
A CLASS OF k-LOG-CONVEX FUNCTIONS AND THEIR
APPLICATIONS TO SOME SPECIAL FUNCTIONS

FENG QI, SENLIN GUO, AND BAI-NI GUO

Abstract. Let a and b be two real numbers, f a positive and differentiable
function on an interval I. The authors establish the i-log-convex or i-log-concave

properties for i ∈ N of the function
[f(bx)]a

[f(ax)]b
for ax ∈ I and bx ∈ I when the

function uk−1[ln f(u)](k) for k ∈ N is monotonic and apply these properties
to to deduce some known and new conclusions related to some special func-
tions such as the gamma function, Riemann’s zeta function, complete elliptic
integrals, exponential mean and extended mean values.

1. Introduction

By analytical arguments, it was presented in [28] that the function

f(x, y) =
[Γ(1 + x)]y

Γ(1 + xy)
(1)

for all y ≥ 1 is decreasing in x ≥ 0.
In [26, 27], the following logarithmically complete monotonicities of f(x, y), as

generalizations of the decreasingly monotonic property in [28], are presented:
(1) For given y > 1, the function f(x, y) defined by (1) is decreasing and

logarithmically concave with respect to x ∈ (0,∞), and 1
f(x,y) is a logarith-

mically completely monotonic function of second order in x ∈ (0,∞).
(2) For given 0 < y < 1, the function f(x, y) defined by (1) is increasing and

logarithmically convex with respect to x ∈ (0,∞), and f(x, y) is a logarith-
mically completely monotonic function of second order in x ∈ (0,∞).

(3) For given x ∈ (0,∞), the function f(x, y) defined by (1) is logarithmi-
cally concave with respect to y ∈ (0,∞), and 1

f(x,y) is a logarithmically
completely monotonic function of first order in y ∈ (0,∞).

In [6, Theorem 2.1], it was proved that the function

Gs,t(x) =
[Γ(1 + tx)]s

[Γ(1 + sx)]t
(2)

is decreasing (or increasing respectively) in x ∈ [0,∞) if either s ≥ t > 0 or 0 > s ≥ t
(or both s > 0 and t < 0 respectively) such that 1 + sx > 0 and 1 + tx > 0.
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In [22], the following logarithmically complete monotonicity, logarithmically ab-
solute monotonicity and logarithmically absolute convexity of Gs,t(x) defined by
(2) are verified: The function Gs,t(x) for x, s, t ∈ R such that 1 + sx > 0 and
1 + tx > 0 with s 6= t has the following properties:

(1) Gs,t(x) = 1
Gt,s(x) ;

(2) For t > s > 0 and x ∈ (0,∞), Gs,t(x) is an increasing function and a
logarithmically completely monotonic function of second order in x;

(3) For t > s > 0 and x ∈ (− 1
t , 0

)
, Gs,t(x) is a logarithmically completely

monotonic function in x;
(4) For s < t < 0 and x ∈ (−∞, 0), Gs,t(x) is a decreasing function and a

logarithmically absolutely monotonic function of second order in x;
(5) For s < t < 0 and x ∈ (

0,− 1
s

)
, Gs,t(x) is a logarithmically completely

monotonic function in x;
(6) For s < 0 < t and x ∈ (− 1

t , 0
)
, Gt,s(x) is an increasing function and a

logarithmically absolutely convex function in x;
(7) For s < 0 < t and x ∈ (

0,− 1
s

)
, Gt,s(x) is a decreasing function and a

logarithmically absolutely convex function in x.
In [11], It was shown that if f is a differentiable and logarithmically convex

function in [0,∞), then the function [f(x)]a

f(ax) for a ≥ 1 (or 0 < a ≤ 1 respectively) is
decreasing (or increasing respectively) in [0,∞).

Recall [2, p. 190] and [12] that a function f(x) is said to be n-convex on [a, b],
with n ≥ 2, if and only if f (n)(x) exists and f (n)(x) ≥ 0. If f (n)(x) > 0, then f(x)
is strictly n-convex.

Definition 1 ([12, 18]). For k ∈ N, a k-times differentiable function f(x) > 0 is said
to be k-log-convex (or k-log-concave, respectively) on an interval I if [ln f(x)](k) ≥ 0
(or [ln f(x)](k) ≤ 0, respectively) on I.

It is clear that a 1-log-convex function (or 1-log-concave function, respectively)
is equivalent to a positive and increasing (or decreasing, respectively) function and
that a 2-log-convex function is positive and convex. Conversely, a convex function
may not be 2-log-convex. See [12, p. 7, Remark. 1.16].

The aim of this paper is to generalize the monotonicity results obtained in [6,
11, 22, 26, 27, 28] and stated above.

Our main results are following two theorems.

Theorem 1. Let a and b be two real numbers, f(x) a positive function on an
interval I, and

ga,b(x) =
[f(bx)]a

[f(ax)]b
(3)

defined for ax ∈ I and bx ∈ I. The function ga,b(x) has the following properties:
(1) For all real numbers a, b and x such that ax ∈ I and bx ∈ I, it is valid that

gb,a(x) = 1
ga,b(x) .

(2) When f(x) is 2-log-convex on I,
(a) if either ab > 0 and bx > ax for all x or ab < 0 and bx < ax for all x,

then ga,b(x) is 1-log-convex in x;
(b) if either ab > 0 and bx < ax for all x or ab < 0 and bx > ax for all x,

then ga,b(x) is 1-log-concave in x.
(3) When f(x) is 2-log-concave on I,
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(a) if either ab > 0 and bx > ax for all x or ab < 0 and bx < ax for all x,
then ga,b(x) is 1-log-concave in x;

(b) if either ab > 0 and bx < ax for all x or ab < 0 and bx > ax for all x,
then ga,b(x) is 1-log-convex in x.

Theorem 2. For i ∈ N, the function ga,b(x) defined by (3) has the following
properties:

(1) For either b > a > 0 and x > 0 or 0 > b > a and x > 0,
(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then

ga,b(x) is i-log-convex;
(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then

ga,b(x) is i-log-concave.
(2) For b > 0 > a and x > 0,

(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then
ga,b(x) is i-log-concave;

(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then
ga,b(x) is i-log-convex.

(3) For either b > a > 0 and x > 0 or 0 > b > a and x < 0,
(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then

ga,b(x) is (2i− 1)-log-concave and (2i)-log-convex;
(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then

ga,b(x) is (2i− 1)-log-convex and (2i)-log-concave.
(4) For b > 0 > a and x < 0,

(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then
ga,b(x) is (2i− 1)-log-convex and (2i)-log-concave;

(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then
ga,b(x) is (2i− 1)-log-concave and (2i)-log-convex.

2. Applications of theorems

Before verifying Theorem 1 and Theorem 2, we would like to apply them to de-
duce some known and new conclusions related to some special functions such as the
gamma function, Riemann’s zeta function, complete elliptic integrals, exponential
mean and extended mean values.

2.1. If letting b = 1 and I = [0,∞) in Theorem 1, then [11, Theorem 2.1] can be
deduced readily.

2.2. If taking f(x) = Γ(1+x) and I = (−1,∞) in Theorem 1, then [6, Theorem 2.1]
can be deduced directly.

2.3. If applying b = 1, f(x) = Γ(1 + x) and I = (−1,∞) in Theorem 2, then
Theorem 1 in [26, 27] can be deduced straightforwardly.

2.4. If replacing f(x) by Γ(1 + x) and I by (−1,∞) in Theorem 2, then [22,
Theorem 1] can be deduced easily.

2.5. By taking suitable function f and appropriate interval I in Theorem 1 or
Theorem 2, almost all related inequalities and monotonicity results established in
[3, 6, 10, 11, 22, 26, 27, 28] can be recovered simply.
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2.6. In [1, p. 807, 23.2.7], the following formula is listed:

Γ(1 + x)ζ(1 + x) =
∫ ∞

0

tx

et − 1
dt (4)

for x > 0. In [11], it was pointed out that the function (4) is 2-log-convex. Applying
Theorem 1 to the function (4) arrives at

[Γ(1 + bx)ζ(1 + bx)]a

[Γ(1 + ax)ζ(1 + ax)]b
≤ [Γ(1 + by)ζ(1 + by)]a

[Γ(1 + ay)ζ(1 + ay)]b
(5)

for 0 < x < y and b > a > 0. Since the function Ga,b(x) is increasing in x > 0 by
either [6, Theorem 2.1], or [22, Theorem 1], or Theorem 1 and Theorem 2 of this
paper, then inequality

[Γ(1 + bx)]a

[Γ(1 + ax)]b
≥ 1 (6)

is valid for x > 0 and b > a > 0. Substituting (6) into (5) gives

[ζ(1 + bx)]a

[ζ(1 + ax)]b
≤ [Γ(1 + by)ζ(1 + by)]a

[Γ(1 + ay)ζ(1 + ay)]b
(7)

for 0 < x < y and b > a > 0. From this, inequalities (2.7), (2.8) and (2.9) in [11]
can be deduced by the similar argument as in [11, pp. 2–3].

2.7. The complete elliptic integral of the first kind is defined in [4, p. 132] by

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

(8)

for 0 < k < 1. It can also be defined [11] by

RK(x, y) =
2
π

∫ π/2

0

dθ√
x sin2 θ + y cos2 θ

(9)

for x > 0 and y > 0. It is clear that K(k) = π
2 RK(κ2, 1) with κ2 = 1− k2. It was

pointed out in [11] that RK(x, y) is 2-log-convex in both x and y. Consequently, it
follows by either Theorem 1 or Theorem 2 of this paper that the functions

[RK(bx, y)]a

[RK(ax, y)]b
or

[RK(x, by)]a

[RK(x, ay)]b
(10)

for b > a > 0 are increasing in x or in y respectively.
It is worthwhile to remark that some inequalities of the complete elliptic integrals

of all three kinds and their relation inequalities had been researched in [5, 7, 19,
20, 21, 25, 29], see also [14].

2.8. For two positive numbers s and t, the identric or exponential mean I(s, t) is
defined [8, 9, 13] by

I(s, t) =
1
e

(
tt

ss

)1/(t−s)

(11)

It was pointed out in [23] that, by standard argument, it is easy to verify that
the reciprocal of the identric mean Is,t(x) = I(x + s, x + t) is a logarithmically
completely monotonic function in x > −min{s, t} for s, t ∈ R with s 6= t. By
Theorem 1, it is concluded that the function

[Is,t(bx)]−a

[Is,t(ax)]−b
=

[Is,t(ax)]b

[Is,t(bx)]a
(12)
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for b > a > 0 is increasing in x > −min
{

min{s,t}
a , min{s,t}

b

}
.

2.9. The so-called extended mean values E(r, s; x, y) for x, y > 0 and r, s ∈ R can
be defined [8, 9, 13, 17] by

E(r, s; x, y) =
[
r

s
· ys − xs

yr − xr

]1/(s−r)

, rs(r − s)(x− y) 6= 0; (13)

E(r, 0;x, y) =
[
1
r
· yr − xr

ln y − ln x

]1/r

, r(x− y) 6= 0; (14)

E(r, r;x, y) =
1

e1/r

(
xxr

yyr

)1/(xr−yr)

, r(x− y) 6= 0; (15)

E(0, 0;x, y) =
√

xy, x 6= y; (16)

E(r, s; x, x) = x, x = y.

In [15, 16], the logarithmic convexities of E(r, s;x, y) are obtained: For all fixed
x, y > 0 and s ∈ [0,∞) (or r ∈ [0,∞), respectively), the extended mean values
E(r, s; x, y) are logarithmically concave in r (or in s, respectively) on [0,∞); For all
fixed x, y > 0 and s ∈ (−∞, 0] (or r ∈ (−∞, 0], respectively), the extended mean
values E(r, s;x, y) are logarithmically convex in r (or in s, respectively) on (−∞, 0].
In view of Theorem 1, the following theorem is showed easily.

Theorem 3. If x and y are positive numbers, s ∈ (−∞,∞) and b > a ≥ 0, then
the function

[E(br, s; x, y)]a

[E(ar, s; x, y)]b
(17)

is decreasing in r ∈ (−∞,∞).

2.10. In [24, Theorem 1], among other things, the following conclusions are proved:
(1) For i ∈ N, α ≥ 0 and β ≥ 0, the function

xα
∣∣ψ(i)(x)

∣∣ = xα
∣∣[ln Γ(x)](i+1)

∣∣ = (−1)i+1xα[ln Γ(x)](i+1)

in (0,∞) is strictly decreasing if and only if 0 ≤ α ≤ i;
(2) For β ≥ 1

2 , the function

xα
∣∣ψ(i)(x + β)

∣∣ = xα
∣∣[ln Γ(x + β)](i+1)

∣∣ = (−1)i+1xα[ln Γ(x + β)](i+1)

is strictly increasing in [0,∞) if and only if α ≥ i.
These imply that the functions

x2i−1[ln Γ(x)](2i) and x2i[ln Γ(x + β)](2i+1)

for i ∈ N are decreasing in x > 0 and that the functions

x2i[ln Γ(x)](2i+1) and x2i−1[ln Γ(x + β)](2i)

for i ∈ N are increasing in x > 0, where β ≥ 1
2 . By virtue of Theorem 2, the

following two theorems are established.

Theorem 4. For x > 0 and b > a > 0, the function [Γ(bx)]a

[Γ(ax)]b
is (2i + 1)-log-convex

and (2i)-log-concave in x for i ∈ N.

Theorem 5. For b > a > 0 and β ≥ 1
2 , the function [Γ(bx+β)]a

[Γ(ax+β)]b
is (2i + 1)-log-

concave and (2i)-log-convex in x > 0 for i ∈ N.
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3. Proofs of theorems

Now we are in a position to prove our theorems.

Proof of Theorem 1. If f(x) is 2-log-convex (or 2-log-concave, respectively) on I,
then [ln f(x)]′′ ≥ 0 and [ln f(x)]′ = f ′(x)

f(x) is increasing (or decreasing, respectively).
Logarithmic differentiation of (3) yields

[ln ga,b(x)]′ = ab

[
f ′(bx)
f(bx)

− f ′(ax)
f(ax)

]
= ab

∫ bx

ax

[ln f(u)]′′ du. (18)

(1) When f(x) is 2-log-convex on I,
(a) if either ab > 0 and bx > ax or ab < 0 and bx < ax, then [ln ga,b(x)]′ ≥

0, and then the function ga,b(x) is increasing in x;
(b) if either ab > 0 and bx < ax or ab < 0 and bx > ax, then [ln ga,b(x)]′ ≤

0, and then the function ga,b(x) is decreasing in x.
(2) When f(x) is 2-log-concave on I,

(a) if either ab > 0 and bx > ax or ab < 0 and bx < ax, then [ln ga,b(x)]′ ≤
0, and then the function ga,b(x) is decreasing in x;

(b) if either ab > 0 and bx < ax or ab < 0 and bx > ax, then [ln ga,b(x)]′ ≥
0, and then the function ga,b(x) is increasing in x.

The proof of Theorem 1 is finished. ¤
Proof of Theorem 2. It is easy to see that (18) can be rewritten as

[ln ga,b(x)]′ = ab
{

[ln f(u)]′
∣∣
u=bx

− [ln f(u)]′
∣∣
u=ax

}
. (19)

Differentiating on both sides of (19) consecutively gives

[ln ga,b(x)](i) = ab
{

bi−1[ln f(u)](i)
∣∣
u=bx

− ai−1[ln f(u)](i)
∣∣
u=ax

}

=
ab

xi−1

{
(bx)i−1[ln f(u)](i)

∣∣
u=bx

− (ax)i−1[ln f(u)](i)
∣∣
u=ax

} (20)

for i ∈ N. Therefore, the following conclusions can be concluded:
(1) For either b > a > 0 and x > 0 or 0 > b > a and x > 0,

(a) if the function ui−1[ln f(u)](i) is increasing on I, then [ln ga,b(x)](i) ≥ 0
and the function ga,b(x) is i-log-convex;

(b) if the function ui−1[ln f(u)](i) is decreasing on I, then [ln ga,b(x)](i) ≤ 0
and the function ga,b(x) is i-log-concave.

(2) For b > 0 > a and x > 0,
(a) if the function ui−1[ln f(u)](i) is increasing on I, then [ln ga,b(x)](i) ≤ 0

and the function ga,b(x) is i-log-concave;
(b) if the function ui−1[ln f(u)](i) is decreasing on I, then [ln ga,b(x)](i) ≥ 0

and the function ga,b(x) is i-log-convex.
(3) For either b > a > 0 and x > 0 or 0 > b > a and x < 0,

(a) if the function ui−1[ln f(u)](i) is increasing on I, then [ln ga,b(x)](2i−1) ≤
0 and [ln ga,b(x)](2i) ≥ 0, and the function ga,b(x) is (2i−1)-log-concave
and (2i)-log-convex;

(b) if the function ui−1[ln f(u)](i) is decreasing on I, then [ln ga,b(x)](2i−1) ≥
0 and [ln ga,b(x)](2i) ≤ 0, and the function ga,b(x) is (2i−1)-log-convex
and (2i)-log-concave.

(4) For b > 0 > a and x < 0,
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(a) if the function ui−1[ln f(u)](i) is increasing on I, then [ln ga,b(x)](2i−1) ≥
0 and [ln ga,b(x)](2i) ≤ 0, and the function ga,b(x) is (2i−1)-log-convex
and (2i)-log-concave;

(b) if the function ui−1[ln f(u)](i) is decreasing on I, then [ln ga,b(x)](2i−1) ≤
0 and [ln ga,b(x)](2i) ≥ 0, and the function ga,b(x) is (2i−1)-log-concave
and (2i)-log-convex.

The proof of Theorem 2 is complete. ¤
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(Journal of Mathematics for Technology) 10 (1994), no. 1, 87–90. (Chinese)

[22] F. Qi, B.-N. Guo and S. Guo, A function involving gamma function and having logarithmi-
cally absolute convexity, RGMIA Res. Rep. Coll. 10 (2007), no. 2, Art. ??; Available online
at http://rgmia.vu.edu.au/v10n2.html.

[23] F. Qi and S. Guo, New upper bounds in the second Kershaw’s double inequality and its
generalizations, RGMIA Res. Rep. Coll. 10 (2007), no. 2, Art. ??; Available online at http:

//rgmia.vu.edu.au/v10n2.html.
[24] F. Qi, S. Guo and B.-N. Guo, Note on a class of completely monotonic functions involving

the polygamma functions, RGMIA Res. Rep. Coll. 10 (2006), no. 1, Art. 5; Available online
at http://rgmia.vu.edu.au/v10n1.html.

[25] F. Qi and Zh. Huang, Inequalities of the complete elliptic integrals, Tamkang J. Math. 29
(1998), no. 3, 165–169.

[26] F. Qi and W. Li, Two logarithmically completely monotonic functions connected with the
gamma function, RGMIA Res. Rep. Coll. 8 (2005), no. 3, Art. 13, 497–493; Available online
at http://rgmia.vu.edu.au/v8n3.html.

[27] F. Qi, Q. Yang and W. Li, Two logarithmically completely monotonic functions connected
with gamma function, Integral Transforms Spec. Funct. 17 (2006), no. 7, 539–542.

[28] J. Sándor, A note on certain inequalities for the gamma function, J. Inequal. Pure Appl.
Math. 6 (2005), no. 3, Art. 61; Available online at http://jipam.vu.edu.au/article.php?

sid=534.
[29] L.-Q. Yu, F. Qi and B.-N. Guo, Estimates for upper and lower bounds of a complete elliptic
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