
A NOTE ON l2 NORMS OF WEIGHTED MEAN MATRICES

PENG GAO

Abstract. We give a proof of Cartlidge’s result on the lp operator norms of weighted mean
matrices for p = 2 on interpreting the norms as eigenvalues of certain matrices.

1. Introduction

Suppose throughout that p 6= 0, 1
p + 1

q = 1. Let lp be the Banach space of all complex sequences
a = (an)n≥1 with norm

||a|| := (
∞∑

n=1

|an|p)1/p < ∞.

The celebrated Hardy’s inequality ([7, Theorem 326]) asserts that for p > 1,

(1.1)
∞∑

n=1

∣∣∣ 1
n

n∑
k=1

ak

∣∣∣p ≤ (
p

p− 1
)p

∞∑
k=1

|ak|p.

Hardy’s inequality can be regarded as a special case of the following inequality:
∞∑

j=1

∣∣ ∞∑
k=1

cj,kak

∣∣p ≤ U

∞∑
k=1

|ak|p,

in which C = (cj,k) and the parameter p are assumed fixed (p > 1), and the estimate is to hold for
all complex sequences a. The lp operator norm of C is then defined as the p-th root of the smallest
value of the constant U :

||C||p,p = U
1
p .

Hardy’s inequality thus asserts that the Cesáro matrix operator C, given by cj,k = 1/j, k ≤ j
and 0 otherwise, is bounded on lp and has norm ≤ p/(p− 1). (The norm is in fact p/(p− 1).)

We say a matrix A is a summability matrix if its entries satisfy: aj,k ≥ 0, aj,k = 0 for k > j and∑j
k=1 aj,k = 1. We say a summability matrix A is a weighted mean matrix if its entries satisfy:

(1.2) aj,k = λk/Λj , 1 ≤ k ≤ j; Λj =
j∑

i=1

λi, λi ≥ 0, λ1 > 0.

Hardy’s inequality (1.1) now motivates one to determine the lp operator norm of an arbitrary
summability matrix A. In an unpublished dissertation [4], Cartlidge studied weighted mean matri-
ces as operators on lp and obtained the following result (see also [2, p. 416, Theorem C]).

Theorem 1.1. Let 1 < p < ∞ be fixed. Let A be a weighted mean matrix given by (1.2). If

(1.3) L = sup
n

(
Λn+1

λn+1
− Λn

λn
) < p ,

then ||A||p,p ≤ p/(p− L).
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We note here there are several published proofs of Cartlidge’s result. Borwein [3] proved a far
more general result than Theorem 1.1 on the lp norms of generalized Hausdorff matrices. Rhoades
[11, Theorem 1] obtained a slightly general result than Theorem 1.1, using a modification of the
proof of Cartlidge. Recently, the author [6] also gave a simple proof of Theorem 1.1.

It is our goal in this note to give another proof of Theorem 1.1 for the case p = 2, following
an approach of Wang and Yuan in [13], which interprets the left-hand side of (1.1) when p = 2
as a quadratic form so that Hardy’s inequality follows from estimations of the eigenvalues of the
corresponding matrix associated to the quadratic form. We will show in the next section that the
same idea also works for the case of weighted mean matrices.

2. Proof of Theorem 1.1 for p = 2

We may assume an > 0 without loss of generality and it suffices to prove the theorem for any
finite summation from n = 1 to N with N ≥ 1. We also note that it follows from our assumption
on L that λn > 0. Now consider

N∑
n=1

( n∑
i=1

λi

Λn
ai

)2
=

N∑
n=1

( n∑
i,j=1

λiλj

Λ2
n

aiaj

)
=

N∑
n=1

αi,jaiaj , αi,j =
N∑

k≥max (i,j)

λiλj

Λ2
k

.

We view the above as a quadratic form and define the associated matrix A to be

A =
(
αi,j

)
1≤i,j≤N

.

We note that the matrix A here is certainly positive definite, being equal to BtB with B a lower-
triangular matrix,

B =
(
bi,j

)
1≤i,j≤N

, bi,j = λj/Λi, 1 ≤ j ≤ i; bi,j = 0, j > i.

In order to establish our assertion, it suffices to show that the maximum eigenvalue of A is less
than 4/(2− L)2 or the minimum eigenvalue of its inverse A−1 is greater than (2− L)2/4 which is
equivalent to proving that the matrix A−1 − λIN is positive definite, where λ = (2−L)2/4 and IN

is the N ×N identity matrix.
It is easy to check that the entries of B−1 are given by(

B−1
)
i,i

=
Λi

λi
,

(
B−1

)
i+1,i

= − Λi

λi+1
,

(
B−1

)
i,j

= 0 otherwise.

It follows from this that A−1 is a symmetric tridiagonal matrix with its entries given by(
A−1

)
i,i

=
Λ2

i + Λ2
i−1

λ2
i

,
(
A−1

)
i,i+1

=
(
A−1

)
i+1,i

= − Λ2
i

λiλi+1
,

(
A−1

)
i,j

= 0 otherwise.

Here 1 ≤ i ≤ N and we define Λ0 = 0. We note here when λi = 1, the expression of A−1 is given
explicitly in [13] while a generalization is given in [12], from which one can easily deduce our case
here.

It follows from the expression for A−1 and induction that if we let ∆k, 1 ≤ k ≤ N denote the
k-th principal minor determinant of the matrix A−1 − λIN for any λ, then for 1 ≤ k ≤ N − 1,

∆k+1 =
( 1

λ2
k+1

(Λ2
k + Λ2

k+1)− λ
)
∆k −

Λ4
k

λ2
kλ

2
k+1

∆k−1.

Here we define ∆0 = 1 and note that ∆1 = 1 − λ. To simplify the above relation, we define for
1 ≤ k ≤ N ,

xk = ∆k/∆k−1,
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so that for 1 ≤ k ≤ N − 1,

(2.1) xk+1 =
1

λ2
k+1

(Λ2
k + Λ2

k+1)− λ−
Λ4

k

λ2
kλ

2
k+1

1
xk

.

We further define for 1 ≤ k ≤ N ,

Pk =
λ2

k

Λ2
k

xk,

so that for 1 ≤ k ≤ N − 1,

Pk+1 = 1 +
Λ2

k

Λ2
k+1

(1− 1
Pk

)−
λ2

k+1

Λ2
k+1

λ.

Lastly, we define for 1 ≤ k ≤ N ,

θk =
Λk

λk
(1− Pk),

so that for 1 ≤ k ≤ N − 1,

θk+1 =
λk+1

Λk+1
λ +

Λk

Λk+1

λkθk/λk+1

1− λkθk/Λk
.

From now on we let λ = (2− L)2/4 and note from our discussions above that

∆1 = x1 = P1 = 1− λ, θ1 = λ.

Our goal is to show that A−1 − λIN is positive definite and it suffices to show that ∆k > 0,
1 ≤ k ≤ N or equivalently, θk < Λk/λk for 1 ≤ k ≤ N . We now prove this by establishing the
following

Lemma 2.1. With the assumption of Theorem 1.1 and λ = (2− L)2/4, we have for 1 ≤ k ≤ N ,

(2.2) 0 < θk ≤
2− L

2
− L(2− L)

4
λk

Λk
.

Proof. We prove (2.2) by induction on k. The case k = 1 follows from θ1 = λ = (2 − L)2/4. Now
we assume both inequalities of (2.2) hold for θk with k ≤ N − 1 and we note here the case n = 1
of (1.3) implies L > 0. As we assume L < 2, it follows from this and our assumption on θk that

θk ≤
2− L

2
− L(2− L)

4
λk

Λk
≤ 2− L

2
< 1 ≤ Λk

λk
.

This immediately implies that the left-hand side inequality of (2.2) holds for θk+1. We now move on
to show that the right-hand side inequality of (2.2) holds for θk+1. For this, we denote a = (2−L)/2,
b = L(2− L)/4 and note that

θk+1 =
λk+1

Λk+1
λ +

Λk

Λk+1

λkθk/λk+1

1− λkθk/Λk
(2.3)

≤ λk+1

Λk+1
λ +

Λk

Λk+1

λk/λk+1(a− bλk/Λk)
1− λk/Λk(a− bλk/Λk)

.

We write
λk/λk+1(a− bλk/Λk) = a

(
1− λk/Λk

(
a− bλk/Λk

))
+ S,

where

S = a2 λk

Λk
− ab

λ2
k

Λ2
k

− b
λ2

k

Λkλk+1
− a

λk+1 − λk

λk+1
.

Using this notation in (2.3), we have

θk+1 ≤ a− b
λk+1

Λk+1
+ (λ + b− a)

λk+1

Λk+1
+

Λk

Λk+1

S

1− λk/Λk(a− bλk/Λk)
.
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It is easy to see that λ + b− a = 0 and as we have already pointed out above that

1− λk/Λk(a− bλk/Λk) > 0.

Hence in order to prove the right-hand side inequality of (2.3) holds for θk+1, it suffices to show
S ≤ 0, or equivalently,

(2.4) a2 − ab
λk

Λk
− b

λk

λk+1
− aΛk

( 1
λk
− 1

λk+1

)
≤ 0.

We note here

(2.5) Λk

( 1
λk
− 1

λk+1

)
=

Λk

λk
− Λk+1

λk+1
+ 1.

Note also that

a2 − b− (1− L)a = 0.

Hence inequality (2.4) will follow from

b
λk+1 − λk

λk+1
− ab

λk

Λk
−

(
L−

(Λk+1

λk+1
− Λk

λk

))
a ≤ 0.

We recast the above inequality as

bΛk

( 1
λk
− 1

λk+1

)
− ab−

(
L−

(Λk+1

λk+1
− Λk

λk

))
a
Λk

λk
≤ 0.

Using (2.5) again, we can further rewrite the above inequality as

b− ab− aL
Λk

λk
+

(Λk+1

λk+1
− Λk

λk

)(
a
Λk

λk
− b

)
≤ 0.

Note that

a
Λk

λk
− b ≥ a− b = λ > 0,

and by (1.3),

Λk+1

λk+1
− Λk

λk
≤ L.

It follows that

b− ab− aL
Λk

λk
+

(Λk+1

λk+1
− Λk

λk

)(
a
Λk

λk
− b

)
≤ b− ab− aL

Λk

λk
+ L

(
a
Λk

λk
− b

)
= b− ab− bL = −bL/2 < 0.

Thus inequality (2.4) holds, which implies the right-hand side inequality of (2.2) holds for θk+1 and
this completes the proof of the lemma. �

As we have discussed in the proof of Lemma 2.1 that the bounds in (2.2) imply that θk < Λk/λk

for 1 ≤ k ≤ N and this completes our proof of Theorem 1.1 for p = 2.
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3. Further Discussions

Our proof of Theorem 1.1 for p = 2 in the previous section in fact establishes that the minimum
eigenvalue of its inverse A−1 defined there is greater than (2− L)2/4. Using the expression A−1 =
B−1(B−1)t, we see that what we have shown in the previous section implies that for any integer
N ≥ 1 and any real sequence a = (an)1≤n≤N ,

(3.1)
N−1∑
n=1

(Λn

λn
an −

Λn

λn+1
an+1

)2
+

Λ2
N

λ2
N

a2
N ≥ (2− L)2

4

N∑
n=1

a2
n.

Conversely, the above inequalities also imply Theorem 1.1 for p = 2. It is therefore interesting
to study the above inequalities of their own. As analogues, we point out the following discrete
inequalities of Wirtinger’s type studied by Fan, Taussky and Todd [5, Theorem 8]:

(3.2) a2
1 +

N−1∑
n=1

(an − an+1)2 + a2
N ≥ 2

(
1− cos

π

N + 1

) N∑
n=1

a2
n.

Converses of the above inequalities were found by Milovanović and Milovanović [9]:

(3.3) a2
1 +

N−1∑
n=1

(an − an+1)2 + a2
N ≤ 2

(
1 + cos

π

N + 1

) N∑
n=1

a2
n.

Simple proofs of inequalities (3.2) and (3.3) were given by Redheffer [10] and Alzer [1], respectively.
We now explore the ideas in [10] and [1] to see whether they can give another proof of (3.2) or

not. For any integer n ≥ 1, we consider for an ≥ 0 the function

f(an) =
(Λn

λn
an −

Λn

λn+1
an+1

)2
− µna2

n,

where an+1 ≥ 0, 0 < µn < Λ2
n/λ2

n are being fixed and we shall think of µn as a parameter whose
value is going to be specified later. It is easy to check that

f(an) ≥ f
(Λ2

n/(λnλn+1)
Λ2

n/λ2
n − µn

an+1

)
,

or explicitly, (Λn

λn
an −

Λn

λn+1
an+1

)2
− µna2

n ≥ −
Λ2

n/λ2
n+1

Λ2
n/λ2

n − µn
µna2

n+1.

Summing the above inequality for n = 1, . . . , N − 1 yields:

N−1∑
n=1

(Λn

λn
an −

Λn

λn+1
an+1

)2
+

Λ2
N

λ2
N

a2
N(3.4)

≥ µ1a
2
1 +

N−2∑
n=1

(
µn+1 −

Λ2
n/λ2

n+1

Λ2
n/λ2

n − µn
µn

)
a2

n+1 +
(Λ2

N

λ2
N

−
Λ2

N−1/λ2
N

Λ2
N−1/λ2

N−1 − µN−1
µN−1

)
a2

N .

We want to show for any integer n ≥ 1, one can choose µn such that the following inequality holds
for 1 ≤ n ≤ N − 1:

(3.5) µn+1 −
Λ2

n/λ2
n+1

Λ2
n/λ2

n − µn
µn ≥

(2− L)2

4
.

For this purpose, we set
ηn = Λ2

n/λ2
n − µn
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so that we can rewrite inequality (3.5) as

1
λ2

n+1

(Λ2
n + Λ2

n+1)− ηn+1 −
Λ4

n

λ2
nλ2

n+1

1
ηn
≥ (2− L)2

4
.

Note that the above inequality follows from (2.1) if we set λ = (2−L)2/4 and xn = ηn, 1 ≤ n ≤ N
there. Note also that xN > 0 so that Λ2

N/λ2
N > µN and we have

(3.6)
Λ2

N

λ2
N

−
Λ2

N−1/λ2
N

Λ2
N−1/λ2

N−1 − µN−1
µN−1 > µN −

Λ2
N−1/λ2

N

Λ2
N−1/λ2

N−1 − µN−1
µN−1 =

(2− L)2

4
.

Moreover, we have

µ1 = Λ2
1/λ2

1 − η1 = 1− x1 =
(2− L)2

4
.

The above inequality combined with inequalities (3.4)-(3.6) now implies (3.1).
We now give for the special case of λn = 1 (corresponding to the original Hardy’s inequality for

p = 2) an explicit expression for µn considered above. In this case we set

µn =
1
2
n− 1

4
.

One checks easily that with the choice of µn, inequalities (3.5) and (3.6) are satisfied with L = 1.
As µ1 = 1/4, this implies (3.1) with λn = 1,Λn = n there.

To end this paper, we note the paper [8] contains several generalizations of inequalities of (3.2)
and (3.3), one of them can be stated as:

Theorem 3.1. For any real sequence a = (an)1≤n≤N , and two positive real numbers a, b,
(3.7)

(a2+b2−2ab cos
π

N + 1

) N∑
n=1

a2
n ≤ b2a2

1+
N−1∑
n=1

(aan−ban+1)2+a2a2
N ≤

(
a2+b2+2ab cos

π

N + 1

) N∑
n=1

a2
n.

The proof given in [8] to the above theorem is to regard

b2a2
1 +

N−1∑
n=1

(aan − ban+1)2 + a2a2
N

as a quadratic form with the associated matrix A being symmetric tridiagonal with its entries given
by (

A
)
i,i

= a2 + b2,
(
A

)
i,i+1

=
(
A

)
i+1,i

= −ab,
(
A

)
i,j

= 0 otherwise.

The eigenvalues of A are shown in [8] to be a2 +b2 +2ab cos( kπ
N+1), 1 ≤ k ≤ N , from which Theorem

3.1 follows easily.
We now give another proof of Theorem 3.1 following the methods in [10] and [1]. Consider the

function:
f(an) = (aan − ban+1)2 − µna2

n.

Here we regard an+1, µn as being fixed. When µn > a2, it is easy to see that

f(an) ≤ f(
aban+1

a2 − µn
) =

b2µna2
n+1

µn − a2
.

Summing the above inequality for n = 1, . . . , N − 1 yields:

b2a2
1 +

N−1∑
n=1

(aan− ban+1)2 + a2a2
N ≤ (b2 +µ1)a2

1 +
N−1∑
n=2

( b2µn−1

µn−1 − a2
+µn

)
a2

n +
( b2µN−1

µN−1 − a2
+ a2

)
a2

N .

On letting µn = a2 +ab sin(n+1)t/ sin(nt), t = π/(N +1) and note that µn > a2 for 1 ≤ n ≤ N−1,
it is easy to see that the right-hand side inequality of (3.7) follows from this.
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Similarly, when µn < a2, we have

b2a2
1 +

N−1∑
n=1

(aan− ban+1)2 + a2a2
N ≥ (b2 +µ1)a2

1 +
N−1∑
n=2

(
µn−

b2µn−1

a2 − µn−1

)
a2

n +
(
a2− b2µN−1

a2 − µN−1

)
a2

N .

The left-hand side inequality of (3.7) now follows from this on taking µn = a2 − ab sin(n +
1)t/ sin(nt), t = π/(N + 1) here.
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