NORMALIZED JENSEN FUNCTIONAL, SUPERQUADRACITY
AND RELATED INEQUALITIES

S. ABRAMOVICH AND S. S. DRAGOMIR

ABSTRACT. In this paper we generalize the inequality
My (f7x’q) > Jn (f7x7p) > mdn (f7x’q)
where

Jn (f,%x,P) = Z pif (xi) (Z Pz$z> ,

=1
obtained by S.S. Dragomir for convex functions. We provide cases where we
can improve the bounds m and M for convex functions, and also, we show that
for the class of superquadratic functions nonzero lower bounds of Jy, (f,x,p) —
mJn (f,%,q) and nonzero upper bounds of J, (f,x,p) — MJn (f,%,q) can be
pointed out. Finally, an inequality related to the Cebysev functional and
superquadracity is also given.

1. INTRODUCTION

In this paper we consider the normalized Jensen functional

(1'1) f,X p sz xz (ZPMH) )

where Y  p;=1, f:I — R, and I is an interval in R.
This type of functionals were considered by S. S. Dragomir in [5], where the
following theorem was proved:

Theorem 1 ([5, Theorem 1]). Consider the normalized Jensen functional (1.1)
where f: C'— R is a convex function on the convexr set C' in a real linear space,
and x = (z1,..,zn) € C" p = (P1,.-,Pn), a4 = (q1,..-,qn) are nonnegative
n-tuples satisfying Y i pi=1, >or ¢ =1, ¢ >0, i=1,...,n. Then

(1-2) MJn(f’Xv(I)ZJn(fa&p)ZmJn(ﬁX,Q)a

provided
m = min (191')7 M := max (pz>
1<i<n \ @; 1<isn \ g;

In the following section we show when (1.2) holds for m* larger than 1r<m£1 (&>,

qi

and M* smaller than max (Z—) Although x = (21,...,an), z; € I, 1 = 1,...,n

<i<n g
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is not necessarily a monotonic n-tuple, we use Jensen-Steffensen’s inequality that
states that if f : I — R is convex, where I is an interval in R, then

n
(1.3) D aif (@) > Anf (@),
i=1
where T := M, x = (z1,...,Z5) is any monotone n-tuple in I, and a =
(a1, ...,apn) is a real n-tuple that satisfies the condition:
(1.4) 0<A; <A, i=1,...,n, where 4; = Zaj, and A, >0
j=1

(see for instance [6, page 43]).

In Section 2 we also show that for a class of superquadratic functions defined
below, nonzero lower bounds of J, (f,x,p) — mJ, (f,x,q) and of J, (f,x,p) —
m*J, (f,x,q) and nonzero upper bounds of J, (f,x,p) — MJ, (f,x,q) and of
Jn (fyx,p) — M*J, (f,x,q) are obtained. In addition, we get in the last section
an inequality related to the Cebysev’s type functional and superquadracity.

Definition 1 ([2, Definition 1]). A function f defined on an interval I = [0,a] or
[0,00) is superquadratic, if for each xz in I there exists a real number C (x) such
that

(1.5) fy)—f@)=fy—=)+C()(y—2)
forally e I.

For example, the functions =, p > 2 and the functions —zP, 0 < p < 2 are
superquadratic functions as well as the function f (z) = 2%logz, = >0, f (0) = 0.

In Section 2 we use also the following lemmas and theorem for superquadratic
functions:

Lemma 1 ([2, Lemma 2.1]). Let f be a superquadratic function with C (x) as in
(1.5).

(i) Then f(0) <0

(it) If f(0)=f"(0)=0, then C(x)= f'(x) wherever f is differentiable at
x> 0.

(iii) If f >0, then f is conver and f (0) = f’(0) = 0.

Lemma 2 ([3, Lemma 2.3]). Suppose that f is superquadratic. Let x; >0, i =
1,...,n andlet T:=) . ax;, where a; >0, i=1,...n and )  a; =1
Then

(1.6) >_aif () = f @) 2 3 aif (j 7).

The following Theorem 2 was proved in [1, Theorem 1] for differentiable positive
superquadratic functions f, but because of Lemma 1 (i) it holds also when f is
not always differentiable.

Theorem 2. Let f : I — R, where I is [0,a] or [0,00), be nonnegative
superquadratic function. Let x be a monotone nonnegative n-tuple in I™ and a

satisfies (1.4). Let

22;1 ;T4

(1.7) T = A
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(1.8) Zaif (2;) — Anf (T) > (n— 1) A, f (W) .

2. THE MAIN RESULTS

In this section we use the following notations:

Let x; = (1’(1), s x(n)) be the increasing rearrangement of x = (x1,...,x,). Let
7 be the permutation that transfers x into x; and let (p,,...,p,,) and (qy, ..., q,) be
the n-tuples obtained by the same permutation 7 on (p1,...,p,) and (¢1,...,qn)
respectively. Then for an n-tuple x = (z1,...,2,), ; €I, i =1,..,n where I
is an interval in R we get the following results:

Theorem 3. Let p = (p1,...,pn), where 0 < Z;Zl;ﬁj <1,i=1,.,n, > pi=
1, and g = (q1,--,qn), 0< Z;zl g; <1, i=1,..,n—1, Srig=1,and p#
q. Denote

D> ET N v
(21) m; = i m; =: n -
> i=1d; > j=idj

where (Dy, ..., P,,) and (G, ..., q,) are as denoted above, and

t=1,...,n

* i o * o
(2.2) m* = 121£n{m“ml}’ M. Jax {m;,m;}.

If x=(x1,...,x,) 1is any n-tuple in I"™, where I is an interval in R, then

(23) M*Jn (f,x,q)ZJn (f,X,p)Zm*Jn(f,X,q),

where f:I — R is a conver function on the interval I.

- qi

Proof. As p # q it is clear that m* < 1, m* > 1I<1’lvi£1 (ﬂ), and M* > 1,
SsSn

M* < max (p—) .
1<i<n \ 4
As 3" 1 ¢i=1 and ¢; > 0 it is obvious that there is an integer k, 2<k <n
such that zx_1) < D1, qii < ().
We apply Jensen-Steffensen’s inequality for the increasing (n+1)-tuple y = (y1, .., Yn+1)

T (), iil,...,k*l
(2.4) yi=19 2197, =k
w(i—l)v Z:k+1,,n+1
and to
P, — m*q;, i=1,..,k—1
(2.5) ai =14 m*, i=k

ﬁi—l —m*@-_l, z:k+1,,n+1

where m* is defined in (2.2).
It is clear that a satisfies (1.4). Therefore, (1.3) holds for the increasing (n+ 1)-
tuple y and for a convex function f .
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Hence

n+1 n n
Zaif(yi) = m'f (Z qm) +Z i —m*qi) f (i)
(m*zqzmz ) ) —f<zpixi>.

Y

In other words

> s @) (zmz)m (zaz (@) (Zq»

This completes the proof of the right side inequality in (2.3).
The proof of the left side of (2.3) is similar:
We define an increasing (n + 1)-tuple z

L), 7::1,...,871
(2.6) zi=19 2j_1PiTi,  i=s

T(i—1)s t=s+1,...,n+1
and to

7, — Lk, i=1,..,s—1
(2.7) bi=1{ i=s

ai—l_p]\i[*17 i:S+17"'an+1a

where s satisfies z5—1 < 377 pjz; < x5. As b satisfies (1.4) and Z"H b, = 1,
by using Jensen-Steffensen’s inequality, we get the left side of (2.3).
This completes the proof. i

Remark 1. If min (&) =2 k£1n and max (ﬂ> ;, s# 1,n then

1<i<n \ ¢ 9’ 1<isn ai
it is clear that for p; > 0, and ¢q; > 0, we get that m* > m and M* < M and
in these cases (2.3) refines (1.2).

In Theorem 4 that deals with superquadratic functions we use the same tech-
niques as used in [5] to prove Theorem 1 for convex functions.

Theorem 4. Under the same conditions and definitions on p, q, X, m and M as
in Theorem 1, if I is [0,a) or [0,00) and f (x) is a superquadratic function on I,
then

(28) Jn (fa X, p) _mJn (fa X, q)
> mf(Z(Qi_ $i>+2(pi—qu')f<$—2pjxj>
i=1 i=1 i=1
and
(29) ‘]71 (f7 X, p) - MJTL (fa X, q)

n

Z (pi — qi) @i

i=1

IA

- <Z(MQi—pi)f<$

=1

n
- ajz;
i=1

)il

)
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Proof. To prove (2.8) we define y as

), 1=1
Yi = Z?:l qjxj, i:n+1 ’
and d as

d = pi—mgq;, t=1,...n
Tl m, i=n+1

Then (1.6) for y and d is

n n+1 n+1
m% xz) + mf (Z Qizz’) Z d; f yz <Z ddh)

i=1 i=1

n+1 n+1

Z dif | |yi — Z a;y;
i=1 =1

Y

I
M:

—mg;) f wi—zpﬂj +mf<
j=1

> (v
=1

z:l

which is (2.8).
To get (2.9), we choose z and r as

- z;, t=1,..
A Sam, i=nt1

pi L
- Qz_ﬁa Z—l,...,n
T 1 -
Mo Z—n+1

where s is any integer 1 <s<n—1.
Then, as f is superquadratic and Y ;" r; =1, r; > 0, we get that

5o g (Se) - (50

=1

n+1 n+1
= Zh‘f(zi) —f <Z Ti%)
i=1

5

= i@z—ﬁ)f xi—jzi:lqj:cj +Z\14f<

which is equivalent to (2.9). 1I

and

n+1

- E Tz

i=1

1V
M
o3
kﬁ
N\

n

> i — @)

i=1

)

Remark 2. If the superquadratic function is also positive and therefore according
to Lemma 1 is convex, then (2.8) and (2.9) refine Theorem 1.

The following result is proved for superquadratic functions using the same tech-
nique used in Theorem 3 for convex functions and by using Theorem 2, therefore,
the proof is omitted.



6 S. ABRAMOVICH AND S. S. DRAGOMIR

Theorem 5. Let f(x) be a positive superquadratic function on [0,a]. Letx, p, q,
m*, M* be the same as in Theorem 3. Then

(210)  J (f,x,p) —m"Jp (f,x,q)

Sy (P —m*q) | — 325 pjay |+ mF 300 (i — ¢i) @il
> nf >0,

- n

and

(2‘11) I (ﬂX,p)—M*Jn (faX7OI)
ica (6 — 1) |z = X0y 45w

n

+ ‘Z;L:I (¢ — pj)

< —-nf <0.

In the following we state another generalisation of the Jensen inequality for
superquadratic functions, and then we extend Theorems 4 and 5.

Theorem 6. Assume that x = (x1,...,T,) with z; > 0 fori € {1,...,n},p =
(p1, -y Pn) is a probability sequence and q = (qi,...,qx) is another probability se-
quence with n,k > 2. Then for any superquadratic function f : [0,00) — R we
have the inequality

n k
(212) Z pil"'pikf qu‘.fij
- i=1

’il ..... ’Lkzl

n n k n
> f (pr%) + > P || Do am, =D piw
i=1 j=1 i=1

i1, in=1

Proof. By the definition of superquadratic functions, we have
k
(2.13) f Z(Ijmij
j=1
n n k n
> f (sz%) +C (Zpﬂ%) ZQjIEij - Zpixi
i=1 i=1 j=1 i=1
k n
+f Z qjTi; — Zpiu’ci
j=1 i=1

for any x;, > 0,i; € {1,...,n}.
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Now, if we multiply (2.13) with p;, ...p;, > 0, sum over 41, ..., from 1 to n and
take into account that ZZ - ip=1Piy--pi, = 1 we deduce

" k
(2.14) Yo vt | D4,
=1

i1yeyin=1

f(Zpilii)-l-C(Zpil‘i) Z Diy--Pi qu% > pixi
i=1 i=1 i, i=1

oip=1

n k n
+ > paepid [ DG, — D pixs
j=1 i=1

i1yein=1
However
n
r : = E Diy---Diy, E Qsz] E DiZ;
117 ,Zk 1 i=1
n
= E Diy---Diy, § qjTi; _§ DiZ;
U1yt =1 i=1
and since
E pll p’Lk E QJle
11,0 =1
n n
= ihE Diy Tiy E PiQ---pik+~--+QkE Diy, Tiy, E Piy--Pig_y
11=1 i2,..,0=1 =1 11,0yl —1=1

n n n
Q Zpﬂﬁz to Zpiﬁcz‘ = Zpﬂi
i=1 i=1 i=1

hence I =0 and by (2.14) we get the desired result (2.12). I

Theorem 7. Assume that x = (x1,...,x,) withx; € I,i=1,...,n, I is an interval
inR, p=(p1,.sDn); *=(T1,..;7n), 15 >0,i=1,...,n are probability sequences,
and q = (q1,..,qx), another probability sequence with n,k > 2. Then, for any
convez function f on I we have the inequality

n k n
j=1 i=1

Tl i =1

k n
> § Diy--Diy | E qjri; | — f E DiT;
11,0000 =1 j=1 i=1
n k n
> m E Tiy oo Tip | g q;Ti, —f E TiT;
i1, in=1 j=1 i=1
. Piy ---Di Piy D,
where m := _ min (u) , M= maz (u) )
1<iy,...,ixp<n \Ti1-Tig 1<y ,eyipg<n \ "1 Tig
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Proof. The proof is similar to the proof of Theorem 1:

We will prove the right side of the inequality. The left side of the inequality is
similar.

As

n k

n
m Z 7T + Z (Diy -e-Dif, — M4 T5,) Z a5,
i=1

1,02, ip=1 j=1

n k n
= E Diy---Piy, E qjTij = E DiZq,
i1.ig j=1 i=1

0<m <1, 0<pyyepiy—mriori, <1 and mA4300 o ) (Diy-Piy, — MTiyTy) =
1 we get as a result of the convexity of f that

n

n k
mf (Z Ti$i> + Z (Diy ---Piy, — My i) f Zq 2y
i=1

il...’ikzl ] 1

Y

k
erlx,—&— Z (Piy ---Piy — M4y Tiy) Z q5%i;
1 j=1
: 1. tpg=
= f <sz$z>
i=1

This completes the proof of the right inequality of (2.15). I

Below we state the analogue to Theorem 7 for superquadratic functions. The
proof is similar to the proof of Theorem 4 and hence it is omitted.

Theorem 8. Under the same conditions on p, q, r, m and M as in Theorem 7,
if I is [0,a) or [0,00) and f(z) is a superquadratic function on I, then:

n n
Z Piy--Dir | Z(bxz] - f (ZP#&)
Lyeenylp= i=1

1

k n
-m (Zr“ T f Zq i, | = f (Z rixZ-)
=1 i=1
{(828)

n k n
+ Z (PirPis--Di, — iy i) f| D qjws, =D pais
j=1 s=1

IV
3
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and

n

k n
o piuepnd | D gm, | —f <Z pm)
j j=1 i—1

21,...,ik:1

k n
-M Zml...mkf quxij — f (Z Tie’%’)
j=1 i=1

{en)

k n
- Z (pilpiz"'pik —M’I‘il...mk)f quxij —ZTSZ‘S
j=1 j=1

11,050 =1

(Ti—pi)xi

n

i=1

If f is also positive, then this inequality refines (2.15).

3. OTHER INEQUALITIES

The definition of superquadratic functions and their properties draw our atten-
tion to the possibility of using the Cebysev functional and its properties to get new
type of reverse Jensen Inequality.

For a function C': [0,00) — R we consider the Cebysev type functional

T(C,x,p) =Y pixiC(x:) — > pixi y_piC (x;).
i=1 =1 =1

It is well known that, if C' is monotonic nondecreasing function on [0,00) then
the sequences x and C (x) := (C(21),...,C (z,)) are synchronous and for any
probability sequence p we have the Cebysev inequality

T(C,x,p) > 0.

If certain bounds for the values of the function C (z;) are known, namely

(3.1) —oco<m<C(x;) <M< oo foranyi € {1,...,n}

then the following inequality due to Cerone & Dragomir [4] holds:
1 n n
(32) T (C.x,p)| < 5 (M —m) Zp v ;pjxj :

The constant % is best possible in the sense that it cannot be replaced by a smaller
quantity.

We can state now the following reverse of the Jensen inequality for superquadratic
functions:

Theorem 9. Assume that x = (1,...,x,) with z; > 0 for i € {1,...,n}, and
P = (p1,.--,Pn) is a probability sequence with n > 2. Then for any superquadratic
function f : [0,00) — R with C (z;) satisfying (2.16), where C (z) is as in Definition
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1 we have the inequality,

(3.3) L)Y [y - Y p| - ([ b
i=1 j=1 j=1 i=1

n

n
> ij (z5) me > pif pi; — T
=1

Proof. Utilising the definition of the superquadratic functions we have

n
60 1 (Sna) w0 (S ) 41 (|[Spn )
i=1 i=1
for any j € {1,...,n}.

If we multiply (3.4) by p; > 0,75 € {1,...,n}, sum over j from 1 to n and take
into account that Z;lzl p; =1 we get

&

n

n n n
> I (z5) +ZP; ;) Zpifiij +ijf Zpiﬂfi*%
j i=1 j=1 i=1

j=1

Since

> piC () (Zpil"i - xj) =-T(C,x,p)
j=1 i=1
hence by (3.2) and (3.5) we deduce the desired result (3.3). 1

Remark 3. We observe that, as a "by-product” from (3.3) we get the following

inequality
ST(Cx,p) > Y pif ( > piwi — )
i=1

j=1
while from (3.8) we get

%(M—m)ij Tj— Zpi% > ijf ( Zpixi — X ) .
j=1 j=1 i=1

i=1
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