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Abstract

In this paper a characterisation is given of solvable complemented
Lie algebras. They decompose as a direct sum of abelian subalgebras
and their ideals relate nicely to this decomposition. The class of such
algebras is shown to be a formation whose residual is the ideal closure
of the prefrattini subalgebras.
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1 Prefrattini subalgebras

Throughout, L will denote a finite-dimensional solvable Lie algebra over a
field F . We define the nilpotent residual, L∞, of L be the smallest ideal of
L such that L/L∞ is nilpotent. Clearly this is the intersection of the terms
of the lower central series for L. The derived series for L is the sequence
of ideals L(i) of L defined by L(0) = L, L(i+1) = [L(i), L(i)] for i ≥ 0; we
will also write L2 for L(1). If L(n) = 0 but L(n−1) 6= 0 we say that that L
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has derived length n. We say that L is completely solvable if L2 is nilpotent.
Algebra direct sums will be denoted by ⊕, whereas vector space direct sums
will be denoted by +̇.

The Frattini subalgebra of L, φ(L), is the intersection of the maximal
subalgebras of L. When L is solvable this is always an ideal of L, by [1,
Lemma 3.4]. For a subalgebra U of L we denote by [U : L] the set of all
subalgebras S of L with U ⊆ S ⊆ L. We say that [U : L] is complemented
if, for any S ∈ [U : L] there is a T ∈ [U : L] such that S ∩ T = U and
< S, T >= L. We denote by [U : L]max the set of maximal subalgebras in
[U : L]; that is, the set of maximal subalgebras of L containing U .

Let
0 = A0 ⊂ A1 ⊂ . . . ⊂ An = L

be a chief series for L. We say that Ai/Ai−1 is a Frattini chief factor if
Ai/Ai−1 ⊆ φ(L/Ai−1); it is complemented if there is a maximal subalgebra
M of L such that L = Ai + M and Ai ∩M = Ai−1. When L is solvable it is
easy to see that a chief factor is Frattini if and only if it is not complemented.

We define the set I by i ∈ I if and only if Ai/Ai−1 is not a Frattini chief
factor of L. For each i ∈ I put

Mi = {M ∈ [Ai−1, L]max : Ai 6⊆ M}.

Then B is a prefrattini subalgebra of L if

B =
⋂

i∈I

Mi for some Mi ∈ Mi.

It was shown in [7] that the definition of prefrattini subalgebras does not
depend on the choice of chief series.

The subalgebra B avoids Ai/Ai−1 if B ∩ Ai = B ∩ Ai−1; likewise, B
covers Ai/Ai−1 if B + Ai = B + Ai−1. Let Π(L) be the set of prefrattini
subalgebras of L. Then the following results were established in [7].

Theorem 1.1 Let L be a solvable Lie algebra over a field F .

(i) If B is a prefrattini subalgebra of L then it covers all Frattini chief
factors of L and avoids the rest.

(ii) If B is a prefrattini subalgebra of L then

dimB =
∑

i/∈I

(dim Ai − dimAi−1);

in particular, all prefrattini subalgebras of L have the same dimension.
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(iii) If A is an ideal of L and S ∈ Π(L) then (S + A)/A ∈ Π(L/A).

(iv) φ(L) =
⋂

B∈Π(L) B.

(v) If L is completely solvable then Π(L) = {φ(L)}.

(vi) Suppose that F has characteristic p and that L∞ has nilpotency class
less than p. Then the elements of Π(L) are conjugate under inner
automorphisms of the form exp(adx) with x ∈ L∞.

(vii) L is complemented if and only if Π(L) = {0}.

If L2 is not nilpotent then Π(L) can contain more than one element (see
[7]).

2 The Prefrattini Residual

Here we use the ideas of the previous section to re-examine complemented
Lie algebras: that is, Lie algebras L for which [0 : L] is complemented, as
studied in [5]. Results for groups similar to those in the next theorem were
stated by Bechtell in [2].

Theorem 2.1 Let L be a solvable Lie algebra over any field F . Then the
following are equivalent:

(i) L is complemented;

(ii) The prefrattini subalgebras of L are all trivial;

(iii) L and all of its epimorphic images are φ-free; and

(iv) L splits over all of its ideals.

Proof. (i) ⇒ (ii) : If L is complemented then Π(L) = {0}, by Theorem 1.1
(vii).
(ii) ⇒ (iii) : Suppose that Π(L) = {0}, let L/B be any epimorphic image
of L, and suppose that φ(L/B) 6= 0. Then there is a Frattini chief fac-
tor of L, C/B, contained in φ(L/B). But now any prefrattini subalgebra
has dimension greater than or equal to dim(C/B), by Theorem 1.1 (ii): a
contradiction. This establishes (iii).
(iii) ⇒ (iv) : Suppose that L and all of its epimorphic images are φ-free.
We use induction on dimL. The result is clear if dimL = 1. So suppose
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it holds for Lie algebras of dimension less than dimL, and let B be a non-
trivial ideal of L. If B is a minimal ideal of L then the result follows from
[3, Lemma 7.2]. If B is not a minimal ideal, let A be a minimal ideal of
L contained in B. Then L/A splits over B/A by the inductive hypothesis.
Thus there is a subalgebra C of L with A ⊆ C such that L = B + C and
B ∩ C = A. Moreover, there is a subalgebra M of L such that L = A+̇M
by [3, Lemma 7.2]. But now C = A+̇(M ∩ C), whence L = B+̇(M ∩ C),
and (iv) is established.
(iv) ⇒ (i) : Suppose that L splits over all of its ideals. We use induction on
dimL again. The result is clear if dimL = 1. So suppose it holds for Lie
algebras of dimension less than dimL, and let A be a minimal ideal of L.
Then L = A+̇M for some subalgebra M of L. It is clear that M ∼= L/A splits
over all of its ideals and so is complemented by the inductive hypothesis. It
follows from [5, Lemma 4] that L is complemented. �

We say that L is elementary if φ(B) = 0 for every subalgebra B of L. Let
A be a vector space of finite dimension and let B be an abelian completely
reducible subalgebra of gl(A). It was shown in [8, Proposition 2.4] that
the semidirect product A ⋊ B is an elementary Lie algebra; we call such
an algebra an elementary Lie algebra of type I. Then we have the following
characterisation of completely solvable complemented Lie algebras.

Theorem 2.2 Let L be a completely solvable Lie algebra. Then the follow-
ing are equivalent:

(i) L is complemented;

(ii) φ(L) = 0;

(iii) L is elementary; and

(iv) L ∼= A⊕E, where A is an abelian Lie algebra and E is an elementary
Lie algebra of type I.

Proof. The equivalence of (i), (ii) and (iii) is [5, Theorem 1]. The equiv-
alence of (iv) follows from [8, Theorem 2.5] (the requirement of a perfect
field in that result is required only to establish that an elementary algebra
is completely solvable, and that is not needed here). �

Lemma 2.3 Let L be a solvable Lie algebra, let B, C be ideals of L with
B ∩ C = 0, and suppose that L/B and L/C are complemented. Then L
splits over B and over C.
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Proof. We show that L splits over C. Since L/B is complemented there is
a subalgebra U of L with B ⊆ U such that L = (B + C) + U = C + U and
(B + C) ∩ U = B. Hence C ∩ U ⊆ C ∩ (B + C) ∩ U = C ∩ B = 0. �

A class H of finite-dimensional solvable Lie algebras is called a homo-
morph if it contains, along with an algebra L, all epimorphic images of L.
A homomorph H is called a formation if L/M, L/N ∈ H, where M, N are
ideals of L, implies that L/M ∩ N ∈ H. If H is a formation then, for every
solvable Lie algebra L there is a smallest ideal R such that L/R ∈ H; this
is called the H-residual of L. We denote the class of solvable complemented
Lie algebras by C. Then we have the following result.

Theorem 2.4 C is a formation.

Proof. First note that C is a homomorph, by [5, Lemma 3]. Let B, C be
distinct ideals of L with L/B, L/C ∈ C. We need to show that L/B∩C ∈ C.
Without loss of generality we may suppose that B ∩ C = 0. Let 0 < Bk <
. . . < B1 = B be part of a chief series for L. We use induction on k. If k = 1
then B is minimal ideal of L and the result follows from Lemma 2.3 and [5,
Lemma 4]. So suppose it holds whenever k < n and that we have k = n.
Then B/Bn, (C +Bn)/Bn are distinct ideals of L/Bn and the corresponding
factor algebras are isomorphic to L/B and (L/C)/((C+Bn)/C) respectively.
These are both complemented (by [5, Lemma 3] in the case of the second).
It follows from the inductive hypothesis that L/Bn is complemented. But
now L is complemented by Lemma 2.3 and [5, Lemma 4], and the result
follows. �

We define the Prefrattini residual of a solvable Lie algebra L to be

π(L) =
⋂

{B : B is an ideal of L and L/B ∈ C}.

Clearly π(L) is the smallest ideal of L such that L/π(L) ∈ C. It is also the
ideal closure of the prefrattini subalgebras of L, by Theorem 2.1.

The class of solvable elementary Lie algebras is also a formation whose
residual is the elementary commutator, E(L) (see [4, Theorem 5.1]). The
abelian socle of L, Asoc L, is the sum of the minimal abelian ideals of L.
We have the following properties of π(L).

Proposition 2.5 Let L be a solvable Lie algebra. Then

(i) φ(L) ⊆ π(L) ⊆ E(L); if L is completely solvable then φ(L) = π(L) =
E(L);
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(ii) if A is an ideal of L then π(L/A) = (π(L) + A)/A; in particular,
π(L/φ(L)) = π(L)/φ(L);

(iii) π(L) is nilpotent if and only if π(L) = φ(L); and

(iv) if B is a prefrattini subalgebra of L then π(L) = B + π(L)∞.

Proof. (i) This follows from Theorem 2.1 and Theorem 2.2.
(ii) Let A be an ideal of L and put π(L/A) = P/A. Then we have that L/P ∼=
(L/A)/(P/A) is complemented. Hence π(L)+A ⊆ P . Also (L/A)/((π(L)+
A)/A) ∼= (L/π(L))/((π(L) + A)/π(L)) is complemented, by [5, Lemma 3],
so P ⊆ π(L) + A and the result follows.
(iii) If π(L) = φ(L) then π(L) is nilpotent, by [3, Theorem 6.1]. Conversely
let π(L) be nilpotent. Suppose that φ(L) = 0, let N be the nilradical of L
and let B be a prefrattini subalgebra of L. Then N = Asoc L = A1⊕. . .⊕An,
where Ai is a minimal ideal of L for 1 ≤ i ≤ n, and L = N+̇C for some
subalgebra C of L, by [3, Theorems 7.3, 7.4]. Then (A1 ⊕ . . .⊕Ai+1)/(A1 ⊕
. . . ⊕ Ai) is a complemented chief factor of L for each 1 ≤ i ≤ n − 1, and
so is avoided by B. It follows that B ∩ N = 0. But then π(L) = 0 and the
converse follows from (ii).
(iv) We have that (B+π(L)∞)/π(L)∞ is a prefrattini subalgebra of L/π(L)∞

by Theorem 1.1 (iii). Moreover, π(L/π(L)∞) = π(L)/π(L)∞, by (ii) above,
and this is nilpotent. It follows from (iii) that π(L/π(L)∞) = φ(L/π(L)∞) ⊆
(B +π(L)∞)/π(L)∞, by Theorem 1.1 (iv), whence π(L) ⊆ B +π(L)∞. The
reverse inclusion is clear. �

We define the nilpotent series for L inductively by N0(L) = 0, Ni+1/Ni =
N(L/Ni(L) for i > 0, where N(L) denotes the nilradical of L. Finally we
have the following characterisation of solvable complemented Lie algebras
which is analogous to a result of Zacher for groups (see [10]).

Theorem 2.6 The solvable Lie algebra L is complemented if and only if
φ(L/Ni(L)) = 0 for all i ≥ 1.

Proof. Suppose first that L is complemented. Then L/Ni(L) is comple-
mented, by [5, Lemma 3], and so φ(L/Ni(L)) = 0, by Theorem 2.1.

Suppose conversely that φ(L/Ni(L)) = 0 for all i ≥ 1. We use induction
on dimL. The result is clear if dimL = 1, so suppose the result holds for
all solvable Lie algebras of dimension less than that of L. Then L/N(L) is
complemented, by the inductive hypothesis. Moreover, we have that L =
N(L)+̇B for some subalgebra B of L, and N(L) = Asoc L, by [3, Theorems
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7.3, 7.4]. Put Asoc L = A1 ⊕ . . . ⊕ An. If n = 1, then L splits over A1 and
L/A1 is complemented, so L is complemented, by [5, Lemma 4]. So suppose
that n > 1 and put Ci = A1 ⊕ . . . ⊕ Âi ⊕ . . . ⊕ An, where Âi means that
Ai is missing from the direct sum. Then L/Ci splits over Asoc L/Ci and
(L/Ci)/(Asoc L/Ci) ∼= L/N(L) is complemented, so L/Ci is complemented,
by [5, Lemma 4] again. It follows from Theorem 2.4 that L ∼= L/ ∩n

i=1 Ci is
complemented. �

A consequence of the corresponding result for groups is that every normal
subgroup of a complemented solvable group is itself complemented. The
analogue of this holds for completely solvable Lie algebras, by Theorem 2.2.
However, the analogue does not hold for all solvable Lie algebras as the
following example shows.

Example 2.1 Let F be a field of characteristic p and consider the Lie al-
gebra L = (⊕p−1

i=0 Fei)+̇Fx+̇Fy with [ei, x] = ei+1 for i = 0, . . . , p − 2,
[ep−1, x] = e0, [ei, y] = iei for i = 0, . . . , p − 1, [x, y] = x, and all other

products zero. Then A = ⊕p−1
i=0 Fei is the unique minimal ideal of L, L splits

over A and L/A is two-dimensional and so complemented. It follows from
[5, Lemma 4] that L is complemented. However, B = A+̇Fx = L2 is an
ideal of L, and φ(B) = F (x0 + . . . xp−1) so B is not complemented.

3 Decomposition results for complemented alge-

bras

A Lie algebra L is called an A-algebra if every nilpotent subalgebra of L is
abelian. Here we have some basic structure theorems which mirror those
obtained for solvable Lie A-algebras in [6]. Where proofs are very similar to
the correponding one in [6] we will sketch the proof for the convenience of
the reader and give a reference to [6] for more details. First we see that L
splits over the terms in its derived series.

Theorem 3.1 (c.f. [6, Theorem 3.1]) Let L be a solvable complemented
Lie algebra. Then L splits over each term in its derived series. Moreover,
the Cartan subalgebras of L(i)/L(i+2) are precisely the subalgebras that are
complements to L(i+1)/L(i+2) for i ≥ 0.
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Proof. The first assertion follows from Theorem 2.1 (iv). The second is a
consequence of [9, Theorem 4.4.1.1]. �

This gives us the following characterisation of solvable complemented Lie
algebras.

Corollary 3.2 Let L be a solvable Lie algebra of derived length n+1. Then
L is complemented if and only if the following hold:

(i) L = An+̇An−1+̇ . . . +̇A0 where Ai is an abelian subalgebra of L for
each 0 ≤ i ≤ n;

(ii) L(i) = An+̇An−1+̇ . . . +̇Ai for each 0 ≤ i ≤ n; and

(iii) L(i)/L(i+1) is completely reducible as an (L/L(i+1))-module for each
1 ≤ i ≤ n.

Proof. Suppose first that L is complemented. By Theorem 3.1 there is
a subalgebra Bn of L such that L = L(n)+̇Bn. Put An = L(n). Similarly
Bn

∼= L/L(n) is complemented, by [5, Lemma 3], so Bn = An−1+̇Bn−1

where An−1 = (Bn)(n−1). Continuing in this way we get (i). A straight-
forward induction proof shows (ii). Finally, L(i)/L(i+1) ⊆ N(L/L(i+1)) =
Asoc(L/L(i+1)), by Theorem 2.1 (iii) and [3, Theorem 7.4], which gives (iii).

Suppose now that (i), (ii) and (iii) hold. Then L is complemented by
repeated use of [5, Lemma 4]. �

Next we aim to show the relationship between ideals of L and the de-
composition given in Corollary 3.2. First we need the following lemmas.

Lemma 3.3 Let L be a Lie algebra. Then Z(L) ∩ L2 ⊆ φ(L).

Proof. Let M be any maximal subalgebra of L. If Z(L) 6⊆ M then L =
M + Z(L) and L2 ⊆ M . �

Lemma 3.4 (c.f. [6, Lemma 3.4]) Let L be a solvable complemented Lie
algebra of derived length ≤ n+1, and suppose that L = B+̇C where B = L(n)

and C is a subalgebra of L. If D is an ideal of L then D = (B∩D)+̇(C∩D).

Proof. Let L be a counter-example for which dimL + dimD is minimal.
Suppose first that D2 6= 0. Then D2 = (B∩D2)+̇(C∩D2) by the minimality
condition. Moreover, by considering L/D2 we have that D = B∩D+̇C∩D,
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a contradiction. We therefore have that D2 = 0. Similarly, by considering
L/B ∩ D, we have that B ∩ D = 0.

Put E = C(n−1). Then (D + B)/B and (E + B)/B are abelian ideals,
and so are inside the nilradical of the complemented Lie algebra L/B, which
is abelian. Hence

[D, E] ⊆ [D + B, E + B] ⊆ B and [D, E] ⊆ B ∩ D = 0;

that is, D ⊆ ZL(E) = ZB(E) + ZC(E).
Now L(n−1) = B + E, so B = L(n) = (B + E)2 = [B, E]. Let L(n−1) =

L0+̇L1 be the Fitting decomposition of L(n−1) relative to adE. Then B ⊆
L1 so that ZB(E) ⊆ L0 ∩ L1 = 0, whence D ⊆ ZL(E) = ZC(E) ⊆ C and
the result follows. �

Theorem 3.5 (c.f. [6, Theorem 3.5]) Let L be a solvable complemented Lie
algebra of derived length n + 1 with nilradical N , and let K be an ideal of
L and A a minimal ideal of L. Then, with the same notation as Corollary
3.2,

(i) K = (K ∩ An)+̇(K ∩ An−1)+̇ . . . +̇(K ∩ A0);

(ii) N = An+̇(N ∩ An−1)+̇ . . . +̇(N ∩ A0);

(iii) Z(L(i)) = N ∩ Ai for each 0 ≤ i ≤ n; and

(iv) A ⊆ N ∩ Ai for some 0 ≤ i ≤ n.

Proof. (i) We have that L = An+̇Bn where An = L(n) from the proof
of Corollary 3.2. It follows from Lemma 3.4 that K = (K ∩ An) + (K ∩
Bn). But now K ∩ Bn is an ideal of Bn, which is complemented, so Bn =
An−1+̇Bn−1. Applying Lemma 3.4 again gives K ∩Bn = (K ∩An−1)+̇(K ∩
Bn−1). Continuing in this way gives the required result.

(ii) This is clear from (i), since An = L(n) = N ∩ An.
(iii) We have that L(i) = L(i+1)+̇Ai from Corollary 3.2, and Z(L(i)) ∩

L(i+1) ⊆ φ(L(i)), by Lemma 3.3, whence Z(L(i)) ∩ L(i+1) ⊆ φ(L) = 0, using
[3, Lemma 4.1]. It follows from (i) that

Z(L(i)) = (Z(L(i)) ∩ L(i+1)) + (Z(L(i)) ∩ Ai) = Z(L(i)) ∩ Ai ⊆ N ∩ Ai.

It remains to show that N ∩ Ai ⊆ Z(L(i)); that is, [N ∩ Ai, L
(i)] = 0. We

use induction on the derived length of L. If L has derived length one the
result is clear. So suppose it holds for Lie algebras of derived length ≤ k,
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and let L have derived length k + 1. Then B = Ak−1 + · · · + A0
∼= L/L(k)

is a solvable complemented Lie algebra of derived length k, and, if N is the
nilradical of L, then N ∩ Ai is inside the nilradical of B for each 0 ≤ i ≤
k − 1, so [N ∩ Ai, B

(i)] = 0 for 0 ≤ i ≤ k − 1, by the inductive hypothesis.
But [N ∩ Ai, Ak] = [N ∩ Ai, L

(k)] ⊆ [N, N ] = 0, for 0 ≤ i ≤ k, whence
[N ∩ Ai, L

(i)] = [N ∩ Ai, Ak + B(i)] = 0 for 0 ≤ i ≤ k.
(iv) We have A ⊆ L(i), A 6⊆ L(i+1) for some 0 ≤ i ≤ n. Now [L(i), A] ⊆

[L(i), L(i)] = L(i+1), so [L(i), A] 6= A. It follows that [L(i), A] = 0, whence
A ⊆ Z(L(i)) = N ∩ Ai, by (iii). �

A Lie algebra L is called monolithic if it has a unique minimal ideal,
called the monolith of L.

Corollary 3.6 Let L be a solvable complemented monolithic Lie algebra of
derived length n+1 with monolith W . Then W = N = An = L(n) = CL(W ),
Z(L) = 0 and [L, W ] = W .

Proof. First note that N = An+̇N ∩An−1+̇ . . . +̇N ∩A0 by Theorem 3.5(i).
Moreover, N ∩Ai is an ideal of L for each 0 ≤ i ≤ n−1, by Theorem 3.5(iii).
But if N ∩Ai 6= 0 then W ⊆ An ∩N ∩Ai = 0 if i 6= n. Hence W = N = An.
Also W = Asoc L = N , by Theorem 2.1 (iii) and [3, Theorem 7.4], and
N = CL(N) by [6, Lemma 2.4].

Finally, if Z(L) 6= 0 then W ⊆ Z(L) ∩ L2 = 0, by Theorem 3.5, a
contradiction. Hence Z(L) = 0. It follows from this that [L, W ] 6= 0,
whence [L, W ] = W . �

Given these shared properties between the classes of solvable Lie A-
algebras and solvable complemented Lie algebras it is natural to ask whether
either class is contained in the other. This is not the case, as the following
examples show.

Example 3.1 Let L = Fx + Fy + Fb with [x, b] = x, [y, b] = y − x, other
products being zero. Then φ(L) = Fx, so L is not complemented. However,
it is an A-algebra. For, the two-dimensional subalgebras are of the form
Fx + F (αy + βb) (α, β ∈ F ), and these are nilpotent only if β = 0 and, in
that case, it is abelian.

Examples of solvable complemented Lie algebras L that are not A-
algebras are a little harder to construct. In particular, if L is completely
solvable and complemented then it is elementary, by Theorem 2.2, and so
is an A-algebra. However, such algebras do exist in characteristic p as is
shown below.
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Example 3.2 Let F be an algebraically closed field of characteristic p, let
L be the algebra described in Example 2.1 and let C be a faithful completely
reducible L-module. Put X = C+̇L, where B2 = 0 and L acts on B under
the given L-module action. Then repeated use of [5, Lemma 4] shows that
X is complemented. However, X is solvable of index four and so cannot be
an A-algebra, by Drensky’s Theorem (see [6, Theorem 6.2]).

Notice that an easy extension of the above construction shows that, over
an algebraically closed field, there are solvable complemented Lie algebras
of arbitrary solvable index, whereas solvable Lie A-algebras over such a field
have solvable index at most three.
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