NOTE ON A CLASS OF COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE POLYGAMMA FUNCTIONS

FENG QI, SENLIN GUO, AND BAI-NI GUO

Abstract

In this article, some monotonicity of the function $x^{\alpha}\left|\psi^{(i)}(x+\beta)\right|$ and the complete monotonicity of the functions $\frac{\alpha}{x}\left|\psi^{(i)}(x+\beta)\right|-\left|\psi^{(i+1)}(x+\beta)\right|$ and $\alpha\left|\psi^{(i)}(x+\beta)\right|-x\left|\psi^{(i+1)}(x+\beta)\right|$ in $(0, \infty)$ for $i \in \mathbb{N}, \alpha>0$ and $\beta \geq$ 0 are investigated, where $\psi^{(i)}(x)$ is the well known polygamma functions. Moreover, lower and upper bounds for infinite series whose coefficients involves the Bernoulli numbers are established.

1. Introduction

Recall $[7,11,14]$ that a function f is called completely monotonic on an interval I if f has derivatives of all orders on I and $0 \leq(-1)^{k} f^{(k)}(x)<\infty$ for all $k \geq 0$ on I. The well known Bernstein's Theorem [14, p. 161] states that $f \in \mathcal{C}[(0, \infty)]$ if and only if $f(x)=\int_{0}^{\infty} e^{-x s} \mathrm{~d} \mu(s)$, where μ is a nonnegative measure on $[0, \infty)$ such that the integral converges for all $x>0$. The class of completely monotonic functions on I is denoted by $\mathcal{C}[I]$. For more information on $\mathcal{C}[I]$, please refer to $[5,6,7,8,9,10,11,14]$ and the references therein.

By using the convolution theorem of Laplace transforms, the increasingly monotonicity of $x^{\alpha}\left|\psi^{(i)}(x+1)\right|$ is presented in [9, 10]: The function $x^{\alpha}\left|\psi^{(i)}(x+1)\right|$ is strictly increasing in $(0, \infty)$ if and only if $\alpha \geq i$, where $\psi(x)$, the logarithmic derivative of the classical Euler's gamma function $\Gamma(x)$, is called psi function and $\psi^{(i)}(x)$ for $i \in \mathbb{N}$ are called polygamma functions. In [3], in order to show the subadditive property of the function $\psi^{(i)}\left(a+e^{x}\right)$, it was proved that the function $x \psi^{\prime}(x+a)$ is strictly increasing on $[0, \infty)$ for $a \geq 1$. In [2], it was also showed, using the convolution theorem of Laplace transforms, that the function $x^{c}\left|\psi^{(k)}(x)\right|$ for $k \geq 1$ is strictly decreasing in $(0, \infty)$ if and only if $c \leq k$ and is strictly increasing in $(0, \infty)$ if and only if $c \geq k+1$. In [4], the monotonicity of the more general function $x^{\alpha}\left|\psi^{(i)}(x+\beta)\right|$ was studied without using the convolution theorem of Laplace transforms and, except the above results, the following conclusions are obtained: For $i \in \mathbb{N}, \alpha>0$ and $\beta \geq 0$,
(1) the function $x^{\alpha}\left|\psi^{(i)}(x+\beta)\right|$ is strictly increasing in ($0, \infty$) if $(\alpha, \beta) \in\{\alpha \geq$ $\left.i, \frac{1}{2} \leq \beta<1\right\} \cup\left\{\alpha \geq i, \beta \geq \frac{\alpha-i+1}{2}\right\} \cup\left\{\alpha \geq i+1, \beta \leq \frac{\alpha-i+1}{2}\right\}$ and only if $\alpha \geq i ;$
(2) $\frac{\alpha}{x}\left|\psi^{(i)}(x)\right|-\left|\psi^{(i+1)}(x)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \geq i+1$;
(3) $\left|\psi^{(i+1)}(x)\right|-\frac{\alpha}{x}\left|\psi^{(i)}(x)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $0<\alpha \leq i$;

[^0](4) $\frac{\alpha}{x}\left|\psi^{(i)}(x+1)\right|-\left|\psi^{(i+1)}(x+1)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \geq i$;
(5) $\frac{\alpha}{x}\left|\psi^{(i)}(x+\beta)\right|-\left|\psi^{(i+1)}(x+\beta)\right| \in \mathcal{C}[(0, \infty)]$ if $(\alpha, \beta) \in\{\alpha \geq i+1, \beta \leq$ $\left.\frac{\alpha-i+1}{2}\right\} \cup\left\{i \leq \alpha \leq \frac{(i+1)(i+4 \beta-2)}{i+2 \beta}, \frac{1}{2} \leq \beta<1\right\} \cup\left\{i \leq \alpha \leq i+1, \beta \geq \frac{\alpha-i+1}{2}\right\}$ and only if $\alpha \geq i$;
(6) $\alpha\left|\psi^{(i)}(x+\beta)\right|-x\left|\psi^{(i+1)}(x+\beta)\right| \in \mathcal{C}[(0, \infty)]$ if $(\alpha, \beta) \in\{i \leq \alpha \leq i+1, \beta \geq$ $\left.\frac{\alpha-i+1}{2}\right\} \cup\left\{\alpha \geq i+1, \beta \leq \frac{\alpha-i+1}{2}\right\}$ and only if $\alpha \geq i$.
The main purpose of this paper is to research further the monotonic properties of the function $x^{\alpha}\left|\psi^{(i)}(x+\beta)\right|$ and to obtain some more better conclusions than those mentioned above.

Our main results are the following four theorems.
Theorem 1. For $i \in \mathbb{N}, \alpha \geq 0$ and $\beta \geq 0$.
(1) The function $x^{\alpha}\left|\psi^{(i)}(x)\right|$ in $(0, \infty)$ is strictly increasing if and only if $\alpha \geq$ $i+1$ and strictly decreasing if and only if $0 \leq \alpha \leq i$.
(2) For $\beta \geq \frac{1}{2}$, the function $x^{\alpha}\left|\psi^{(i)}(x+\beta)\right|$ is strictly increasing in $[0, \infty)$ if and only if $\alpha \geq i$.
(3) Let $\delta:(0, \infty) \rightarrow\left(0, \frac{1}{2}\right)$ be defined by

$$
\begin{equation*}
\delta(t)=\frac{e^{t}(t-1)+1}{\left(e^{t}-1\right)^{2}} \tag{1}
\end{equation*}
$$

for $t \in(0, \infty)$ and $\delta^{-1}:\left(0, \frac{1}{2}\right) \rightarrow(0, \infty)$ stand for the inverse function of δ. If $0<\beta<\frac{1}{2}$ and

$$
\begin{equation*}
\alpha \geq i+1-\left[\frac{e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)}-1}+\beta-1\right] \delta^{-1}(\beta) \tag{2}
\end{equation*}
$$

then the function $x^{\alpha}\left|\psi^{(i)}(x+\beta)\right|$ is strictly increasing in $(0, \infty)$.
Remark 1. It is noted that

$$
0<\left[\frac{e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)}-1}+\beta-1\right] \delta^{-1}(\beta)<1
$$

for $\beta \in(0,1)$, since $\lim _{\beta \rightarrow 0+}\left[\beta \delta^{-1}(\beta)\right]=0$.
Theorem 2. Let $i \in \mathbb{N}, \alpha \geq 0$ and $\beta \geq 0$.
(1) $\alpha\left|\psi^{(i)}(x)\right|-x\left|\psi^{(i+1)}(x)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \geq i+1$.
(2) $x\left|\psi^{(i+1)}(x)\right|-\alpha\left|\psi^{(i)}(x)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $0 \leq \alpha \leq i$.
(3) If $\beta \geq \frac{1}{2}$, then $\alpha\left|\psi^{(i)}(x+\beta)\right|-x\left|\psi^{(i+1)}(x+\beta)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \geq i$.
(4) If $0<\beta<\frac{1}{2}$ and inequality (2) holds true, then $\alpha\left|\psi^{(i)}(x+\beta)\right|-x \mid \psi^{(i+1)}(x+$ $\beta) \mid \in \mathcal{C}[(0, \infty)]$.
Theorem 3. Let $i \in \mathbb{N}, \alpha \geq 0$ and $\beta \geq 0$.
(1) $\frac{\alpha}{x}\left|\psi^{(i)}(x)\right|-\left|\psi^{(i+1)}(x)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \geq i+1$.
(2) $\left|\psi^{(i+1)}(x)\right|-\frac{\alpha}{x}\left|\psi^{(i)}(x)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $0 \leq \alpha \leq i$.
(3) If $\beta \geq \frac{1}{2}$, then $\frac{\alpha}{x}\left|\psi^{(i)}(x+\beta)\right|-\left|\psi^{(i+1)}(x+\beta)\right| \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \geq i$.
(4) If $0<\beta<\frac{1}{2}$ and inequality (2) holds true, then $\frac{\alpha}{x}\left|\psi^{(i)}(x+\beta)\right|-\mid \psi^{(i+1)}(x+$ $\beta) \mid \in \mathcal{C}[(0, \infty)]$.

Theorem 4. Let $0<\beta<\frac{1}{2}$ and δ^{-1} be the inverse function of δ defined by (1). Then the following inequalities holds for $t \in(0, \infty)$:

$$
\begin{gather*}
\frac{1}{2}>\sum_{k=1}^{\infty} B_{2 k} \frac{t^{2 k-1}}{(2 k-1)!}>0, \tag{3}\\
\frac{t}{2}>\sum_{k=0}^{\infty} B_{2 k+2} \frac{t^{2 k+2}}{(2 k+2)!}>\max \left\{0, \frac{t}{2}-1\right\}, \tag{4}\\
\sum_{k=0}^{\infty} B_{2 k+2} \frac{t^{2 k+2}}{(2 k+2)!}>\left(\frac{1}{2}-\beta\right) t+\left[\frac{e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)}-1}-\beta+1\right] \delta^{-1}(\beta)-1, \tag{5}
\end{gather*}
$$

where B_{k} stands for the Bernoulli numbers defined by

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} \frac{B_{k} x^{k}}{k!} . \tag{6}
\end{equation*}
$$

2. Lemmas

In order to prove our main results, the following lemmas are necessary.
Lemma $1([1,12,13])$. The polygamma functions $\psi^{(k)}(x)$ are expressed for $x>0$ and $k \in \mathbb{N}$ as

$$
\begin{equation*}
\psi^{(k)}(x)=(-1)^{k+1} \int_{0}^{\infty} \frac{t^{k} e^{-x t}}{1-e^{-t}} \mathrm{~d} t \tag{7}
\end{equation*}
$$

For $x>0$ and $r>0$,

$$
\begin{equation*}
\frac{1}{x^{r}}=\frac{1}{\Gamma(r)} \int_{0}^{\infty} t^{r-1} e^{-x t} \mathrm{~d} t \tag{8}
\end{equation*}
$$

For $i \in \mathbb{N}$ and $x>0$,

$$
\begin{equation*}
\psi^{(i-1)}(x+1)=\psi^{(i-1)}(x)+\frac{(-1)^{i-1}(i-1)!}{x^{i}} . \tag{9}
\end{equation*}
$$

Lemma $2([5,6])$. Let $f(x)$ be defined in an infinite interval I. If $\lim _{x \rightarrow \infty} f(x)=0$ and $f(x)-f(x+\varepsilon) \gtreqless 0$ for any given $\varepsilon>0$, then $f(x) \gtreqless 0$ in I.

3. Proofs of theorems

Proof of Theorem 1. Direct calculation and rearrangement yields

$$
\begin{align*}
\left.\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}=\alpha\left|\psi^{(i)}(x+\beta)\right|-x \right\rvert\, & \psi^{(i+1)}(x+\beta) \mid \\
& =(-1)^{i+1}\left[\alpha \psi^{(i)}(x+\beta)+x \psi^{(i+1)}(x+\beta)\right] \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}=0 \tag{11}
\end{equation*}
$$

Straightforwardly computing in virtue of formulas (9), (8) and (7) gives

$$
\begin{align*}
\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}- & \frac{g_{i, \alpha, \beta}^{\prime}(x+1)}{(x+1)^{\alpha-1}} \\
= & (-1)^{i+1}\left\{\alpha\left[\psi^{(i)}(x+\beta)-\psi^{(i)}(x+\beta+1)\right]\right. \\
& \left.+x\left[\psi^{(i+1)}(x+\beta)-\psi^{(i+1)}(x+\beta+1)\right]-\psi^{(i+1)}(x+\beta+1)\right\} \\
= & \frac{i!\alpha}{(x+\beta)^{i+1}}-\frac{(i+1)!x}{(x+\beta)^{i+2}}-\frac{(i+1)!}{(x+\beta)^{i+2}}+(-1)^{i+2} \psi^{(i+1)}(x+\beta) \\
= & (-1)^{i+2} \psi^{(i+1)}(x+\beta)+\frac{i!(\alpha-i-1)}{(x+\beta)^{i+1}}+\frac{(i+1)!(\beta-1)}{(x+\beta)^{i+2}} \tag{12}\\
= & \int_{0}^{\infty}\left[\frac{t}{1-e^{-t}}+(\beta-1) t+\alpha-i-1\right] t^{i} e^{-(x+\beta) t} \mathrm{~d} t \\
\triangleq & \int_{0}^{\infty} h_{i, \alpha, \beta}(t) t^{i} e^{-(x+\beta) t} \mathrm{~d} t .
\end{align*}
$$

If $\beta=0$, the function $h_{i, \alpha, 0}^{\prime}(t)=-\frac{1+(t-1) e^{t}}{\left(e^{t}-1\right)^{2}}<0$ and $h_{i, \alpha, 0}(t)$ is decreasing in $(0, \infty)$ with $\lim _{t \rightarrow 0+} h_{i, \alpha, 0}(t)=\alpha-i$ and $\lim _{t \rightarrow \infty} h_{i, \alpha, 0}(t)=\alpha-i-1$. For $\alpha \geq i+1$, the functions $h_{i, \alpha, 0}(t)$ and $\frac{g_{i, \alpha, 0}^{\prime}(x)}{x^{\alpha-1}}-\frac{g_{i, \alpha, 0}^{\prime}(x+1)}{(x+1)^{\alpha-1}}$ are positive in $(0, \infty)$. Combining this with (11) and considering Lemma 2, it is obtained that the functions $\frac{g_{i, \alpha, 0}^{\prime}(x)}{x^{\alpha-1}}$ and $g_{i, \alpha, 0}^{\prime}(x)$ are positive in $(0, \infty)$, which means that the function $g_{i, \alpha, 0}(x)$ is strictly increasing in $(0, \infty)$ for $\alpha \geq i+1$. Similarly, for $\alpha \leq i$, the function $g_{i, \alpha, 0}(x)$ is strictly decreasing in $(0, \infty)$.

If $\beta>0$, then the function $h_{i, \alpha, \beta}^{\prime}(t)=\frac{e^{t}\left(e^{t}-t-1\right)}{\left(e^{t}-1\right)^{2}}+\beta-1 \triangleq \lambda(t)+\beta-1$ with $\lambda^{\prime}(t)=\frac{e^{t}\left[e^{t}(t-2)+t+2\right]}{\left(e^{t}-1\right)^{3}} \triangleq \frac{\lambda_{1}(t)}{\left(e^{t}-1\right)^{3}}$ and $\lambda_{1}^{\prime}(t)=1+(t-1) e^{t}>0$ in $(0, \infty)$, and the function $\lambda_{1}(t)$ is increasing with $\lambda_{1}(0)=0$, thus $\lambda_{1}(t)>0$ and $\lambda^{\prime}(t)>0$. Hence, the functions $\lambda(t)$ and $h_{i, \alpha, \beta}^{\prime}(t)$ are strictly increasing in $(0, \infty)$ with $\lim _{t \rightarrow 0+} h_{i, \alpha, \beta}^{\prime}(t)=$ $\beta-\frac{1}{2}$ and $\lim _{t \rightarrow \infty} h_{i, \alpha, \beta}^{\prime}(t)=\beta$. Thus, if $\beta \geq \frac{1}{2}$, the function $h_{i, \alpha, \beta}^{\prime}(t)$ is positive and the function $h_{i, \alpha, \beta}(t)$ is strictly increasing in $(0, \infty)$ with $\lim _{t \rightarrow 0+} h_{i, \alpha, \beta}(t)=$ $\alpha-i$ and $\lim _{t \rightarrow \infty} h_{i, \alpha, \beta}(t)=\infty$. Accordingly, for $\alpha \geq i$ and $\beta \geq \frac{1}{2}$, the function $h_{i, \alpha, \beta}(t)>0$ in $(0, \infty)$. Therefore, for $\alpha \geq i$ and $\beta \geq \frac{1}{2}$, by the same argument as above, it is deduced that the function $g_{i, \alpha, \beta}(x)$ is strictly increasing in $(0, \infty)$.

If $0<\beta<\frac{1}{2}$, since the function $h_{i, \alpha, \beta}^{\prime}(t)$ is strictly increasing in $(0, \infty)$ with $\lim _{t \rightarrow 0+} h_{i, \alpha, \beta}^{\prime}(t)=\beta-\frac{1}{2}<0$ and $\lim _{t \rightarrow \infty} h_{i, \alpha, \beta}^{\prime}(t)=\beta>0$, then the function $h_{i, \alpha, \beta}(t)$ attains its unique minimum at some point $t_{0} \in(0, \infty)$. It is easy to see that the function $\delta(t)$ defined by (1) satisfies $\delta\left(t_{0}\right)=\beta$ for $0<\beta<\frac{1}{2}$, equals $-[\lambda(t)+1]$ and is positive and strictly decreasing with $\lim _{t \rightarrow 0+} \delta(t)=\frac{1}{2}$ and $\lim _{t \rightarrow \infty} \delta(t)=0$. Therefore, the unique minimum of $h_{i, \alpha, \beta}(t)$ equals

$$
\frac{\delta^{-1}(\beta) e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)}-1}+(\beta-1) \delta^{-1}(\beta)+\alpha-i-1
$$

where δ^{-1} is the inverse function of δ defined by (1) and is strictly decreasing in $\left(0, \frac{1}{2}\right)$ with $\lim _{s \rightarrow 0+} \delta^{-1}(s)=\infty$ and $\lim _{s \rightarrow \frac{1}{2}-} \delta^{-1}(s)=0$. As a result, while inequality (2) holds for $0<\beta<\frac{1}{2}$, the function $h_{i, \alpha, \beta}(t)$ is positive in $(0, \infty)$. Consequently, if $0<\beta<\frac{1}{2}$ and inequality (2) is valid, then the function $g_{i, \alpha, \beta}(x)$ is strictly increasing in $(0, \infty)$. The sufficiency is proved.

Now we are in a position to prove the necessity. In [8], it was proved that $\psi(x)-\ln x+\frac{\alpha}{x} \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \geq 1$ and $\ln x-\frac{\alpha}{x}-\psi(x) \in \mathcal{C}[(0, \infty)]$ if and only if $\alpha \leq \frac{1}{2}$. From this it is deduced that inequality

$$
\begin{equation*}
\frac{(k-1)!}{x^{k}}+\frac{k!}{2 x^{k+1}}<(-1)^{k+1} \psi^{(k)}(x)=\left|\psi^{(k)}(x)\right|<\frac{(k-1)!}{x^{k}}+\frac{k!}{x^{k+1}} \tag{13}
\end{equation*}
$$

holds in $(0, \infty)$ for $k \in \mathbb{N}$.
If $g_{i, \alpha, 0}(x)$ is strictly decreasing in $(0, \infty)$, then

$$
\begin{equation*}
x^{i+1-\alpha} g_{i, \alpha, 0}^{\prime}(x)=\alpha x^{i}\left|\psi^{(i)}(x)\right|-x^{i+1}\left|\psi^{(i+1)}(x)\right|<0 \tag{14}
\end{equation*}
$$

Applying (13) into (14) leads to

$$
\begin{aligned}
0 & \geq \lim _{x \rightarrow \infty} x^{i+1-\alpha} g_{i, \alpha, 0}^{\prime}(x) \\
& \geq \alpha \lim _{x \rightarrow \infty} x^{i}\left[\frac{(i-1)!}{x^{i}}+\frac{i!}{2 x^{i+1}}\right]-\lim _{x \rightarrow \infty} x^{i+1}\left[\frac{i!}{x^{i+1}}+\frac{(i+1)!}{x^{i+2}}\right] \\
& =(i-1)!(\alpha-i)
\end{aligned}
$$

which means $\alpha \leq i$.
If $g_{i, \alpha, 0}(x)$ is strictly increasing in $(0, \infty)$, then

$$
\begin{equation*}
x^{i+2-\alpha} g_{i, \alpha, 0}^{\prime}(x)=\alpha x^{i+1}\left|\psi^{(i)}(x)\right|-x^{i+2}\left|\psi^{(i+1)}(x)\right|>0 \tag{15}
\end{equation*}
$$

and, applying (9) into (15) and using (13),

$$
\begin{aligned}
0 \leq & \lim _{x \rightarrow 0+} x^{i+2-\alpha} g_{i, \alpha, 0}^{\prime}(x) \\
= & \lim _{x \rightarrow 0+}\left\{\alpha x^{i+1}\left|\psi^{(i)}(x)\right|-x^{i+2}\left[\left|\psi^{(i+1)}(x+1)\right|+\frac{(i+1)!}{x^{i+2}}\right]\right\} \\
= & \alpha \lim _{x \rightarrow 0+} x^{i+1}\left|\psi^{(i)}(x)\right|-(i+1)!-\lim _{x \rightarrow 0+} x^{i+2}\left|\psi^{(i+1)}(x+1)\right| \\
\leq & \alpha \lim _{x \rightarrow 0+} x^{i+1}\left[\frac{(i-1)!}{x^{i}}+\frac{i!}{x^{i+1}}\right]-(i+1)! \\
& -\lim _{x \rightarrow 0+} x^{i+2}\left[\frac{i!}{(x+1)^{i+1}}+\frac{(i+1)!}{2(x+1)^{i+2}}\right] \\
= & i!(\alpha-i-1)
\end{aligned}
$$

which means $\alpha \geq i+1$.
If the function $g_{i, \alpha, \beta}(x)$ is strictly increasing in $(0, \infty)$ for $\beta>0$, then

$$
\begin{equation*}
x^{i+1-\alpha} g_{i, \alpha, \beta}^{\prime}(x)=\alpha x^{i}\left|\psi^{(i)}(x+\beta)\right|-x^{i+1}\left|\psi^{(i+1)}(x+\beta)\right|>0 \tag{16}
\end{equation*}
$$

Applying (13) in (16) and taking limit leads to

$$
\begin{aligned}
0 \leq & \lim _{x \rightarrow \infty} x^{i+1-\alpha} g_{i, \alpha, \beta}^{\prime}(x) \\
\leq & \alpha \lim _{x \rightarrow \infty} x^{i}\left[\frac{(i-1)!}{(x+\beta)^{i}}+\frac{i!}{(x+\beta)^{i+1}}\right] \\
& -\lim _{x \rightarrow \infty} x^{i+1}\left[\frac{i!}{(x+\beta)^{i+1}}+\frac{(i+1)!}{2(x+\beta)^{i+2}}\right] \\
= & (i-1)!(\alpha-i)
\end{aligned}
$$

which means $\alpha \geq i$. The proof of Theorem 1 is complete.

Proof of Theorem 2. If $h_{i, \alpha, \beta}(t) \gtrless 0$ in $(0, \infty)$, then $\pm \int_{0}^{\infty} h_{i, \alpha, \beta}(t) t^{i} e^{-(x+\beta) t} \mathrm{~d} t \in$ $\mathcal{C}[(-\beta, \infty)]$, which is equivalent to $\pm\left[\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}-\frac{g_{i, \alpha, \beta}^{\prime}(x+1)}{(x+1)^{\alpha-1}}\right] \in \mathcal{C}[(0, \infty)]$ by (12), and then, by definition,

$$
\begin{aligned}
& (-1)^{j}\left[\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}-\frac{g_{i, \alpha, \beta}^{\prime}(x+1)}{(x+1)^{\alpha-1}}\right]^{(j)} \\
& \quad=(-1)^{j}\left[\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}\right]^{(j)}-(-1)^{j}\left[\frac{g_{i, \alpha, \beta}^{\prime}(x+1)}{(x+1)^{\alpha-1}}\right]^{(j)} \gtreqless 0
\end{aligned}
$$

in $(0, \infty)$ for $j \geq 0$. Further, formulas (7) and (10) imply

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left[\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}\right]^{(j)}=\lim _{x \rightarrow \infty}(-1)^{j}\left[\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}\right]^{(j)}=0 \tag{17}
\end{equation*}
$$

By (17) and Lemma 2, it is concluded that $(-1)^{j}\left[\frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}\right]^{(j)} \gtreqless 0$ and

$$
\pm \frac{g_{i, \alpha, \beta}^{\prime}(x)}{x^{\alpha-1}}= \pm\left[\alpha\left|\psi^{(i)}(x+\beta)\right|-x\left|\psi^{(i+1)}(x+\beta)\right|\right] \in \mathcal{C}[(0, \infty)]
$$

if $h_{i, \alpha, \beta}(t) \gtrless 0$ in $(0, \infty)$. The proof of Theorem 1 tells us that the function $h_{i, \alpha, \beta}(t)$ is positive in $(0, \infty)$ if either $\beta=0$ and $\alpha \geq i+1$, or $\beta \geq \frac{1}{2}$ and $\alpha \geq i$, or $0<\beta<\frac{1}{2}$ and inequality (2) validating, and that $h_{i, \alpha, \beta}(t)$ is negative in $(0, \infty)$ if $\beta=0$ and $\alpha \leq i$. As a result, the function $\alpha\left|\psi^{(i)}(x+\beta)\right|-x\left|\psi^{(i+1)}(x+\beta)\right|$ is completely monotonic in $(0, \infty)$ for either $\beta=0$ and $\alpha \geq i+1$, or $\beta \geq \frac{1}{2}$ and $\alpha \geq i$, or $0<\beta<\frac{1}{2}$ and inequality (2) being true, and $x\left|\psi^{(i+1)}(x+\beta)\right|-\alpha\left|\psi^{(i)}(x+\beta)\right| \in \mathcal{C}[(0, \infty)]$ for $\beta=0$ and $\alpha \leq i$.

The proofs of necessities are the same as those in Theorem 1. The proof of Theorem 2 is complete.
Proof of Theorem 3. This follows from Theorem 2 and the following facts that

$$
\pm\left[\frac{\alpha}{x}\left|\psi^{(i)}(x+\beta)\right|-\left|\psi^{(i+1)}(x+\beta)\right|\right]= \pm \frac{1}{x}\left\{\alpha\left|\psi^{(i)}(x+\beta)\right|-x\left|\psi^{(i+1)}(x+\beta)\right|\right\},
$$

$\frac{1}{x} \in \mathcal{C}[(0, \infty)]$, and that the product of two completely monotonic functions is also completely monotonic on the union of their domains.
Proof of Theorem 4. Let $B_{k}(x)$ be the Bernoulli polynomials defined $[1,12,13]$ by

$$
\begin{equation*}
\frac{t e^{x t}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!} \tag{18}
\end{equation*}
$$

It is well known that the Bernoulli numbers B_{k} and $B_{k}(x)$ are connected by $B_{k}(1)=$ $(-1)^{k} B_{k}(0)=(-1)^{k} B_{k}$ and $B_{2 k+1}(0)=B_{2 k+1}=0$ for $k \geq 1$, and that the first few Bernoulli numbers and polynomials are

$$
\begin{gathered}
B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{4}=-\frac{1}{30} \\
B_{0}(x)=1, \quad B_{1}(x)=x-\frac{1}{2}, \quad B_{2}(x)=x^{2}-x+\frac{1}{6}, \quad B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x .
\end{gathered}
$$

Using these notations, the functions $h_{i, \alpha, \beta}(t)$ and $h_{i, \alpha, \beta}^{\prime}(t)$ can be rewritten as

$$
h_{i, \alpha, \beta}(t)=\frac{t e^{t}}{e^{t}-1}+(\beta-1) t+\alpha-i-1
$$

$$
\begin{aligned}
& =\alpha-i+\left(\beta-\frac{1}{2}\right) t+\sum_{k=2}^{\infty} B_{k}(1) \frac{t^{k}}{k!} \\
& =\alpha-i+\left(\beta-\frac{1}{2}\right) t+\sum_{k=2}^{\infty}(-1)^{k} B_{k} \frac{t^{k}}{k!} \\
& =\alpha-i+\left(\beta-\frac{1}{2}\right) t+\sum_{k=1}^{\infty}(-1)^{k+1} B_{k+1} \frac{t^{k+1}}{(k+1)!} \\
& =\alpha-i+\left(\beta-\frac{1}{2}\right) t+\sum_{k=0}^{\infty} B_{2 k+2} \frac{t^{2 k+2}}{(2 k+2)!}, \\
h_{i, \alpha, \beta}^{\prime}(t) & =\beta-\frac{1}{2}+\sum_{k=1}^{\infty} B_{2 k} \frac{t^{2 k-1}}{(2 k-1)!} .
\end{aligned}
$$

The proof of Theorem 1 states that
(1) $h_{i, \alpha, 0}^{\prime}(t)<0$ in $(0, \infty)$;
(2) if $\alpha \geq i+1$, then $h_{i, \alpha, 0}(t)>0$ in $(0, \infty)$;
(3) if $0<\alpha \leq i$, then $h_{i, \alpha, 0}(t)<0$ in $(0, \infty)$;
(4) if $\beta \geq \frac{1}{2}$, then $h_{i, \alpha, \beta}^{\prime}(t)>0$ in $(0, \infty)$;
(5) if $\alpha \geq i$ and $\beta \geq \frac{1}{2}$, then $h_{i, \alpha, \beta}(t)>0$ in ($0, \infty$);
(6) if $0<\beta<\frac{1}{2}$ and inequality (2) holds true, then $h_{i, \alpha, \beta}(t)>0$ in $(0, \infty)$.

From these and standard argument, Theorem 4 is proved.

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Reprint of the 1972 edition. A Wiley-Interscience Publication. Selected Government Publications. John Wiley \& Sons, Inc., New York; National Bureau of Standards, Washington, DC, 1984.
[2] H. Alzer, Mean-value inequalities for the polygamma functions, Aequationes Math. 61 (2001), no. 1, 151-161.
[3] P. Gao, A subadditive property of the digamma function, RGMIA Res. Rep. Coll. 8 (2005), no. 3, Art. 9. Available online at http://rgmia.vu.edu.au/v8n3.html.
[4] B.-N. Guo, R.-J. Chen, and F. Qi, A class of completely monotonic functions involving the polygamma functions, J. Math. Anal. Approx. Theory 2 (2007), no. 1, in press.
[5] F. Qi, A completely monotonic function involving divided difference of psi function and an equivalent inequality involving sum, RGMIA Res. Rep. Coll. 9 (2006), no. 4, Art. 5. Available online at http://rgmia.vu.edu.au/v9n4.html.
[6] F. Qi, A completely monotonic function involving divided differences of psi and polygamma functions and an application, RGMIA Res. Rep. Coll. 9 (2006), no. 4, Art. 8. Available online at http://rgmia.vu.edu.au/v9n4.html.
[7] F. Qi, Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions, RGMIA Res. Rep. Coll. 8 (2005), no. 3, Art. 5. Available online at http://rgmia.vu.edu.au/v8n3.html.
[8] F. Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct. 18 (2007), in press. RGMIA Res. Rep. Coll. 9 (2006), Suppl., Art. 6. Available online at http://rgmia.vu.edu.au/v9(E).html.
[9] F. Qi and W. Li, Two logarithmically completely monotonic functions connected with the gamma function, RGMIA Res. Rep. Coll. 8 (2005), no. 3, Art. 13. Available online at http: //rgmia.vu.edu.au/v8n3.html.
[10] F. Qi, Q. Yang and W. Li, Two logarithmically completely monotonic functions connected with gamma function, Integral Transforms Spec. Funct. 17 (2006), no. 7, 539-542.
[11] H. van Haeringen, Completely Monotonic and Related Functions, Report 93-108, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1993.
[12] Zh.-X. Wang and D.-R. Guo, Special Functions, Translated from the Chinese by D.-R. Guo and X.-J. Xia, World Scientific Publishing, Singapore, 1989.
[13] Zh.-X. Wang and D.-R. Guo, Tèshū Hánshù Gàilùn (A Panorama of Special Functions), The Series of Advanced Physics of Peking University, Peking University Press, Beijing, China, 2000. (Chinese)
[14] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.
(F. Qi) Research Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

E-mail address: qifeng@hpu.edu.cn, fengqi618@member.ams.org, qifeng618@hotmail.com, qifeng618@msn.com, 316020821@qq.com URL: http://rgmia.vu.edu.au/qi.html
(S. Guo) Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

E-mail address: sguo@hotmail.com, umguos@cc.umanitoba.ca
(B.-N. Guo) School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

E-mail address: guobaini@hpu.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary 33B15, 26A48; Secondary 26A51.
 Key words and phrases. monotonicity, completely monotonic function, polygamma function, bounds, infinite series, Bernoulli numbers.

 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{EA} \mathrm{T}_{\mathrm{EX}}$.

