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ABSTRACT. In this article, some monotonicity of the function z®|¢(® (z + 8)|
and the complete monotonicity of the functions ¢ ‘1/)@) (J:+ﬁ)| - ‘7/)(”1) (x—i—ﬁ)‘
and a{i/z(i)(x + B8)| - x|w(i+1)(x + B)| in (0,00) for i € N, o > 0 and 8 >
0 are investigated, where (9 (z) is the well known polygamma functions.
Moreover, lower and upper bounds for infinite series whose coefficients involves
the Bernoulli numbers are established.

1. INTRODUCTION

Recall [7, 11, 14] that a function f is called completely monotonic on an interval
I if f has derivatives of all orders on I and 0 < (—1)*f*)(z) < oo for all k > 0
on I. The well known Bernstein’s Theorem [14, p. 161] states that f € C[(0, c0)]
if and only if f(z) = [ e "*dpu(s), where y1 is a nonnegative measure on [0, c0)
such that the integral converges for all x > 0. The class of completely monotonic
functions on I is denoted by C[I]. For more information on C[I], please refer to
[5, 6,7, 8,9, 10, 11, 14] and the references therein.

By using the convolution theorem of Laplace transforms, the increasingly mono-
tonicity of 2|y (x + 1)| is presented in [9, 10]: The function z*|y)@ (z + 1)|
is strictly increasing in (0,00) if and only if & > 4, where t(z), the logarithmic
derivative of the classical Euler’s gamma function I'(z), is called psi function and
@ (zx) for i € N are called polygamma functions. In [3], in order to show the
subadditive property of the function 9 (a 4 %), it was proved that the function
' (x+a) is strictly increasing on [0, 00) for a > 1. In [2], it was also showed, using
the convolution theorem of Laplace transforms, that the function xclw(k) (x)| for
k > 1 is strictly decreasing in (0, 00) if and only if ¢ < k and is strictly increasing
in (0, 00) if and only if ¢ > k+ 1. In [4], the monotonicity of the more general func-
tion z¢ W(i) (x+ ﬁ)‘ was studied without using the convolution theorem of Laplace
transforms and, except the above results, the following conclusions are obtained:
Fori e N, a>0and g > 0,

(1) the function anJ(i) (z 4 B)| is strictly increasing in (0, 00) if (o, 8) € {o >
it <B<1}u{az>if>"FHlu{a>i+1,6< 2} and only if
a > i

(2) 2jp® ()| - [0 ()| € C[(0,00)] if and only if a > i+ 1;

(3) [0 (@)| — 2@ (x)| € C[(0,00)] if and only if 0 < a < 4;
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[ (2 + 1) — [+ (z + 1)| € €[(0, 00)] if and only if o > i;
[0 + B)] = [¢+ D (z + B)] € C[(0,00)] if (. 8) € {a =i +1,8 <
SHIU{i<a<s B L <p<jufi<a<itl f> o)
and only if o > 4;
(6) alg(z+B)| - x|pD(z+B)] €Cl0,00)] if (v, f) e {i<a<i+1,f>
O‘*Tm}u{azi—i—l,ﬁg O‘*TZ“} and only if o > 4.

The main purpose of this paper is to research further the monotonic properties
of the function xo‘|1/)(i)(x + B)| and to obtain some more better conclusions than
those mentioned above.

Our main results are the following four theorems.

Theorem 1. Fori: € N, « >0 and 8 > 0.

(1) The function xo‘|w(i)(:c)| in (0,00) is strictly increasing if and only if o >
i+ 1 and strictly decreasing if and only if 0 < a <.

(2) For B > %, the function x| (x + B)| is strictly increasing in [0,00) if
and only if a > 1.

(3) Let 6:(0,00) — (0,3) be defined by

eft—1)+1
0t) = ——%—— 1
R 1)

fort € (0,00) and 671 : (0,3) — (0,00) stand for the inverse function of
d. If0<ﬂ<% and

_ 518 »

then the function x("|1/)(i)(x + 5)’ is strictly increasing in (0, 00).

Remark 1. It is noted that
65_1(3) .

for 8 € (0,1), since limg_o4 [36~1(3)] = 0.

Theorem 2. Leti € N, a >0 and > 0.
(1) afp®(z)| — 2|V ()] € C[(0,00)] if and only if o > i+ 1.
(2) z[p D (2)| = ol (z)| € C[(0,00)] if and only if 0 < o < 4.
(3) If B > %, then oD (z + B)| — x|V (z + B)| € C[(0,00)] if and only if
a>1.
(4) Ifo< B < 3 and inequality (2) holds true, then a|y@ (z+B)|—z|pFD (z+
B)| € €[(0,00)].
Theorem 3. Leti € N, « >0 and g > 0.
(1) 2]pO ()| = |p ()| € C[(0,00)] if and only if a > i+ 1.
(2) |9 (@)] — 2|y (2)] € C[(0,00)] if and only if 0 < o < i.
(3) If B > %, then %{W”(m +B)| - |1Z)(i+1)(x + B)| € C[(0,00)] if and only if
a>1.
(4) If6< B < 1 and inequality (2) holds true, then &[yp® (z+B)|— [+ (z+
B)| € €[(0,00)].
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Theorem 4. Let 0 < 8 < = and 071 be the inverse function of § defined by (1).
Then the following mequalztzes holds for t € (0,00):

1 0 t2k 1
= B > 0, 3
5> Z O T 3)
t t2k+2 t
= v -1 4
>Z 2k+2(2k+2) >max{0 2 }, (4)

2k+2 PR
S B> (30 [ s o @

where By stands for the Bernoulli numbers defined by

R )

2. LEMMAS

In order to prove our main results, the following lemmas are necessary.

Lemma 1 ([1, 12, 13]). The polygamma functions 1*) (x) are expressed for x > 0
and k € N as

@) = o [T @
Forx >0 andr >0,
% = F(lr)/o trlem 7t dt. (8)
ForieNandz > 0,
(=1)" =1 —1)!

P @+ 1) = V(@) +

Lemma 2 ([5, 6]). Let f(x) be defined in an infinite interval I. Iflim, o f(z) =0
and f(z) — f(x +¢) ; 0 for any given € > 0, then f(x) E 0in 1.

3. PROOFS OF THEOREMS
Proof of Theorem 1. Direct calculation and rearrangement yields

g;,a,ﬁ(‘r)
irafl

= alpW(z + 8)| — z|v" (2 + B)|
= (1) [ayD(z + B) + 2 (z + B)]  (10)

and
/
. X
li gz,a,ﬁ( )
z—oo gl

—0. (11)

Straightforwardly computing in virtue of formulas (9), (8) and (7) gives
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9i.05() _ 9iap@+1)
xafl (IIZ+ 1)0471
= (1) Ha[pD (@ +8) = W@+ 5 +1)]
+a[pt @+ ) (@ + 5+ 1)] =D (@ + B+ 1)}
B ila @+ Dz (i+1)! Nid2 (i)
(x4 B (24 B2 (z+ B)it2 DT (@+6)
e Ma—i—1) (i+D(F-1) (12)
= (=" (z+0) + (z + §)itT (z + B)i+2
Z/w[t—l-(ﬁ—l)t—&—a—i—l tle= @At ¢
0

1—et

é/ Rio.p(t)tie” @At q ¢,
0

If 8 = 0, the function h; , 4(t) = 7% < 0 and h; o,0(t) is decreasing

in (0,00) with lims 04 i a0(t) = a — 4 and limy o0 i a0(t) = o — i — 1. For

a > i+ 1, the functions h; () and gi;ﬂ(lz) - g(g;i(i()ii) are positive in (0, 00).
Combining this with (11) and considering Lemma 2, it is obtained that the functions
gi,a,o(l’)

22— and g; , o(@) are positive in (0, 00), which means that the function g; o o()
is strictly increasing in (0,00) for a« > ¢ + 1. Similarly, for a < i, the function
9i.a,0(2) is strictly decreasing in (0, c0).

t t
If B > 0, then the function hj , 4(t) = % +B8—12\t)+ 3 —1 with

N(t) = et[et((stfl);t”] = (:;1_(?)3 and \|(t) =14 (t —1)e* > 0 in (0,00), and the
function A; (¢) is increasing with A1 (0) = 0, thus A;(¢) > 0 and X (¢) > 0. Hence, the
functions A(t) and h; , 5(t) are strictly increasing in (0, 00) with lim;—o+ A , 5(t) =
8 — % and lim; o0 A , 5(t) = B. Thus, if 3 > %, the function h; , 5(t) is positive
and the function h; o (%) is strictly increasing in (0, 00) with limy_o4 hi 0 5(f) =
a — 1 and limy_. o h; o 5(t) = co. Accordingly, for a > ¢ and 3 > %, the function
Risa,(t) > 0 in (0,00). Therefore, for o > i and 8 > 1, by the same argument as
above, it is deduced that the function g; o g(x) is strictly increasing in (0, 00).

If 0 < 8 < %, since the function h; o 5(t) is strictly increasing in (0,00) with
limy o4 B, 5(t) = B — 5 < 0 and limy_.c h} , 5(t) = B > 0, then the function
hi,a,p(t) attains its unique minimum at some point ¢y € (0, 00). It is easy to see that
the function §(¢) defined by (1) satisfies 6(to) = 3 for 0 < 8 < 3, equals —[A(t) + 1]
and is positive and strictly decreasing with limy_q4 6(t) = 1 and lim;_. 6(¢) = 0.
Therefore, the unique minimum of h; o g(t) equals

~1(3)ed ' (B)
%%%%jTuu — 10 B +a—i—1,
where 61 is the inverse function of ¢ defined by (1) and is strictly decreasing
in (0,%) with lim,_o4 67 *(s) = oo and lim, .1 67'(s) = 0. As a result, while
inequality (2) holds for 0 < 3 < 3, the function h;q g(t) is positive in (0,00).
Consequently, if 0 < 8 < % and inequality (2) is valid, then the function g; o g(2)
is strictly increasing in (0, 00). The sufficiency is proved.
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Now we are in a position to prove the necessity. In [8], it was proved that
Y(r) —Inz + & € C[(0,00)] if and only if @ > 1 and Inz — & — 9 (x) € C[(0, 00)] if

and only if a < % From this it is deduced that inequality

(k—1)! k! (k—1)! k!
zk + 9 k+1 < (_1)k+1w(k)(x) = W(k)(x)’ < Tk T okt

holds in (0, c0) for k € N.
If gia,0(x) is strictly decreasing in (0, 00), then

210! of@) = 0 [0 ()] - 2B ()] <.
Applying (13) into (14) leads to

0> lim 2"t~ agi a o(x)

Tr—00

=1 [ )
= O‘JEEO z* g + opitl | }gﬂl@ at il 2
= (i — 1) — 1),

which means o < 1.
If g;.0,0(x) is strictly increasing in (0, c0), then

z+2 agéao(x) _ a$i+1|¢(i)((£)| _ I'i+2|1/)(i+l)($)| >0
and, applying (9) into (15) and using (13),

0< lim 2™ %;, ()

+ 1!
_ 1+1 1+2 z+1
A R
=a hm+ 20 ( | —(E+1)! - im x”z‘w(“ﬂ)(x +1)|
<a lim z'! ( i (i+ 1)
- z—0+ £ﬁ+1
o ! +1)!
) it2 i (i

P [( T T 20z 4 1)it2

= illa—i—1),

which means o« > 7 + 1.
If the function g; o g(x) is strictly increasing in (0, c0) for 8 > 0, then

z+1 agiaﬁ( _ Oéﬂ?z|1,/)(7')($+ﬂ)| *$i+1|1/)(i+1)(1'+ﬁ)| > 0.
Applying (13) in (16) and taking limit leads to
0< xli_{ﬂ z'tlmeg) a.p(T)

<alimxi[(2_1)'+ i ]
SR [ py

 bim xiﬂ{ i! (z+1)! ]
et @ BT 2e - B)
= (i — 1)l — ),

which means « > ¢. The proof of Theorem 1 is complete.

(13)

(14)

(16)
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Proof of Theorem 2. If hi o 5(t) Z 0 in (0,00), then + [~ h; o 5(t)tle @At dt €
C[(—p, 00)], which is equivalent to + {g";f;f(lm) - gz;_fl()iﬂ)} € C[(0,00)] by (12), and
then, by definition,

j 9i0s®)  gias@+]) @)
1y [fmat?) st
_ Cp [Fas@ L [Shas@ DT 5
- roa—l (LL' + 1)(1—1 <
in (0,00) for j > 0. Further, formulas (7) and (10) imply
[ Ghas@]? i [has (@)Y
jc11_)120{ ) = xh_)rgo(—l) a1 =0. (17)

T 2)10)
By (17) and Lemma 2, it is concluded that (—1) [g”"iﬂ()] z 0 and

po—1

/ T ) )
gx—‘i(l) = E[a|pV (@ + B)| - 2|p" (z + B)[] € C[(0,00)]
if h; o,8(t) 2 01in (0, 00). The proof of Theorem 1 tells us that the function h; o g(t)
is positive in (0, 00) if either 3=0and a > i+1,or > 1 anda >i,or 0 <3< 1
and inequality (2) validating, and that h; o 5(t) is negative in (0, 00) if 5 = 0 and
a < i. As a result, the function a|w(i)(x + ﬂ)| — x|w(i+1)(x + ﬂ)| is completely
monotonic in (0, 0o) for either § = 0and o > i+1, or 5 > % anda>i,0or0< < %
and inequality (2) being true, and x|V (z + B)| — a|p @ (z + B)| € C[(0, 00)] for
G =0and a <.
The proofs of necessities are the same as those in Theorem 1. The proof of
Theorem 2 is complete. |

+

Proof of Theorem 3. This follows from Theorem 2 and the following facts that

£ 26O+ )| - [ @ +ﬁ)@ = %{a!w“)(xw)\ — 2| (z + B)

b

% € C[(0,00)], and that the product of two completely monotonic functions is also
completely monotonic on the union of their domains. [

Proof of Theorem 4. Let By (z) be the Bernoulli polynomials defined [1, 12, 13] by

temt & tk
= E B —. 1
et — 1 P k(x) k! ( 8)

It is well known that the Bernoulli numbers By, and By(z) are connected by By (1) =
(—=1)¥B(0) = (=1)*By, and Bag.1(0) = Bapy1 = 0 for k > 1, and that the first
few Bernoulli numbers and polynomials are

1 1 1
0 ) 1 23 2 6; 4 30,
1 ) 1 s 3., 1
By(xz) =1, Bl(x):x—ﬁ, By(z) == —m—l—g, Bs(z) ==z — 5% —1—530.

Using these notations, the functions h; o,5(t) and h; , 5(t) can be rewritten as

tet
Mipt) = o + (8 =D+ a—i—1
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a—i+ (06— )t + E Bk

(
—
(

a—i+ (0

t2k+2

I
)”Z BW
)

. 1
—az+<52 t+Zsz+2ma

t2k 1

;,a,ﬁ(t):ﬂ_i_kz 2k_1)

The proof of Theorem 1 states that

Fro

(1]

2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

—~

1) R 40(t) <0in (0, 00);
2) if @ > i+ 1, then h; o 0(t) > 0in (0, 00);
if 0 < a <, then h; o,0(t) <0 in (0,00);

)
)
4)ifg>1 , then A} |, 5(t) >0 in (0, 00);
)
)
t

—~
w

(5) ifa>i and B> 3, then h; o (t) > 0 in (0,00);

(6) if 0 < B < 3 and mequahty (2) holds true, then h; o g(t) > 0 in (0, c0).

m these and standard argument, Theorem 4 is proved. ([
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