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Abstract

For a Lie algebra L and a subalgebra M of L we say that a subal-
gebra U of L is a supplement to M in L if L = M + U . We investigate
those Lie algebras all of whose maximal subalgebras have abelian sup-
plements, those that have nilpotent supplements, those that have nil
supplements, and those that have supplements with the property that
their derived algebra is inside the maximal subalgebra being supple-
mented. For the algebras over an algebraically closed field of character-
istic zero in the last three of these classes we find complete descriptions;
for those in the first class partial results are obtained.
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1 Introduction

Let L be a Lie algebra and let M be a subalgebra of L. We say that a
subalgebra U of L is a supplement to M in L if L = M + U . In similar
fashion to [1] we introduce the following conditions:

• (MO) Every maximal subalgebra of L admits a supplement which is
one-dimensional; that is every maximal subalgebra of L has codimen-
sion one in L.

• (MA) Every maximal subalgebra of L admits an abelian supplement.

• (MD) Every maximal subalgebra M of L admits a supplement whose
derived algebra is inside M .

• (MN) Every maximal subalgebra of L admits a nilpotent supplement.

• (MU) Every maximal subalgebra of L admits a supplement every ele-
ment of which acts nilpotently on L.

We will denote by MO (respectively, MA,MD,MN , and MU) the
class of Lie algebras satisfying condition (MO) (respectively, (MA), (MD),
(MN), and (MU)). Our objective is to study these classes of algebras. Cor-
responding classes of groups were studied by Baumeister ([1]), who showed,
in particular, that any group in MA is solvable, and that a group belongs to
MD if and only if it is solvable. Similar problems concerning factorisations
of Lie algebras as sums of subalgebras of a certain type have been studied
extensively (see, for example, [13], [14], [2], [10], [18], [20], [21], [22] and the
references contained therein.)

In section two we collect together a few preliminary results. First the
description of the algebras in MO as derived in [19] is given. Then some
straightforward inclusions between these classes of algebras are noted. Next
it is shown that all solvable algebras belong to MD, that a completely solv-
able algebra is in MU if and only if it is nilpotent, and that all supersolvable
and all metabelian algebras are in MA. A relationship is given between de-
compositions of a nonassociative algebra and corresponding decompositions
of the algebra over a finite field extension. The final result here asserts that
if H is a saturated homomorph of Lie algebras, then so is MH.

The third section is concerned with the simple algebras in these classes.
It is shown that if the underlying field is algebraically closed of characteristic
zero, then A1 is the only such algebra. We also identify when a maximal
parabolic subalgebra has an abelian supplement.
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The last section contains the main classification results, describing ex-
plicitly the algebras in each of the classes defined above.

Throughout L will denote a finite-dimensional Lie algebra over a field F .
If A and B are subalgebras of L for which L = A+B and A∩B = 0 we will
write L = A⊕B. The ideals L(k) of the derived series are defined inductively
by L(0) = L, L(k+1) = [L(k), L(k)] for k ≥ 0; we also write L2 for L(1). We
say that L is completely solvable if L2 is nilpotent; L is metabelian if L2 is
abelian; and L is supersolvable if it has a series 0 = L0 ⊂ L1 ⊂ . . . ⊂ Ln = L
of ideals of L with dim Li = i. If A is a subalgebra of L, the centralizer of
A in L is CL(A) = {x ∈ L : [x,A] = 0}.

2 Preliminary results

The Frattini ideal of L, φ(L), is the largest ideal of L contained in all
maximal subalgebras of L. The algebras in MO were classified in [19] as
follows.

Theorem 2.1 ([19, Theorem 1]) Let L be Lie algebra over any field F .
Then the following are equivalent:

(i) L ∈MO; and

(ii) L/φ(L) = R ⊕ S where the radical R is supersolvable and φ-free, and
either S = 0 or S is three-dimensional simple with a basis {u−1, u0, u1}
and multiplication [u−1, u0] = u−1, [u−1, u1] = u0, [u0, u1] = u1.

There are some easy relationships between the classes of algebras we
have introduced.

Lemma 2.2 (i) MO ⊆MA ⊆MN , MA ⊆MD and MU ⊆MN .

(ii) If L is solvable, or F has at least dim L−1 elements, thenMD ⊆MN .

(iii) If L is completely solvable then MN = MD.

Proof. (i) These inclusions are straightforward.
(ii) Suppose that L ∈ MD, and let M be any maximal subalgebra of L.
Then there is a subalgebra B of L such that L = M + B and B2 ⊆ M .
Let C be a Cartan subalgebra of B (which, under the stated assumptions,
exists, by [4, Theorem 3 and Corollary 1.2]) and let B = C ⊕ B1 be the
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Fitting decomposition of B relative to adC. Clearly B1 ⊆ B2 ⊆ M , whence
L = M + C and L ∈MN . We have established that MD ⊆MN .
(iii) Let L be completely solvable and let M be a maximal subalgebra of
L with a nilpotent supplement U . Then U2 = φ(U), by [17, Section 5],
and φ(U) ⊆ φ(L), by [16, Theorem 2], so U2 ⊆ φ(L) ⊆ M . It follows that
MN ⊆MD. The reverse inclusion comes from (ii) above. �

We define the abelian socle of L, Asoc L, to be the sum of the minimal
abelian ideals of L. Next we consider the solvable algebras in these classes.

Proposition 2.3 Let L be a Lie algebra over an arbitrary field F .

(i) If L is solvable then L ∈MD.

(ii) If L is completely solvable, then L ∈MU if and only if L is nilpotent.

(iii) If L is supersolvable then L ∈MA.

(iv) If L is metabelian (so, in particular, if L is completely solvable and
φ-free) then L ∈MA.

Proof. (i) Let L be solvable and let M be a maximal subalgebra of L. Then
there is a k ≥ 0 such that L(k) 6⊆ M but L(k+1) ⊆ M . Clearly L = M +L(k)

and so L ∈MD.
(ii) Let L be completely solvable. Suppose that L ∈MU , but that L is not
nilpotent, and let M be a maximal subalgebra of L with N ⊆ M , where
N is the nilradical of L. Then there is a nil subalgebra U of L such that
L = M +U . But now N +U is nilpotent, and is an ideal of L, since L2 ⊆ N ,
so U ⊆ N ⊆ M , a contradiction. The converse is clear.
(iii) If L is supersolvable then L/φ(L) is supersolvable, and so L ∈MO, by
Theorem 2.1. Moreover, MO ⊆MA, by Lemma 2.2(i).
(iv) Let L be metabelian and suppose that M is a maximal subalgebra of L.
If L2 ⊆ M then M has codimension one in L and so has an abelian supple-
ment. If L2 6⊆ M , then L2 is an abelian supplement to M . That completely
solvable φ-free algebras lie in this class follows from [17, Theorems 7.3 and
7.4]. �

Not every completely solvable Lie algebra L belongs to MA, as the next
example shows.

Example 2.1 Let L be the four-dimensional Lie algebra over the real field
with basis e1, e2, e3, e4 and products [e1, e2] = e2 − e3, [e1, e3] = e2 + e3,
[e1, e4] = 2e4, [e2, e3] = e4, other products being zero.
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Then L is completely solvable, but not φ-free, as φ(L) = Re4. Also, M =
Re1 + Re4 is a maximal subalgebra of L that has no abelian supplement.

We have the following relationship between decompositions of a nonas-
sociative algebra and corresponding decompositions of the algebra over a
finite field extension.

Lemma 2.4 Let A be a nonassociative algebra over a field F with subalge-
bras A1 and A2, and let K be a finite field extension of F , whose degree is
not a multiple of the characteristic of F , and so that F is the fixed field of
the group Gal(K/F ) of F -automorphisms of K. Then A = A1 + A2 if and
only if Ā = Ā1 + Ā2, where B̄ = B ⊗F K for any subalgebra B of A.

Proof. Clearly A = A1 + A2 implies that Ā = Ā1 + Ā2. Conversely, let
Ā = Ā1 + Ā2, and let x ∈ A. Then x⊗ 1 = x̄1 + x̄2 where x̄1 ∈ Ā1, x̄2 ∈ Ā2.
Let {k1, . . . , kn} be a basis for K over F , Gal(K/F ) = {θ1, . . . , θn}. For
each θ ∈ Gal(K/F ) let Uθ be the semilinear transformation of Ā defined by
Uθ(

∑
ai ⊗ ki) =

∑
ai ⊗ θ(ki) as in [11, page 295]. Then Uθi

(x⊗ 1) = x⊗ 1,
and so x⊗ 1 = Uθi

(x̄1) + Uθi
(x̄2) for all 1 ≤ i ≤ n. Hence

x⊗ 1 =
1
n

(Uθ1(x̄1) + . . . + Uθn(x̄1)) +
1
n

(Uθ1(x̄2) + . . . + Uθn(x̄2)).

Moreover, 1
n(Uθ1(x̄i) + . . . + Uθn(x̄i)) is fixed by all of the elements of {Uθ :

θ ∈ Gal(K/F )}, and so belongs to Ai for each i = 1, 2, whence the result.
�

Notice, however, that if L is as in Example 2.1 above then L /∈ MA,
whereas, considered as an algebra over C, we have L ∈MA.

A class H of finite-dimensional Lie algebras is called a homomorph if it
contains, along with an algebra L, all epimorphic images of L; it is saturated
if L/φ(L) ∈ H implies that L ∈ H. Then we have that if H is a saturated
homomorph, so is MH (where MH is the class of Lie algebras all of whose
maximal subalgebras have a supplement U ∈ H.) First we need a lemma.

Lemma 2.5 Let L be a Lie algebra over any field F and let M be a maximal
subalgebra of L with a supplement U . Then M has a supplement W with
φ(L) ∩W ⊆ φ(W ).

Proof. Choose W to be a subalgebra of U that is minimal with respect to
U = φ(L)∩U + W . Then L = M + U = M + φ(L)∩U + W = M + W and
φ(L) ∩W = (φ(L) ∩ U) ∩W ⊆ φ(W ), by [17, Lemma 7.1]. �
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Proposition 2.6 Let H be a saturated homomorph of Lie algebras. Then
L ∈ MH if and only if L/φ(L) ∈ MH; that is MH is also a saturated
homomorph.

Proof. Suppose first that L ∈MH and let M/φ(L) be maximal subalgebra
of L/φ(L). Then M is a maximal subalgebra of L and so there is a subalgebra
U ∈ H such that L = M + U . But now

L

φ(L)
=

M

φ(L)
+

U + φ(L)
φ(L)

and
U + φ(L)

φ(L)
∼=

U

U ∩ φ(L)
∈ H,

whence L/φ(L) ∈MH.
So suppose now that L/φ(L) ∈MH and let M be a maximal subalgebra

of L. Then there is a subalgebra U/φ(L) ∈ H such that L/φ(L) = M/φ(L)+
U/φ(L), and so L = M + U . Thus there is a subalgebra W of U with
U = φ(L) + W , L = M + W and φ(L) ∩ W ⊆ φ(W ), by Lemma 2.5.
Moreover,

W

φ(L) ∩W
∼=

φ(L) + W

φ(L)
=

U

φ(L)
∈ H, so

W

φ(W )
∼=

W/(φ(L) ∩W )
φ(W )/(φ(L) ∩W )

∈ H.

It follows that W ∈ H and therefore L ∈MH.
It is easy to see that MH is a homomorph. �

3 Simple algebras

Our first objective in this section is to establish the following result.

Theorem 3.1 The only simple Lie algebra over an algebraically closed field
of characteristic zero belonging to MA, or to MU , is A1.

First let us recall some facts about maximal subalgebras of simple Lie
algebras L over an algebraically closed fields F of characteristic zero. They
fall into three types:

(I) reducible maximal subalgebras, which are described in [9, Theorems
1.1, 1.2, page 252];

(II) irreducible non-simple maximal subalgebras, which are described in [9,
Theorems 1.3, 1.4, page 253]; and
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(III) irreducible simple maximal subalgebras, which are described in [9,
Theorem 1.5, page 252].

A subalgebra B of a semisimple Lie algebra L is called regular in L if we
can choose a basis for B in such a way that any vector of this basis is
either a root vector of L corresponding to some Cartan subalgebra C of L,
or otherwise belongs to C; B is an R-subalgebra of L if it is contained in a
regular subalgebra of L, and is an S-subalgebra otherwise (see [8, page 158]).
We say that B is parabolic in L if it contains a Borel subalgebra of L; it is
reductive in L if the representation x 7→ adL x of B is semisimple.

Then a further way of describing the maximal subalgebras of L is that
they are either

(a) parabolic, all of which are regular and of type (I); or

(b) reductive, which further subdivide into:

(i) regular reductive subalgebras, which are of type (I), and are
semisimple of maximal rank; and

(ii) S-subalgebras, which are semisimple and are mostly of type (II)
or type (III) (entirely so in the case of An, Bn and Cn).

Proof of Theorem 3.1. For each class of simple Lie algebras L we shall
show that there is a maximal subalgebra M such that for any abelian
subalgebra A (respectively, nil subalgebra U) of maximal dimension in L,
dim (M + A) < dim L (respectively, dim (M + U) < dim L). This is the
content of the Table 1 below, whose entries we will explain next.

For each class of algebra we list in column 2 a possible choice of maximal
subalgebra M to meet our claim. In some cases two subalgebras are given:
the top one is sufficient to rule out the possibility of an abelian supplement,
but not of a nil supplement. Of course the lower one of the two would suffice
on its own, but the top one is a more straightforward example and so is listed
for interest.

Many maximal subalgebras can be found from Dynkin’s trick of removing
a node from the extended Dynkin diagram: this gives regular reductive
subalgebras. The top entry for the algebras of types B,C or D can be
found in this way (and remembering that B1 = A1 and D2 = A1⊕A1); they
can also be found in [8, Table 12, page 150; page 232]. The lower entries
for Cn and B2 follow from the fact that all of the three-dimensional S-
subalgebras of Bn and Cn are maximal, except for A28

1 ⊂ G2 ⊂ B3 (whereas
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simple maximal dim L dim M rank L dim A
algebra subalgebra

L M dim U

A2 A1 8 3 2 2
3

A2n Bn 4n2 + 4n 2n2 + n 2n n2 + n
(n ≥ 2) 2n2 + n

A2n+1 Dn+1 4n2 + 8n + 3 2n2 + 3n + 1 2n + 1 n2 + 2n + 1
(n ≥ 1) 2n2 + 3n + 1

B2 A1 ⊕A1 10 6 2 3
A10

1 3 4
B3 A1 ⊕A1 ⊕A1 21 9 3 5

9
B2n Bn ⊕Dn 8n2 + 2n 4n2 2n 2n2 − n + 1

(n ≥ 2) 4n2

B2n+1 Bn ⊕Dn+1 8n2 + 10n + 3 4n2 + 4n + 1 2n + 1 2n2 + n + 1
(n ≥ 2) 4n2 + 4n + 1

C2n Cn ⊕ Cn 8n2 + 2n 4n2 + 2n 2n 2n2 + n
(n ≥ 2) A1 3 4n2

C2n+1 Cn ⊕ Cn+1 8n2 + 10n + 3 4n2 + 6n + 3 2n + 1 2n2 + 3n + 1
(n ≥ 1) A1 3 4n2 + 4n + 1

D2n Dn ⊕Dn 8n2 − 2n 4n2 − 2n 2n 2n2 − n
(n ≥ 2) 4n2 − 2n

D2n+1 Dn ⊕Dn+1 8n2 + 6n + 3 4n2 + 2n + 1 2n + 1 2n2 + n
(n ≥ 2) 4n2 + 2n + 1

E6 A9
2 78 8 6 16

36
E7 A231

1 , A399
1 133 3 7 27

63
E8 A520

1 , A760
1 , 248 3 8 36

A1240
1 120

F4 A156
1 52 3 4 9

24
G2 A28

1 14 3 2 3
6

Table 1: Maximal Subalgebras
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all three-dimensional S-subalgebras of An and Dn are non-maximal except
for A4

1 ⊂ A2.) The superfixes indicate the index of the embedding as defined
in [8].

The three-dimensional representation of A1 gives an embedding of A1

in A2 under which it is a maximal S-subalgebra of that algebra. There are
natural embeddings of Bn in A2n(n ≥ 2) and Dn+1 in A2n+1(n ≥ 1) (also
in [9, Table 5, page 366]) under which these are maximal S-subalgebras of
those algebras. Finally the maximal S-subalgebras listed for each of the
exceptional simple Lie algebras are taken from [8, Table 39, page 233].

In the final column of the table the upper number, α (respectively, lower
number γ), is the maximal possible dimension of an abelian (respectively,
nil subalgebra). The values for α were determined by Malcev in [12], or are
given in [6, Table 1]. The value for γ is computed as 1

2(dim L− rank L) (see
[7]).

The above result can be extended to cover MN as follows.

Corollary 3.2 The only simple Lie algebra over an algebraically closed field
of characteristic zero belonging to MN is A1.

Proof. Suppose that L 6∼= A1 and let M be a maximal subalgebra of L from
Table 1 (the lower entry if two are given) and suppose that L = M + N
where N is a maximal nilpotent subalgebra of L. Then N = CL(N) and so
N is algebraic. It follows that N = T ⊕U where T is a toral subalgebra and
U is the nilradical of N . Since N is nilpotent we must have that [T,U ] = 0.

Now it can be seen from Table 1 that N must have the same dimension
as a Borel subalgebra of L. In fact, in view of [7], it must be equal to a
Borel subalgebra B of L in which T is a Cartan subalgebra of L and U is
the nilradical of B. Since [T,U ] = 0 this is impossible. �

All of the subalgebras in Table 1, of course, are reductive. The maximal
parabolic subalgebras generally are too large to yield to dimension argu-
ments of the above kind. However, we can determine which of them have
abelian supplements.

Let L be a simple Lie algebra over an algebraically closed field of charac-
teristic zero, H a Cartan subalgebra of L and Γ, Γ+, Σ, respectively, the sys-
tems of roots, positive roots and simple roots of L with respect to H. Then
L = H +Σα∈ΓVα, where Vα is spanned by a unique element eα. Let Σ1 ⊆ Σ
be a non-empty subsystem of Σ, and put ∆1 = {γ ∈ Γ : γ = Σα∈Σ\Σ1

mαα}
and ∆+

2 = (Γ \∆1) ∩ Γ+.

9



Then every parabolic subalgebra of L is conjugate to a standard parabolic
subalgebra of the form P = H + Σα∈∆1Vα + Σα∈∆+

2
Vα = R ⊕ U , where

R = H + Σα∈∆1Vα is its reductive summand and the ideal N = Σα∈∆+
2
Vα

is its nilradical. It is clear that every maximal parabolic subalgebra has
a nil supplement, namely the nilradical, No = Σ−α∈∆+

2
Vα, of the opposite

parabolic subalgebra of L. When they have an abelian supplement is given
by the next result, where we use the Bourbaki numbering of roots (see [5]).

Proposition 3.3 Let L be a simple Lie algebra over an algebraically closed
field F of characteristic zero, and let P be a standard maximal parabolic
subalgebra of L. Then P has an abelian supplement in L if and only if
L ∼= An and Σ1 = {αi}, Bn and Σ1 = {α1}, Cn and Σ1 = {αn}, Dn and
Σ1 = {α1}, {αn−1} or {αn}, E6 and Σ1 = {α1}, {α6}, or E7 and Σ1 = {α7}.

Proof. We have that L = P ⊕No where No is the nilradical of the opposite
parabolic subalgebra to P . Suppose that No is not abelian, but that L =
P + A, where A is abelian. We can embed A in a Borel subalgebra B of
L. Then B is conjugate to a Borel subalgebra Bo containing No as its
nilradical. Let Ao be the image of A under the conjugating automorphism.
Let α(Bo), respectively β(Bo), be the maximal possible dimension of an
abelian subalgebra, respectively ideal, of Bo. Then α(Bo) = β(Bo), by [6,
Proposition 2.5], so dim Ao ≤ α(Bo) = β(Bo) < dim No if No is not abelian.
It follows that P has an abelian supplement precisely when No is abelian.
But this occurs exactly in the situations given in the result (see [15], or [3,
Table 1, page 24]). �

4 Main results

First we need to extend the results of the previous section to semisimple Lie
algebras.

Lemma 4.1 Let L be a semisimple Lie algebra over an algebraically closed
field F of characteristic zero. Then L ∈ MN = MA = MD if and only if
L ∼= A1.

Proof. Suppose that L ∈ MN is semisimple. Clearly every simple sum-
mand of L is isomorphic to A1, by Corollary 3.2. Suppose that L = S ⊕ S̄,
where S ∼= A1, S̄ is an isomorphic copy of S with [S, S̄] = 0, and denote the
image of s ∈ S in S̄ by s̄. Let D = {s + s̄ : s ∈ S}, which is easily seen to
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be a maximal subalgebra of L, and suppose that L = D + N , where N is a
nilpotent subalgebra of L. Then dim N ≥ 3.

Clearly L 6= S + N , so S ∩ N 6= {0}. Similarly, S̄ ∩ N 6= {0}. Let
s ∈ S ∩ N , x̄ ∈ S̄ ∩ N and let n = u + v̄ ∈ N , where u ∈ S, v̄ ∈ S̄.
Then [s, u] = [s, n] ∈ S ∩ N , so [s, n] = λs for some λ ∈ F , since S has no
two-dimensional nilpotent subalgebras. As N is nilpotent, λ = 0. But now
Fs + Fu is an abelian subalgebra of S, and so u = µs for some µ ∈ F . In
similar manner v̄ = νx̄ for some ν ∈ F . But this means that dim N ≤ 2, a
contradiction. It follows that L is simple and L ∼= A1. The same conclusion
follows if L ∈MA or L ∈MD, by Lemma 2.2.

The converse is easily checked. �

Theorem 4.2 Let L be a Lie algebra over an algebraically closed field of
characteristic zero with solvable radical R. Then L ∈ MD = MN if and
only if L is solvable or L/R ∼= A1.

Proof. Suppose first that L ∈MN and L is not solvable. Then L/R ∼= A1

by Lemma 4.1. If L ∈MD the same conclusion follows from Lemma 2.2.
Suppose now that L = R or L/R ∼= A1, and let M be a maximal

subalgebra of L. If R ⊆ M then M has a supplement whose derived algebra
is inside M , by Lemma 4.1. So suppose that R 6⊆ M . Then there is a k ≥ 0
such that R(k) 6⊆ M but R(k+1) ⊆ M . Clearly L = M + R(k) and again
M has a supplement whose derived subalgebra is inside M . It follows that
L ∈MD. Lemma 2.2(ii) also implies that L ∈MN . �

Notice that Lemma 4.1 and Proposition 2.3 imply that if L is a semisim-
ple or solvable Lie algebra over an algebraically closed field of characteristic
zero then L ∈MA if and only if L ∈MN . However, it is not the case that
MA = MN , as the following example shows.

Example 4.1 Let L be the six-dimensional Lie algebra over the complex
field with basis e, f, h, x0, x1, x2 and products [e, h] = 2e, [f, h] = −2f ,
[e, f ] = h, [x0, h] = x0, [x1, h] = −x1, [x0, f ] = x1, [x1, e] = −x0, [x0, x1] =
x2, other products being zero.

Clearly, L = R ⊕ S, where R = Cx0 + Cx1 + Cx2 is nilpotent and S =
Ce + Cf + Ch ∼= A1. Then M = Ce + Cf + Ch + Cx2 is a maximal
subalgebra of L that has no abelian supplement in L.
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Theorem 4.3 Let L be a Lie algebra over an algebraically closed field of
characteristic zero with nilradical N . Then L ∈ MU if and only if L is
nilpotent or L/N ∼= A1.

Proof. Let L ∈ MU . Then L ∈ MN , by Lemma 2.2, and so L is solvable
or L/R ∼= A1, by Theorem 4.2. Suppose that L is solvable but not nilpotent,
and let M be a maximal subalgebra of L with N ⊆ M . Then there is a nil
subalgebra U of L such that L = M + U . But now N + U is nilpotent, and
is an ideal of L, since L2 ⊆ N , so U ⊆ N ⊆ M , a contradiction.

So suppose now that L/R ∼= A1 and R is not nilpotent. Clearly L/φ(L) ∈
MU , so assume that L is φ-free. Then L = Asoc L ⊕ (C ⊕ S), where C is
abelian and acts semisimply on Asoc L, S ∼= A1, and [S, C] = 0, by [17,
Theorem 7.5]. Let M be a maximal subalgebra of L with Asoc L + S ⊆ M .
There is a nil subalgebra U such that L = M + U . Since L2 ⊆ M , M
is an ideal of L and there is a u ∈ U such that L = M + Fu. Let u =
a + c + s, where a ∈ Asoc L, c ∈ C, s ∈ S. It is easy to see that since
ad (a + c + s) acts nilpotently on S, then s must be a nil element of S. But
now ad (a+c+s)|Asoc L = ad (c+s)|Asoc L is nilpotent. As c acts semisimply
on AsocL it follows that c ∈ CL(Asoc L) ⊆ Asoc L. But then u ∈ M , a
contradiction. Hence R is nilpotent.

Suppose conversely that L is nilpotent or L/N ∼= A1. If the former holds
that then, clearly, L ∈ MU . So suppose the latter holds and let M be a
maximal subalgebra of L. If N 6⊆ M then L = M + N and N is nil. If
N ⊆ M then M = N + M ∩ A1. Also M ∩ A1 is a maximal subalgebra of
A1 and there is a nil element of A1, e say, such that L = M + Fe. But then
e acts nilpotently on L. It follows that L ∈MU . �
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