A FUNCTIONAL ASSOCIATED WITH TWO BOUNDED LINEAR OPERATORS IN HILBERT SPACES AND RELATED INEQUALITIES

S.S. DRAGOMIR

Abstract

In this paper several inequalities for the functional $\mu(A, B):=$ $\sup _{\|x\|=1}\{\|A x\|\|B x\|\}$ under various assumptions for the operators involved, including operators satisfying the uniform (α, β)-property and operators for which the transform $C_{\alpha, \beta}(\cdot, \cdot)$ is accretive, are given.

1. Introduction

Let $(H ;\langle\cdot, \cdot\rangle)$ be a complex Hilbert space. The numerical range of an operator T is the subset of the complex numbers \mathbb{C} given by $[9$, p. 1$]$:

$$
W(T)=\{\langle T x, x\rangle, x \in H,\|x\|=1\} .
$$

The numerical radius $w(T)$ of an operator T on H is given by [9, p. 8]:

$$
\begin{equation*}
w(T)=\sup \{|\lambda|, \lambda \in W(T)\}=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$. This norm is equivalent to the operator norm. In fact, the following more precise result holds [9, p. 9]:

$$
\begin{equation*}
w(T) \leq\|T\| \leq 2 w(T) \tag{1.2}
\end{equation*}
$$

for any $T \in B(H)$
For other results on numerical radii, see [10], Chapter 11. For some recent and interesting results concerning inequalities for the numerical radius, see [11] and [12].

If A, B are two bounded linear operators on the Hilbert space $(H,\langle\cdot, \cdot\rangle)$, then

$$
\begin{equation*}
w(A B) \leq 4 w(A) w(B) \tag{1.3}
\end{equation*}
$$

In the case that $A B=B A$, then

$$
\begin{equation*}
w(A B) \leq 2 w(A) w(B) \tag{1.4}
\end{equation*}
$$

The following results are also well known [9, p. 38]:
If A is a unitary operator that commutes with another operator B, then

$$
\begin{equation*}
w(A B) \leq w(B) \tag{1.5}
\end{equation*}
$$

If A is an isometry and $A B=B A$, then (1.5) also holds true.
We say that A and B double commute if $A B=B A$ and $A B^{*}=B^{*} A$. If the operators A and B double commute, then [9, p. 38]

$$
\begin{equation*}
w(A B) \leq w(B)\|A\| \tag{1.6}
\end{equation*}
$$

[^0]As a consequence of the above, we have [9, p. 39]:
Let A be a normal operator commuting with B, then

$$
\begin{equation*}
w(A B) \leq w(A) w(B) \tag{1.7}
\end{equation*}
$$

For other results and historical comments on the above see [9, p. 39-41].
For two bounded linear operators A, B in the Hilbert space $(H,\langle\cdot, \cdot\rangle)$ we define the functional

$$
\begin{equation*}
\mu(A, B):=\sup _{\|x\|=1}\{\|A x\|\|B x\|\}(\geq 0) \tag{1.8}
\end{equation*}
$$

It is obvious that μ is symmetric and sub-additive in each variable, $\mu(A, A)=$ $\|A\|^{2}, \mu(A, I)=\|A\|$, where I is the identity operator, $\mu(\alpha A, \beta B)=|\alpha \beta| \mu(A, B)$ and $\mu(A, B) \leq\|A\|\|B\|$. We also have the following inequalities

$$
\begin{equation*}
\mu(A, B) \geq w\left(B^{*} A\right) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu(A, B)\|A\|\|B\| \geq \mu(A B, B A) \tag{1.10}
\end{equation*}
$$

The inequality (1.9) follows by the Schwarz inequality $\|A x\|\|B x\| \geq|\langle A x, B x\rangle|$, $x \in H$, while (1.10) can be obtained by multiplying the inequalities $\|A B x\| \leq$ $\|A\|\|B x\|$ and $\|B A x\| \leq\|B\|\|A x\|$.

From (1.9) we also get

$$
\begin{equation*}
\|A\|^{2} \geq \mu\left(A, A^{*}\right) \geq w\left(A^{2}\right) \tag{1.11}
\end{equation*}
$$

for any A.
Motivated by the above results we establish in this paper several inequalities for the functional $\mu(\cdot, \cdot)$ under various assumptions for the operators involved, including operators satisfying the uniform (α, β)-property and operators for which the transform $C_{\alpha, \beta}(\cdot, \cdot)$ is accretive.

2. General Inequalities

The following result concerning some general power operator inequalities may be stated:

Theorem 1. For any $A, B \in B(H)$ and $r \geq 1$ we have the inequality

$$
\begin{equation*}
\mu^{r}(A, B) \leq \frac{1}{2}\left\|\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}\right\| \tag{2.1}
\end{equation*}
$$

The constant $\frac{1}{2}$ is best possible.
Proof. Utilising the arithmetic mean - geometric mean inequality and the convexity of the function $f(t)=t^{r}$ for $r \geq 1$ we have successively

$$
\begin{align*}
\|A x\|\|B x\| & \leq \frac{1}{2}\left[\left\langle A^{*} A x, x\right\rangle+\left\langle B^{*} B x, x\right\rangle\right] \tag{2.2}\\
& \leq\left[\frac{\left\langle A^{*} A x, x\right\rangle^{r}+\left\langle B^{*} B x, x\right\rangle^{r}}{2}\right]^{\frac{1}{r}}
\end{align*}
$$

for any $x \in H$.
It is well known that, if P is a positive operator, then for any $r \geq 1$ and $x \in H$ with $\|x\|=1$ we have the inequality (see for instance [13])

$$
\begin{equation*}
\langle P x, x\rangle^{r} \leq\left\langle P^{r} x, x\right\rangle \tag{2.3}
\end{equation*}
$$

Applying this inequality to the positive operators $A^{*} A$ and $B^{*} B$ we deduce that

$$
\begin{equation*}
\left[\frac{\left\langle A^{*} A x, x\right\rangle^{r}+\left\langle B^{*} B x, x\right\rangle^{r}}{2}\right]^{\frac{1}{r}} \leq\left\langle\frac{\left[\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}\right] x}{2}, x\right\rangle^{\frac{1}{r}}, \tag{2.4}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Now, on making use of the inequalities (2.2) and (2.4) we get

$$
\begin{equation*}
\|A x\|\|B x\| \leq\left\langle\frac{\left[\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}\right] x}{2}, x\right\rangle^{\frac{1}{r}} \tag{2.5}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$. Taking the supremum over $x \in H$ with $\|x\|=1$ we obtain the desired result (2.1).

For $r=1$ and $B=A$ we get in both sides of (2.1) the same quantity $\|A\|^{2}$ which shows that the constant $\frac{1}{2}$ is best possible in general in the inequality (2.1).

Corollary 1. For any $A \in B(H)$ and $r \geq 1$ we have the inequality

$$
\begin{equation*}
\mu^{r}\left(A, A^{*}\right) \leq \frac{1}{2}\left\|\left(A^{*} A\right)^{r}+\left(A A^{*}\right)^{r}\right\| \tag{2.6}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\|A\|^{r} \leq \frac{1}{2}\left\|\left(A^{*} A\right)^{r}+I\right\| \tag{2.7}
\end{equation*}
$$

respectively.
The following similar result for powers of operators can be stated as well:
Theorem 2. For any $A, B \in B(H)$, any $\alpha \in(0,1)$ and $r \geq 1$ we have the inequality

$$
\begin{equation*}
\mu^{2 r}(A, B) \leq\left\|\alpha \cdot\left(A^{*} A\right)^{r / \alpha}+(1-\alpha) \cdot\left(B^{*} B\right)^{r /(1-\alpha)}\right\| \tag{2.8}
\end{equation*}
$$

The inequality is sharp.
Proof. Observe that, for any $\alpha \in(0,1)$ we have

$$
\begin{align*}
\|A x\|^{2}\|B x\|^{2} & =\left\langle\left(A^{*} A\right) x, x\right\rangle\left\langle\left(B^{*} B\right) x, x\right\rangle \tag{2.9}\\
& =\left\langle\left[\left(A^{*} A\right)^{1 / \alpha}\right]^{\alpha} x, x\right\rangle\left\langle\left[\left(B^{*} B\right)^{1 /(1-\alpha)}\right]^{1-\alpha} x, x\right\rangle
\end{align*}
$$

where $x \in H$.
It is well known that (see for instance [13]), if P is a positive operator and $q \in(0,1)$, then

$$
\begin{equation*}
\left\langle P^{q} x, x\right\rangle \leq\langle P x, x\rangle^{q} . \tag{2.10}
\end{equation*}
$$

Applying this property to the positive operators $\left(A^{*} A\right)^{1 / \alpha}$ and $\left(B^{*} B\right)^{1 /(1-\alpha)}$, where $\alpha \in(0,1)$, we have

$$
\begin{align*}
& \left\langle\left[\left(A^{*} A\right)^{1 / \alpha}\right]^{\alpha} x, x\right\rangle\left\langle\left[\left(B^{*} B\right)^{1 /(1-\alpha)}\right]^{1-\alpha} x, x\right\rangle \tag{2.11}\\
& \leq\left\langle\left(A^{*} A\right)^{1 / \alpha} x, x\right\rangle^{\alpha}\left\langle\left(B^{*} B\right)^{1 /(1-\alpha)} x, x\right\rangle^{1-\alpha}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.

Now, on utilising the weighted arithmetic mean-geometric mean inequality, i.e.,

$$
a^{\alpha} b^{1-\alpha} \leq \alpha a+(1-\alpha) b, \quad \text { where } \alpha \in(0,1) \text { and } a, b \geq 0
$$

we get

$$
\begin{align*}
\left\langle\left(A^{*} A\right)^{1 / \alpha} x, x\right\rangle^{\alpha} & \left\langle\left(B^{*} B\right)^{1 /(1-\alpha)} x, x\right\rangle^{1-\alpha} \tag{2.12}\\
& \leq \alpha \cdot\left\langle\left(A^{*} A\right)^{1 / \alpha} x, x\right\rangle+(1-\alpha) \cdot\left\langle\left(B^{*} B\right)^{1 /(1-\alpha)} x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Moreover, by the elementary inequality

$$
\alpha a+(1-\alpha) b \leq\left(\alpha a^{r}+(1-\alpha) b^{r}\right)^{1 / r}, \quad \text { where } \alpha \in(0,1) \text { and } a, b \geq 0
$$

we have successively

$$
\begin{align*}
& \alpha \cdot\left\langle\left(A^{*} A\right)^{1 / \alpha} x, x\right\rangle+(1-\alpha) \cdot\left\langle\left(B^{*} B\right)^{1 /(1-\alpha)} x, x\right\rangle \tag{2.13}\\
& \leq\left[\alpha \cdot\left\langle\left(A^{*} A\right)^{1 / \alpha} x, x\right\rangle^{r}+(1-\alpha) \cdot\left\langle\left(B^{*} B\right)^{1 /(1-\alpha)} x, x\right\rangle^{r}\right]^{\frac{1}{r}} \\
& \leq\left[\alpha \cdot\left\langle\left(A^{*} A\right)^{r / \alpha} x, x\right\rangle+(1-\alpha) \cdot\left\langle\left(B^{*} B\right)^{r /(1-\alpha)} x, x\right\rangle\right]^{\frac{1}{r}}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$, where for the last inequality we have used the property (2.3) for the positive operators $\left(A^{*} A\right)^{1 / \alpha}$ and $\left(B^{*} B\right)^{1 /(1-\alpha)}$.

Now, on making use of the identity (2.9) and the inequalities (2.11)-(2.13) we get

$$
\|A x\|^{2}\|B x\|^{2} \leq\left[\left\langle\left[\alpha \cdot\left(A^{*} A\right)^{r / \alpha}+(1-\alpha) \cdot\left(B^{*} B\right)^{r /(1-\alpha)}\right] x, x\right\rangle\right]^{\frac{1}{r}}
$$

for any $x \in H$ with $\|x\|=1$. Taking the supremum over $x \in H$ with $\|x\|=1$ we deduce the desired result (2.8).

Notice that the inequality is sharp since for $r=1$ and $B=A$ we get in both sides of (2.8) the same quantity $\|A\|^{4}$.
Corollary 2. For any $A \in B(H)$, any $\alpha \in(0,1)$ and $r \geq 1$, we have the inequalities

$$
\begin{gathered}
\mu^{2 r}\left(A, A^{*}\right) \leq\left\|\alpha \cdot\left(A^{*} A\right)^{r / \alpha}+(1-\alpha) \cdot\left(A A^{*}\right)^{r /(1-\alpha)}\right\|, \\
\|A\|^{2 r} \leq\left\|\alpha \cdot\left(A^{*} A\right)^{r / \alpha}+(1-\alpha) \cdot I\right\|
\end{gathered}
$$

and

$$
\|A\|^{4 r} \leq\left\|\alpha \cdot\left(A^{*} A\right)^{r / \alpha}+(1-\alpha) \cdot\left(A^{*} A\right)^{r /(1-\alpha)}\right\|,
$$

respectively.
The following reverse of the inequality (1.9) maybe stated as well:
Theorem 3. For any $A, B \in B(H)$ we have the inequality

$$
\begin{equation*}
(0 \leq) \mu(A, B)-w\left(B^{*} A\right) \leq \frac{1}{2}\|A-B\|^{2} \tag{2.14}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\mu\left(\frac{A+B}{2}, \frac{A-B}{2}\right) \leq \frac{1}{2} w\left(B^{*} A\right)+\frac{1}{2}\|A-B\|^{2}, \tag{2.15}
\end{equation*}
$$

respectively.

Proof. We have

$$
\begin{align*}
\|A x-B x\|^{2} & =\|A x\|^{2}+\|B x\|^{2}-2 \operatorname{Re}\left\langle B^{*} A x, x\right\rangle \tag{2.16}\\
& \geq 2\|A x\|\|B x\|-2\left|\left\langle B^{*} A x, x\right\rangle\right|
\end{align*}
$$

for any $x \in H,\|x\|=1$, which gives the inequality

$$
\|A x\|\|B x\| \leq\left|\left\langle B^{*} A x, x\right\rangle\right|+\frac{1}{2}\|A x-B x\|^{2},
$$

for any $x \in H,\|x\|=1$.
Taking the supremum over $\|x\|=1$ we deduce the desired result (2.14).
By the parallelogram identity in the Hilbert space H we also have

$$
\begin{aligned}
\|A x\|^{2}+\|B x\|^{2} & =\frac{1}{2}\left(\|A x+B x\|^{2}+\|A x-B x\|^{2}\right) \\
& \geq\|A x+B x\|\|A x-B x\|
\end{aligned}
$$

for any $x \in H$.
Combining this inequality with the first part of (2.16) we get

$$
\|A x+B x\|\|A x-B x\| \leq\|A x-B x\|^{2}+2\left|\left\langle B^{*} A x, x\right\rangle\right|,
$$

for any $x \in H$. Taking the supremum in this inequality over $\|x\|=1$ we deduce the desired result (2.15).
Corollary 3. Let $A \in B(H)$. If $\operatorname{Re}(A):=\frac{A+A^{*}}{2}$ and $\operatorname{Im}(A):=\frac{A-A^{*}}{2 i}$ are the real and imaginary parts of A, then we have the inequality

$$
(0 \leq) \mu\left(A, A^{*}\right)-w\left(A^{2}\right) \leq 2 \cdot\|\operatorname{Im}(A)\|^{2}
$$

and

$$
\mu(\operatorname{Re}(A), \operatorname{Im}(A)) \leq \frac{1}{2} w\left(A^{2}\right)+2 \cdot\|\operatorname{Im}(A)\|^{2},
$$

respectively.
Moreover, we have

$$
(0 \leq) \mu(\operatorname{Re}(A), \operatorname{Im}(A))-w(\operatorname{Re}(A) \operatorname{Im}(A)) \leq \frac{1}{2}\|A\|^{2}
$$

Corollary 4. For any $A \in B(H)$ and $\lambda \in \mathbb{C}$ with $\lambda \neq 0$ we have the inequality (see also [6])

$$
\begin{equation*}
(0 \leq)\|A\|-w(A) \leq \frac{1}{2|\lambda|}\|A-\lambda I\|^{2} \tag{2.17}
\end{equation*}
$$

For a bounded linear operator T consider the quantity $\ell(T):=\inf _{\|x\|=1}\|T x\|$. We can state the following result as well.

Theorem 4. For any $A, B \in B(H)$ with $A \neq B$ and such that $\ell(B) \geq\|A-B\|$ we have

$$
\begin{equation*}
(0 \leq) \mu^{2}(A, B)-w^{2}\left(B^{*} A\right) \leq\|A\|^{2}\|A-B\|^{2} . \tag{2.18}
\end{equation*}
$$

Proof. Denote $r:=\|A-B\|>0$. Then for any $x \in H$ with $\|x\|=1$ we have $\|B x\| \geq r$ and by the first part of (2.16) we can write that

$$
\begin{equation*}
\|A x\|^{2}+\left(\sqrt{\|B x\|^{2}-r^{2}}\right)^{2} \leq 2\left|\left\langle B^{*} A x, x\right\rangle\right| \tag{2.19}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.

On the other hand we have

$$
\begin{equation*}
\|A x\|^{2}+\left(\sqrt{\|B x\|^{2}-r^{2}}\right)^{2} \geq 2 \cdot\|A x\| \sqrt{\|B x\|^{2}-r^{2}} \tag{2.20}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Combining (2.19) with (2.20) we deduce

$$
\|A x\| \sqrt{\|B x\|^{2}-r^{2}} \leq\left|\left\langle B^{*} A x, x\right\rangle\right|
$$

which is clearly equivalent with

$$
\begin{equation*}
\|A x\|^{2}\|B x\|^{2} \leq\left|\left\langle B^{*} A x, x\right\rangle\right|^{2}+\|A x\|^{2}\|A-B\|^{2} \tag{2.21}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$. Taking the supremum in (2.21) over $x \in H$ with $\|x\|=1$, we deduce the desired inequality (2.18).

Corollary 5. For any $A \in B(H)$ a non self adjoint operator and such that $\ell\left(A^{*}\right)$ $\geq 2 \cdot\|\operatorname{Im}(A)\|$ we have

$$
\begin{equation*}
(0 \leq) \mu^{2}\left(A, A^{*}\right)-w^{2}\left(A^{2}\right) \leq 4 \cdot\|A\|^{2}\|\operatorname{Im}(A)\|^{2} \tag{2.22}
\end{equation*}
$$

Corollary 6. For any $A \in B(H)$ and $\lambda \in \mathbb{C}$ with $\lambda \neq 0$ and $|\lambda| \geq\|A-\lambda I\|$ we have the inequality (see also [6])

$$
(0 \leq)\|A\|^{2}-w^{2}(A) \leq \frac{1}{|\lambda|^{2}} \cdot\|A\|^{2}\|A-\lambda I\|^{2}
$$

or, equivalently,

$$
(0 \leq) \sqrt{1-\frac{\|A-\lambda I\|^{2}}{|\lambda|^{2}}} \leq \frac{w(A)}{\|A\|}(\leq 1)
$$

3. Inequalities for Operators Satisfying the Uniform (α, β)-Property

The following result that may be of interest in itself, holds:
Lemma 1. Let $T \in B(H)$ and $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq \beta$. The following statements are equivalent:
(i) We have

$$
\begin{equation*}
\operatorname{Re}\langle\beta y-T x, T x-\alpha y\rangle \geq 0 \tag{3.1}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$;
(ii) We have

$$
\begin{equation*}
\left\|T x-\frac{\alpha+\beta}{2} \cdot y\right\| \leq \frac{1}{2}|\alpha-\beta| \tag{3.2}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Proof. Follows by the following identity

$$
\operatorname{Re}\langle\beta y-T x, T x-\alpha y\rangle=\frac{1}{4}|\alpha-\beta|^{2}-\left\|T x-\frac{\alpha+\beta}{2} \cdot y\right\|^{2},
$$

that holds for any $x, y \in H$ with $\|x\|=\|y\|=1$.

Remark 1. For any operator $T \in B(H)$ if we choose $\alpha=a\|T\|(1+2 i)$ and $\beta=a\|T\|(1-2 i)$ with $a \geq 1$, then

$$
\frac{\alpha+\beta}{2}=a\|T\| \quad \text { and } \quad \frac{|\alpha-\beta|}{2}=2 a\|T\|
$$

showing that

$$
\begin{aligned}
\left\|T x-\frac{\alpha+\beta}{2} \cdot y\right\| & \leq\|T x\|+\left|\frac{\alpha+\beta}{2}\right| \leq\|T\|+a\|T\| \\
& \leq 2 a\|T\|=\frac{1}{2} \cdot|\alpha-\beta|
\end{aligned}
$$

that holds for any $x, y \in H$ with $\|x\|=\|y\|=1$, i.e., T satisfies the condition (3.1) with the scalars α and β given above.

Definition 1. For given $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq \beta$ and $y \in H$ with $\|y\|=1$, we say that the operator $T \in B(H)$ has the (α, β, y)-property if either (3.1) or, equivalently, (3.2) holds true for any $x \in H$ with $\|x\|=1$. Moreover, if T has the (α, β, y)property for any $y \in H$ with $\|y\|=1$, then we say that this operator has the uniform (α, β)-property.

Remark 2. The above Remark 1 shows that any bounded linear operator has the uniform (α, β)-property for infinitely many (α, β) appropriately chosen. For a given operator satisfying an (α, β)-property, it is an open problem to find the possibly nonzero lower bound for the quantity $|\alpha-\beta|$.

The following results may be stated:
Theorem 5. Let $A, B \in B(H)$ and $\alpha, \beta, \gamma, \delta \in \mathbb{K}$ with $\alpha \neq \beta$ and $\gamma \neq \delta$. For $y \in H$ with $\|y\|=1$ assume that A^{*} has the (α, β, y)-property while B^{*} has the (γ, δ, y)-property, then

$$
\begin{equation*}
\left|\|A y\|\|B y\|-\left\|B A^{*}\right\|\right| \leq \frac{1}{4}|\beta-\alpha||\gamma-\delta| \tag{3.3}
\end{equation*}
$$

Moreover, if A^{*} has the uniform (α, β)-property and B^{*} has the uniform (γ, δ) property, then

$$
\begin{equation*}
\left|\mu(A, B)-\left\|B A^{*}\right\|\right| \leq \frac{1}{4}|\beta-\alpha||\gamma-\delta| \tag{3.4}
\end{equation*}
$$

Proof. Since A^{*} has the (α, β, y)-property while B^{*} has the (γ, δ, y)-property, then on making use of Lemma 1 we have that

$$
\left\|A^{*} x-\frac{\alpha+\beta}{2} \cdot y\right\| \leq \frac{1}{2}|\beta-\alpha|
$$

and

$$
\left\|B^{*} z-\frac{\gamma+\delta}{2} \cdot y\right\| \leq \frac{1}{2}|\gamma-\delta|
$$

for any $x, z \in H$, with $\|x\|=\|z\|=1$.
Now, we make use of the following Grüss type inequality for vectors in inner product spaces obtained by the author in [1] (see also [2] or [7, p. 43]):

Let $(H,\langle\cdot, \cdot\rangle)$ be an inner product space over the real or complex number field $\mathbb{K}, u, v, e \in H,\|e\|=1$, and $\alpha, \beta, \gamma, \delta \in \mathbb{K}$ such that

$$
\begin{equation*}
\operatorname{Re}\langle\beta e-u, u-\alpha e\rangle \geq 0, \quad \operatorname{Re}\langle\delta e-v, v-\gamma e\rangle \geq 0 \tag{3.5}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left\|u-\frac{\alpha+\beta}{2} e\right\| \leq \frac{1}{2}|\beta-\alpha|, \quad\left\|v-\frac{\gamma+\delta}{2} e\right\| \leq \frac{1}{2}|\delta-\gamma|, \tag{3.6}
\end{equation*}
$$

then

$$
\begin{equation*}
|\langle u, v\rangle-\langle u, e\rangle\langle e, v\rangle| \leq \frac{1}{4}|\beta-\alpha||\delta-\gamma| . \tag{3.7}
\end{equation*}
$$

Applying (3.7) for $u=A^{*} x, v=B^{*} z$ and $e=y$ we deduce

$$
\begin{equation*}
\left|\left\langle B A^{*} x, z\right\rangle-\langle x, A y\rangle\langle z, B y\rangle\right| \leq \frac{1}{4}|\beta-\alpha||\delta-\gamma| \tag{3.8}
\end{equation*}
$$

for any $x, z \in H,\|x\|=\|z\|=1$, which is an inequality of interest in itself.
Observing that

$$
\left\|\langle B A ^ { * } x , z \rangle \left|-\left|\langle x, A y\rangle\langle z, B y\rangle \| \leq\left|\left\langle B A^{*} x, z\right\rangle-\langle x, A y\rangle\langle z, B y\rangle\right|,\right.\right.\right.
$$

then by (3.7) we deduce the inequality

$$
\left\|\left\langle B A^{*} x, z\right\rangle\left|-\left|\langle x, A y\rangle\langle z, B y\rangle \| \leq \frac{1}{4}\right| \beta-\alpha\right||\delta-\gamma|,\right.
$$

for any $x, z \in H,\|x\|=\|z\|=1$. This is equivalent with the following two inequalities

$$
\begin{equation*}
\left|\left\langle B A^{*} x, z\right\rangle\right| \leq|\langle x, A y\rangle\langle z, B y\rangle|+\frac{1}{4}|\beta-\alpha||\delta-\gamma| \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
|\langle x, A y\rangle\langle z, B y\rangle| \leq\left|\left\langle B A^{*} x, z\right\rangle\right|+\frac{1}{4}|\beta-\alpha||\delta-\gamma|, \tag{3.10}
\end{equation*}
$$

for any $x, z \in H,\|x\|=\|z\|=1$.
Taking the supremum over $x, z \in H,\|x\|=\|z\|=1$ in (3.9) and (3.10) we get the inequalities

$$
\begin{equation*}
\left\|B A^{*}\right\| \leq\|A y\|\|B y\|+\frac{1}{4}|\beta-\alpha||\delta-\gamma| \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\|A y\|\|B y\| \leq\left\|B A^{*}\right\|+\frac{1}{4}|\beta-\alpha||\delta-\gamma| \tag{3.12}
\end{equation*}
$$

which are clearly equivalent with (3.3).
Now, if A has the uniform (α, β)-property and B has the uniform (γ, δ)-property, then the inequalities (3.11) and (3.12) hold for any $y \in H$ with $\|y\|=1$. Taking the supremum over $y \in H$ with $\|y\|=1$ in these inequalities we deduce

$$
\left\|B A^{*}\right\| \leq \mu(A, B)+\frac{1}{4}|\beta-\alpha||\delta-\gamma|
$$

and

$$
\mu(A, B) \leq\left\|B A^{*}\right\|+\frac{1}{4}|\beta-\alpha||\delta-\gamma|
$$

which are equivalent with (3.4).

Corollary 7. Let $A \in B(H)$ and $\alpha, \beta, \gamma, \delta \in \mathbb{K}$ with $\alpha \neq \beta$ and $\gamma \neq \delta$. For $y \in H$ with $\|y\|=1$ assume that A has the (α, β, y)-property while A^{*} has the (γ, δ, y)-property, then

$$
\left|\left\|A^{*} y\right\|\|A y\|-\left\|A^{2}\right\|\right| \leq \frac{1}{4}|\beta-\alpha||\gamma-\delta|
$$

Moreover, if A has the uniform (α, β)-property and A^{*} has the uniform (γ, δ) property, then

$$
\left|\mu\left(A, A^{*}\right)-\left\|A^{2}\right\|\right| \leq \frac{1}{4}|\beta-\alpha||\gamma-\delta|
$$

The following results may be stated as well:
Theorem 6. Let $A, B \in B(H)$ and $\alpha, \beta, \gamma, \delta \in \mathbb{K}$ with $\alpha+\beta \neq 0$ and $\gamma+\delta \neq 0$. For $y \in H$ with $\|y\|=1$ assume that A^{*} has the (α, β, y)-property while B^{*} has the (γ, δ, y)-property, then

$$
\begin{align*}
& \left|\|A y\|\|B y\|-\left\|B A^{*}\right\|\right| \tag{3.13}\\
& \quad \leq \frac{1}{4} \cdot \frac{|\beta-\alpha||\delta-\gamma|}{\sqrt{|\beta+\alpha||\delta+\gamma|}} \sqrt{(\|A\|+\|A y\|)(\|B\|+\|B y\|)} .
\end{align*}
$$

Moreover, if A^{*} has the uniform (α, β)-property and B^{*} has the uniform (γ, δ) property, then

$$
\begin{equation*}
\left|\mu(A, B)-\left\|B A^{*}\right\|\right| \leq \frac{1}{2} \cdot \frac{|\beta-\alpha||\delta-\gamma|}{\sqrt{|\beta+\alpha||\delta+\gamma|}} \sqrt{\|A\|\|B\|} \tag{3.14}
\end{equation*}
$$

Proof. We make use of the following inequality obtained by the author in [5] (see also [7, p. 65]):

Let $(H,\langle\cdot, \cdot\rangle)$ be an inner product space over the real or complex number field $\mathbb{K}, u, v, e \in H,\|e\|=1$, and $\alpha, \beta, \gamma, \delta \in \mathbb{K}$ with $\alpha+\beta \neq 0$ and $\gamma+\delta \neq 0$ and such that

$$
\operatorname{Re}\langle\beta e-u, u-\alpha e\rangle \geq 0, \quad \operatorname{Re}\langle\delta e-v, v-\gamma e\rangle \geq 0
$$

or, equivalently,

$$
\left\|u-\frac{\alpha+\beta}{2} e\right\| \leq \frac{1}{2}|\beta-\alpha|,\left\|v-\frac{\gamma+\delta}{2} e\right\| \leq \frac{1}{2}|\delta-\gamma|
$$

then

$$
\begin{align*}
\mid\langle u, v\rangle & -\langle u, e\rangle\langle e, v\rangle \mid \tag{3.15}\\
& \leq \frac{1}{4} \cdot \frac{|\beta-\alpha||\delta-\gamma|}{\sqrt{|\beta+\alpha||\delta+\gamma|}} \sqrt{(\|u\|+|\langle u, e\rangle|)((\|v\|+|\langle v, e\rangle|))}
\end{align*}
$$

Applying (3.15) for $u=A^{*} x, v=B^{*} z$ and $e=y$ we deduce

$$
\begin{aligned}
\mid\left\langle B A^{*} x, z\right\rangle & -\langle x, A y\rangle\langle z, B y\rangle \mid \\
& \leq \frac{1}{4} \cdot \frac{|\beta-\alpha||\delta-\gamma|}{\sqrt{|\beta+\alpha||\delta+\gamma|}} \sqrt{\left(\left\|A^{*} x\right\|+|\langle x, A y\rangle|\right)\left(\left(\left\|B^{*} z\right\|+|\langle z, B y\rangle|\right)\right)},
\end{aligned}
$$

for any $x, y, z \in H,\|x\|=\|y\|=\|z\|=1$.
Now, on making use of a similar argument to the one from the proof of Theorem 5 , we deduce the desired results (3.13) and (3.14). The details are omitted.

Corollary 8. Let $A \in B(H)$ and $\alpha, \beta, \gamma, \delta \in \mathbb{K}$ with $\alpha \neq \beta$ and $\gamma \neq \delta$. For $y \in H$ with $\|y\|=1$ assume that A has (α, β, y)-property while A^{*} has the (γ, δ, y) property, then

$$
\left|\left\|A^{*} y\right\|\|A y\|-\left\|A^{2}\right\|\right| \leq \frac{1}{4} \cdot \frac{|\beta-\alpha||\delta-\gamma|}{\sqrt{|\beta+\alpha||\delta+\gamma|}} \sqrt{\left(\|A\|+\left\|A^{*} y\right\|\right)(\|A\|+\|A y\|)}
$$

Moreover, if A has the uniform (α, β)-property and A^{*} has the uniform (γ, δ) property, then

$$
\left|\mu\left(A, A^{*}\right)-\left\|A^{2}\right\|\right| \leq \frac{1}{2} \cdot \frac{|\beta-\alpha||\delta-\gamma|}{\sqrt{|\beta+\alpha||\delta+\gamma|}}\|A\|
$$

4. The Transform $C_{\alpha, \beta}(\cdot, \cdot)$ and Other Inequalities

For two given operators $T, U \in B(H)$ and two given scalars $\alpha, \beta \in \mathbb{C}$ consider the transform

$$
C_{\alpha, \beta}(T, U)=\left(T^{*}-\bar{\alpha} U^{*}\right)(\beta U-T)
$$

This transform generalizes the transform $C_{\alpha, \beta}(T):=\left(T^{*}-\bar{\alpha} I\right)(\beta I-T)=C_{\alpha, \beta}(T, I)$, where I is the identity operator, which has been introduced in [8] in order to provide some generalizations of the well known Kantorovich inequality for operators in Hilbert spaces.

We recall that a bounded linear operator T on the complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$ is called accretive if $\operatorname{Re}\langle T y, y\rangle \geq 0$ for any $y \in H$.

Utilizing the following identity

$$
\begin{align*}
\operatorname{Re}\left\langle C_{\alpha, \beta}(T, U) x, x\right\rangle & =\operatorname{Re}\left\langle C_{\beta, \alpha}(T, U) x, x\right\rangle \tag{4.1}\\
& =\frac{1}{4}|\beta-\alpha|^{2}\|U x\|^{2}-\left\|T x-\frac{\alpha+\beta}{2} \cdot U x\right\|^{2},
\end{align*}
$$

that holds for any scalars α, β and any vector $x \in H$, we can give a simple characterization result that is useful in the following:

Lemma 2. For $\alpha, \beta \in \mathbb{C}$ and $T, U \in B(H)$ the following statements are equivalent:
(i) The transform $C_{\alpha, \beta}(T, U)$ (or, equivalently, $\left.C_{\beta, \alpha}(T, U)\right)$ is accretive;
(ii) We have the norm inequality

$$
\begin{equation*}
\left\|T x-\frac{\alpha+\beta}{2} \cdot U x\right\| \leq \frac{1}{2}|\beta-\alpha|\|U x\|, \tag{4.2}
\end{equation*}
$$

for any $x \in H$.
As a consequence of the above lemma we can state
Corollary 9. Let $\alpha, \beta \in \mathbb{C}$ and $T, U \in B(H)$. If $C_{\alpha, \beta}(T, U)$ is accretive, then

$$
\begin{equation*}
\left\|T-\frac{\alpha+\beta}{2} \cdot U\right\| \leq \frac{1}{2}|\beta-\alpha|\|U\| . \tag{4.3}
\end{equation*}
$$

Remark 3. In order to give examples of operators $T, U \in B(H)$ and numbers $\alpha, \beta \in \mathbb{C}$ such that the transform $C_{\alpha, \beta}(T, U)$ is accretive, it suffices to select two bounded linear operator S and V and the complex numbers $z, w(w \neq 0)$ with the property that $\|S x-z V x\| \leq|w|\|V x\|$ for any $x \in H$, and, by choosing $T=S$, $U=V, \alpha=\frac{1}{2}(z+w)$ and $\beta=\frac{1}{2}(z-w)$ we observe that T and U satisfy (4.2), i.e., $C_{\alpha, \beta}(T, U)$ is accretive.

We are able now to give the following result concerning other reverse inequalities for the case when the involved operators satisfy the accretivity property described above.

Theorem 7. Let $\alpha, \beta \in \mathbb{C}$ and $A, B \in B(H)$. If $C_{\alpha, \beta}(A, B)$ is accretive, then

$$
\begin{equation*}
(0 \leq) \mu^{2}(A, B)-w^{2}\left(B^{*} A\right) \leq \frac{1}{4} \cdot|\beta-\alpha|^{2}\|B\|^{4} \tag{4.4}
\end{equation*}
$$

Moreover, if $\alpha+\beta \neq 0$, then

$$
\begin{equation*}
(0 \leq) \mu(A, B)-w\left(B^{*} A\right) \leq \frac{1}{4} \cdot \frac{|\beta-\alpha|^{2}}{|\beta+\alpha|}\|B\|^{2} \tag{4.5}
\end{equation*}
$$

In addition, if $\operatorname{Re}(\alpha \bar{\beta})>0$, then also

$$
\begin{equation*}
(1 \leq) \frac{\mu(A, B)}{w\left(B^{*} A\right)} \leq \frac{1}{2} \cdot \frac{|\beta+\alpha|}{\sqrt{\operatorname{Re}(\alpha \bar{\beta})}} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(0 \leq) \mu^{2}(A, B)-w^{2}\left(B^{*} A\right) \leq(|\beta+\alpha|-2 \cdot \sqrt{\operatorname{Re}(\alpha \bar{\beta})}) w\left(B^{*} A\right)\|B\|^{2} \tag{4.7}
\end{equation*}
$$

respectively.
Proof. By Lemma 2, since $C_{\alpha, \beta}(A, B)$ is accretive, then

$$
\begin{equation*}
\left\|A x-\frac{\alpha+\beta}{2} \cdot B x\right\| \leq \frac{1}{2}|\beta-\alpha|\|B x\| \tag{4.8}
\end{equation*}
$$

for any $x \in H$.
We utilize the following reverse of the Schwarz inequality in inner product spaces obtained by the author in [3] (see also [7, p. 4]):

If $\gamma, \Gamma \in \mathbb{K}(\mathbb{K}=\mathbb{C}, \mathbb{R})$ and $u, v \in H$ are such that

$$
\begin{equation*}
\operatorname{Re}\langle\Gamma v-u, u-\gamma v\rangle \geq 0 \tag{4.9}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left\|u-\frac{\gamma+\Gamma}{2} \cdot v\right\| \leq \frac{1}{2}|\Gamma-\gamma|\|v\| \tag{4.10}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq\|u\|^{2}\|v\|^{2}-|\langle u, v\rangle|^{2} \leq \frac{1}{4}|\Gamma-\gamma|^{2}\|v\|^{4} \tag{4.11}
\end{equation*}
$$

Now, on making use of (4.11) for $u=A x, v=B x, x \in H,\|x\|=1$ and $\gamma=\alpha, \Gamma=\beta$ we can write the inequality

$$
\|A x\|^{2}\|B x\|^{2} \leq\left|\left\langle B^{*} A x, x\right\rangle\right|^{2}+\frac{1}{4}|\beta-\alpha|^{2}\|B x\|^{4}
$$

for any $x \in H,\|x\|=1$. Taking the supremum over $\|x\|=1$ in this inequality produces the desired result (4.4).

Now, by utilizing the result from [5] (see also [7, p. 29]), namely:
If $\gamma, \Gamma \in \mathbb{K}$ with $\gamma+\Gamma \neq 0$ and $u, v \in H$ are such that either (4.9) or, equivalently, (4.9) holds true, then

$$
\begin{equation*}
0 \leq\|u\|\|v\|-|\langle u, v\rangle| \leq \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|}\|v\|^{2} \tag{4.12}
\end{equation*}
$$

Now, on making use of (4.12) for $u=A x, v=B x, x \in H,\|x\|=1$ and $\gamma=\alpha, \Gamma=\beta$ and using the same procedure outlined above, we deduce the second inequality (4.5).

The inequality (4.6) follows from the result presented below obtained in [4] (see also [7, p. 21]):

If $\gamma, \Gamma \in \mathbb{K}$ with $\operatorname{Re}(\Gamma \bar{\gamma})>0$ and $u, v \in H$ are such that either (4.9) or, equivalently, (4.9) holds true, then

$$
\begin{equation*}
\|u\|\|v\| \leq \frac{1}{2} \cdot \frac{|\Gamma+\gamma|}{\sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}}|\langle u, v\rangle| \tag{4.13}
\end{equation*}
$$

by choosing $u=A x, v=B x, x \in H,\|x\|=1$ and $\gamma=\alpha, \Gamma=\beta$ and taking the supremum over $\|x\|=1$.

Finally, on making use of the inequality (see [6])

$$
\begin{equation*}
\|u\|^{2}\|v\|^{2}-|\langle u, v\rangle|^{2} \leq(|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})})|\langle u, v\rangle|\|v\|^{2} \tag{4.14}
\end{equation*}
$$

that is valid provided $\gamma, \Gamma \in \mathbb{K}$ with $\operatorname{Re}(\Gamma \bar{\gamma})>0$ and $u, v \in H$ are such that either (4.9) or, equivalently, (4.9) holds true, we obtain the last inequality (4.7). The details are omitted.

Remark 4. Let $M>m>0$ and $A, B \in B(H)$. If $C_{m, M}(A, B)$ is accretive, then

$$
\begin{aligned}
(0 \leq) \mu^{2}(A, B)-w^{2}\left(B^{*} A\right) & \leq \frac{1}{4} \cdot(M-m)^{2}\|B\|^{4} \\
(0 \leq) \mu(A, B)-w\left(B^{*} A\right) & \leq \frac{1}{4} \cdot \frac{(M-m)^{2}}{m+M}\|B\|^{2} \\
(1 \leq) \frac{\mu(A, B)}{w\left(B^{*} A\right)} & \leq \frac{1}{2} \cdot \frac{m+M}{\sqrt{m M}}
\end{aligned}
$$

and

$$
(0 \leq) \mu^{2}(A, B)-w^{2}\left(B^{*} A\right) \leq(\sqrt{M}-\sqrt{m})^{2} w\left(B^{*} A\right)\|B\|^{2}
$$

respectively.
Corollary 10. Let $\alpha, \beta \in \mathbb{C}$ and $A \in B(H)$. If $C_{\alpha, \beta}\left(A, A^{*}\right)$ is accretive, then

$$
(0 \leq) \mu^{2}\left(A, A^{*}\right)-w^{2}\left(A^{2}\right) \leq \frac{1}{4} \cdot|\beta-\alpha|^{2}\|A\|^{4}
$$

Moreover, if $\alpha+\beta \neq 0$, then

$$
(0 \leq) \mu\left(A, A^{*}\right)-w\left(A^{2}\right) \leq \frac{1}{4} \cdot \frac{|\beta-\alpha|^{2}}{|\beta+\alpha|}\|A\|^{2}
$$

In addition, if $\operatorname{Re}(\alpha \bar{\beta})>0$, then also

$$
(1 \leq) \frac{\mu\left(A, A^{*}\right)}{w\left(A^{2}\right)} \leq \frac{1}{2} \cdot \frac{|\beta+\alpha|}{\sqrt{\operatorname{Re}(\alpha \bar{\beta})}}
$$

and

$$
(0 \leq) \mu^{2}\left(A, A^{*}\right)-w^{2}\left(A^{2}\right) \leq(|\beta+\alpha|-2 \cdot \sqrt{\operatorname{Re}(\alpha \bar{\beta})}) w\left(A^{2}\right)\|A\|^{2}
$$

respectively.

Remark 5. In a similar manner, if $N>n>0, A \in B(H)$ and $C_{n, N}\left(A, A^{*}\right)$ is accretive, then

$$
\begin{aligned}
(0 \leq) \mu^{2}\left(A, A^{*}\right)-w^{2}\left(A^{2}\right) & \leq \frac{1}{4} \cdot(N-n)^{2}\|A\|^{4} \\
(0 \leq) \mu\left(A, A^{*}\right)-w\left(A^{2}\right) & \leq \frac{1}{4} \cdot \frac{(N-n)^{2}}{n+N}\|A\|^{2} \\
(1 \leq) \frac{\mu\left(A, A^{*}\right)}{w\left(A^{2}\right)} & \leq \frac{1}{2} \cdot \frac{n+N}{\sqrt{n N}}
\end{aligned}
$$

and

$$
(0 \leq) \mu^{2}\left(A, A^{*}\right)-w^{2}\left(A^{2}\right) \leq(\sqrt{N}-\sqrt{n})^{2} w\left(A^{2}\right)\|A\|^{2}
$$

respectively.

References

[1] S.S. Dragomir, A generalisation of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Applic., 237 (1999), 74-82.
[2] S.S. Dragomir, Some Grüss type inequalities in inner product spaces, J. Inequal. Pure \& Appl. Math., 4(2) (2003), Article 42.
[3] S.S. Dragomir, A counterpart of Schwarz's inequality in inner product spaces, East Asian Math. J., 20(1) (2004), 1-10.
[4] S.S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure \mathcal{E}^{G} Appl. Math., 5(3) (2004), Article 76.
[5] S.S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, Australian J. Math. Anal. Ef Appl., 1(2004), Issue 1, Article 1, pp. 1-18,
[6] S.S. Dragomir, Reverses of the Schwarz inequality generalising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc., 73(1) (2006), 69-78.
[7] S.S. Dragomir, Advances in Inequalities of the Schwarz, Gruss and Bessel Type in Inner Product Spaces, Nova Science Publishers, Inc., New York, 2005.
[8] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces, Linear Algebra Appl. (in press).
[9] K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.
[10] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, Heidelberg, Berlin, Second edition, 1982.
[11] F. F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158(1) (2003), 11-17.
[12] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168(1) (2005), 73-80.
[13] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), 283-293.

School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne City, VIC, Australia. 8001

E-mail address: sever.dragomir@vu.edu.au
URL: http://www.staff.vu.edu.au/rgmia/dragomir/

[^0]: Date: March 05, 2008.
 1991 Mathematics Subject Classification. 47A12; 47A30; 47A63.
 Key words and phrases. Numerical radius, Operator norm, Banach algebra.

