 2, it is time of find out the power curve of the wind turbine. 

There are many ways to explain what is a power curve of a wind turbine: 

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 0,5 1 1,5 2 2,5 3

P
o

w
e

r 
C

o
e

fi
ci

e
n

t

T.S.R.

5 m/s



Analysis and design of a vertical axis wind turbine                                                      Joseba Goyena 

49 

 

- The power curve of a wind turbine is a graph that indicates how large the 

electrical power output will be for the turbine at different wind speeds. 

-Representation of the electric power produced by a wind turbine at different 

wind speeds. 

- Power curve indicates the wind energy captured by a turbine 

5.5.2. Analysis in Fluent 

To find out the power curve of the wind turbine I have analyzed the behaviour of the 

wind turbine with different wind speeds, but  maintaining constant and equal to 2 its Tip 

Speed Ratio in Fluent, so the rotational velocity of the wind turbine is different for each 

velocity following the equation which defines the Tip Speed Ratio: 

� =
��

�
                                                                      [3.5. ] 

 

5.5.3. Analysis in Excel 

Like in the others analysis, to can analyze the results obtained in Fluent is necessary 

open the text files created by Fluent in Excel. After this, I have calculated in Excel the 

average value of each power coefficient (Cp) line to know exactly the value of the 

power coefficient of the rotor when it is working in each condition. To define the power 

curve I have found out the generated power by the wind turbine with 11 different 

velocities. 

How Fluent gives you the values of the moment coefficient but I need know the values 

of the power coefficient of the rotor, so I have to apply the equation which relates the 

power coefficient with the moment coefficient of the rotor how I have explained before: 

�� =  
��

�
                                                                    [3.7. ] 

Once I have known the value of the power coefficient (Cp) in each condition, I have had 

to calculate the generated power using this equation: 
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�� =
�

1
2 ��
�

                                                                    [�. �. ] 

Now I show in the below figure the characteristic power curve of the wind turbine, in 

which I show the power in Watts versus the wind speed in m/s. I have analyzed the 

power generated by the rotor between wind speeds of 3 to 15 m/s. The lowest power 

generated is 38.71 W with a wind speed of 3 m/s and the maximum power is 2715 W 

when the wind speed is 15 m/s. I have not analyzed upper wind speed because generally 

for this size of rotor the maximum revolutions are between 30 – 40 rad/s for safety. 

 

Figure 5.11. 

 Power curve 

 

5.6. Comparisons between results in 2D and in 3D  

Finally knowing the final design of the rotor I have compared its behavior in 3D and in 

2D. This below graph shows how the power coefficients drop with upper wind speed in 

both cases. But the difference is that the power coefficient in 2D is upper than in 3D for 

all wind speeds. The main reason will be that the 2D CFD simulation does not include 

the effects of the tip vortices present on the 3D simulations. 
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Figure 5.12. 

Comparisons between 2D and 3D 
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6. CONCLUSIONS 

This project has been carried out with lot of software problems that have slowed the 

analysis and it is more difficult to reach a complete conclusion without a great number 

of analyses. However, these problems have help to deepen in this part of the study that 

is the development of Giromill turbine. 

To get the final design in SolidWorks the first step is import the geometry from Gambit. 

Here I have had one problem because in Gambit the decimal numbers are indicated with 

the symbol ¨.¨ and in SolidWorks the decimal numbers are indicated with the symbol ¨,¨. 

So I have to import in Gambit the geometry, apply it the scale 0.001 and export it again 

before import the geometry in SolidWorks. I have had this similar problem when I have 

done the analysis between Fluent and Excel. 

The challenge when it comes to a wind turbine is to extract energy from the wind.  

According to physics, it is impossible for a windmill to exceed 59% efficiency when 

extracting kinetic power from the wind and converting it into mechanical power.  The 

remaining 41% of the power must remain in the wind. Being the vertical axis wind 

turbines less efficient than the horizontal axis wind turbine. 

In the analysis carried out in this project it has been demonstrated the power coefficient 

drops with high wind speed. This fact appears because the ability of the wind turbine is 

reduced with high wind speed, so the wind turbines are less efficient with these winds. 

The power coefficient predicted by the two dimensional computational model is 

significantly higher than that of the experimental and the three-dimensional CFD model. 

The predictions show that the presence of the over tip vortices in the 3D simulations is 

responsible for producing the large difference in efficiency compared to the 2D 

predictions. The dynamic behaviour of the over tip vortex as a rotor blade rotates 

through each revolution is also explored in the paper. 
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7. RECOMMENDATIONS AND FUTURE LINES OF WORK 

When you are building wind turbines should be taken into account the resistance, the 

dynamic behavior and fatigue properties of materials and of the whole. But in this 

project the rotor has been designed taking into account only the considered aerodynamic 

work.  

Wind turbines are subject to fluctuating winds and, thus, fluctuating forces. This is 

particularly true in the case are located in a very turbulent wind climate. Components 

subject to repeated bending can develop cracks, which ultimately can cause failure of 

the component. Metal fatigue is a well known problem in many industries.  

In the design of a wind turbine is very important to calculate in advance how the 

different components will vibrate, both individually and collectively. It is also important 

to calculate the forces involved in each bending and stretching of a component. 

This is the subject of structural dynamics, where physicists have developed 

mathematical computer models that analyze the behavior of the entire wind turbine. 

These models are used by wind turbine manufacturers to design their machines safely. 

The noise emission of wind turbines may have two different origins: mechanical noise 

and aerodynamic noise. Mechanical noise can result from the multiplier, in the 

transmission (axis) and in the wind turbine generator due to moving metal components 

or bumping against each other. Aerodynamic noise is due to when the wind hits 

different objects at a certain speed, usually starts beeping. Wind can also induce 

vibrations on surfaces, each of these surfaces gives its own sound. 

Other step in the design of the wind turbine is to define the start velocity of rotation and 

the maximum rotation speed of the rotor. 

So, new studies are necessaries to complete the final design of the wind turbine. 
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