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EXPONENTIAL FUNCTION
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Abstract. In this paper, the monotonicity and logarithmically convexity of

the function e−αt−e−βt

1−e−t are obtained, where t ∈ R and α and β are real

numbers such that α 6= β, (α, β) 6= (0, 1) and (α, β) 6= (1, 0).

1. Introduction

For real numbers α and β with α 6= β, (α, β) 6= (0, 1) and (α, β) 6= (1, 0) and for
t ∈ R, let

qα,β(t) =


e−αt − e−βt

1− e−t
, t 6= 0,

β − α, t = 0.
(1)

In order to obtain the best bounds in Gautschi-Kershaw’s inequalities, it was
proved in [9] that the function qα,β(t) is logarithmically convex in (0,∞) and loga-
rithmically concave in (−∞, 0) if β−α > 1 and is logarithmically concave in (0,∞)
and logarithmically convex in (−∞, 0) if 0 < β − α < 1.

When ones study the logarithmically completely monotonic property of some
functions involving Euler’s gamma Γ function, the psi function ψ and the polygamma
functions ψ(i) for i ∈ N, the elementary function qα,β(t) is encountered now and
then. The so-called logarithmically completely monotonic function on an interval
I ⊂ R is a positive function f which has derivatives of all orders on I and whose
logarithm ln f satisfies 0 ≤ (−1)k[ln f(x)](k) < ∞ for k ∈ N on I. The set of the
logarithmically completely monotonic functions on I is denoted by L[I]. For more
information on the class L[I], please refer to [1, 2, 3, 5, 6, 7, 8, 9] and the references
therein.

The first aim of this paper is to research the monotonicity of the function qα,β(t).
The first main result of ours is the following Theorem 1 or Corollary 1.

Theorem 1. The following conclusions present the monotonic properties of qα,β(t).
(1) The function qα,β(t) is increasing in (0,∞) if either 1 ≥ α+ β > 2α+ 1 or

1 ≤ α+ β < 2α < α+ β + 1 holds.
(2) The function qα,β(t) is decreasing in (0,∞) if either 1 ≥ α+ β > 2β+ 1 or

1 ≤ α+ β < 2β < α+ β + 1 is valid.
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2 F. QI

(3) The function qα,β(t) is increasing in (−∞, 0) if either 2α > α+ β + 1 ≥ 2
or α+ β < 2β < α+ β + 1 ≤ 2 validates.

(4) The function qα,β(t) is decreasing in (−∞, 0) if either 2β > α+ β + 1 ≥ 2
or α+ β < 2α < α+ β + 1 ≤ 2 sounds.

(5) The function qα,β(t) is increasing in (−∞,∞) if and only if one of the
following conditions holds:
(a) α = β + 1 > 1,
(b) α > β + 1 ≥ 1,
(c) β = α+ 1 < 1,
(d) 1 ≥ β > α+ 1,
(e) α < β < α+ 1 ≤ 1,
(f) β + 1 ≤ α+ β < 2α < α+ β + 1.

(6) The function qα,β(t) is decreasing in (−∞,∞) if and only if one of the
following conditions holds:
(a) β = α+ 1 > 1,
(b) β > α+ 1 ≥ 1,
(c) β < α < β + 1 ≤ 1,
(d) 1 > α = β + 1,
(e) 1 ≥ α > β + 1,
(f) α+ 1 ≤ α+ β < 2β < α+ β + 1.

Remark 1. The (α, β)-domain where the function qα,β(t) is monotonic in Theorem 1
can be described respectively by Figure 1 to Figure 6 below.
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Figure 1. (α, β)-domain where the function qα,β(t) is increasing
in (0,∞) in Theorem 1
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Figure 2. (α, β)-domain where the function qα,β(t) is decreasing
in (0,∞) in Theorem 1

Remark 2. Note that the (α, β)-domain where the function qα,β(t) is increasing (or
decreasing) in (0,∞) (or in (−∞, 0)) is an union where the function qα,β(t) increases
(or decreases) in either (0,∞) (or (−∞, 0)) or (−∞,∞). Therefore, Theorem 1 can
be restated as the following Corollary 1.

Corollary 1. The following conclusions describe the monotonic properties of qα,β(t).

(1) The function qα,β(t) is increasing in (−∞,∞) if and only if (α, β) ∈
{(α, β) : α > β ≥ 0, α ≥ 1} ∪ {(α, β) : α < β ≤ 0} ∪ {(α, β) : α ≤
β − 1, 0 ≤ β ≤ 1} \ {(1, 0), (0, 1)}.

(2) The function qα,β(t) is decreasing in (−∞,∞) if and only if (α, β) ∈
{(α, β) : β > α ≥ 0, β ≥ 1} ∪ {(α, β) : β < α ≤ 0} ∪ {(α, β) : β ≤
α− 1, 0 ≤ α ≤ 1} \ {(1, 0), (0, 1)}.

(3) The function qα,β(t) is increasing in (0,∞) if and only if (α, β) ∈ {(α, β) :
α > β ≥ 1

2} ∪ {(α, β) : α ≥ 1 − β, 0 ≤ β < 1
2} ∪ {(α, β) : α + 1 ≤ β ≤

1− α, α < 0} ∪ {(α, β) : β − 1 ≤ α < β ≤ 0} \ {(1, 0)}.
(4) The function qα,β(t) is decreasing in (0,∞) if and only if (α, β) ∈ {(α, β) :

β ≥ 1−α, 1
2 > α ≥ 0}∪{(α, β) : β > α ≥ 1

2}∪{(α, β) : β < α ≤ 0}∪{(α, β) :
β ≤ α− 1, 0 ≤ α ≤ 1} ∪ {(α, β) : 1 ≤ α ≤ 1− β} \ {(1, 0), (0, 1)}.

(5) The function qα,β(t) is increasing in (−∞, 0) if and only if (α, β) ∈ {(α, β) :
1 − α ≤ β < α,α ≥ 1} ∪ {(α, β) : α < β ≤ 1, α ≤ 0} ∪ {(α, β) : α < β ≤
1− α, 0 ≤ α < 1

2} \ {(1, 0), (0, 1)}.
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Figure 3. (α, β)-domain where the function qα,β(t) is increasing
in (−∞, 0) in Theorem 1

(6) The function qα,β(t) is decreasing in (−∞, 0) if and only if (α, β) ∈ {(α, β) :
1−β ≤ α < β, β ≥ 1}∪{(α, β) : β < α ≤ 1

2}∪{(α, β) : β ≤ 1−α, 1
2 < α ≤

1} \ {(1, 0), (0, 1)}.

Remark 3. The corresponding (α, β)-domains where the function qα,β(t) is mono-
tonic in Corollary 1 can be described respectively by Figure 5 to Figure 10 below.

The second aim of this paper is to reconsider the logarithmically convexity of
the function qα,β(t) by a very simpler approach than that in [9]. The second main
result of ours is the following Theorem 2.

Theorem 2. The function qα,β(t) in (−∞,∞) is logarithmically convex if β−α > 1
and logarithmically concave if 0 < β − α < 1.

Remark 4. Theorem 2 shows that the logarithmically convexity and logarithmically
concavity in the interval (−∞, 0) of qα,β(t) presented in [9] and mentioned at the
beginning of this paper are wrong. However, this does not affect the correctness of
the main results established in [9], since the wrong properties about qα,β(t) in the
interval (−∞, 0) are unuseful there luckily.

Remark 5. Recall that a r-times differentiable function f(x) > 0 is said to be r-log-
convex (or r-log-concave) on an interval I with r ≥ 2 if and only if [ln f(x)](r) exists
and [ln f(x)](r) ≥ 0 (or [ln f(x)](r) ≤ 0) on I. In [4], the following conclusions are
obtained: If 1 > β−α > 0, then qα,β(t) is 3-log-convex in (0,∞) and 3-log-concave
in (−∞, 0); if β−α > 1, then qα,β(t) is 3-log-concave in (0,∞) and 3-log-convex in
(−∞, 0).



MONOTONICITY AND LOGARITHMIC CONVEXITY FOR A CLASS OF FUNCTIONS 5

-α1O

6
β

1

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` β = α

β = 1− α

β = α− 1

β = α+ 1

Figure 4. (α, β)-domain where the function qα,β(t) is decreasing
in (−∞, 0) in Theorem 1

2. Proofs of theorems

Proof of Theorem 1. It is clear that the function qα,β(t) can be rewritten as

qα,β(t) =
sinh (β−α)t

2

sinh t
2

exp
(1− α− β)t

2
, pα,β

(
t

2

)
. (2)

If α = β + 1, then qα,β(t) = −e−βt is increasing for β > 0 and decreasing for
β < 0 in (−∞,∞). If α = β − 1, then qα,β(t) = e−αt is decreasing for α > 0 and
increasing for α < 0 in (−∞,∞).

For |α− β| 6= 1, direct differentiation shows

p′α,β(t) =
sinh((β − α)t)

sinh t
e(1−α−β)tϕα,β(t),

where
ϕα,β(t) = (β − α) coth((β − α)t)− coth t− α− β + 1 (3)

and

ϕ′α,β(t) =
(

1
sinh t

)2

−
[

β − α

sinh((β − α)t)

]2

=
1
t2

{(
t

sinh t

)2

−
[

(β − α)t
sinh((β − α)t)

]2}
. (4)
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Figure 5. (α, β)-domain where the function qα,β(t) is increasing
in (−∞,∞) in Theorem 1 and Corollary 1

Since ϕ′α,β(t) = ϕ′α,β(−t) and the function t
sinh t > 0 is decreasing in (0,∞)

and increasing in (−∞, 0), then ϕ′α,β(t) ≥ 0 for |α− β| > 1 and ϕ′α,β(t) ≤ 0 for
0 < |α− β| < 1 in (−∞,∞). This means that the function ϕα,β(t) is increasing
for |α− β| > 1 and decreasing for 0 < |α− β| < 1 in (−∞,∞). It is not difficult
to obtain limt→−∞ ϕα,β(t) = 2 − α − β − |α− β|, limt→0 ϕα,β(t) = 1 − α − β and
limt→∞ ϕα,β(t) = |α− β| − α− β.

1. If β > α + 1, then β − α > 0, |α− β| > 1, limt→−∞ ϕα,β(t) = 2(1 − β) and
limt→∞ ϕα,β(t) = −2α. Further, if α ≥ 0, then ϕα,β(t) < 0 and p′α,β(t) < 0 in
(−∞,∞), and then pα,β(t) and qα,β(t) are decreasing in (−∞,∞). Therefore, for
β > α+ 1 ≥ 1, the function qα,β(t) is decreasing in (−∞,∞).

If β > α+ 1 and β ≤ 1, then limt→−∞ ϕα,β(t) ≥ 0, ϕα,β(t) > 0 and p′α,β(t) > 0
in (−∞,∞), and then pα,β(t) and qα,β(t) are increasing in (−∞,∞). Hence, for
1 ≥ β > α+ 1, the function qα,β(t) is increasing in (−∞,∞).

If β > α+1 and α+β ≤ 1, then limt→0 ϕα,β(t) ≥ 0, ϕα,β(t) > 0 and p′α,β(t) > 0
in (0,∞), and then pα,β(t) and qα,β(t) are increasing in (0,∞). Consequently, for
2α+ 1 < α+ β ≤ 1, the function qα,β(t) is increasing in (0,∞).

If β > α+1 and α+β ≥ 1, then limt→0 ϕα,β(t) ≤ 0, ϕα,β(t) < 0 and p′α,β(t) < 0
in (−∞, 0), and then pα,β(t) and qα,β(t) are decreasing in (−∞, 0). Therefore, for
2β > α+ β + 1 ≥ 2, the function qα,β(t) is decreasing in (−∞, 0).

2. If α < β < α + 1, then β − α > 0 and |α− β| < 1. Further, if α ≤ 0, then
ϕα,β(t) > 0 and p′α,β(t) > 0 in (−∞,∞), and then pα,β(t) and qα,β(t) are increasing
in (−∞,∞). Accordingly, for α < β < α+ 1 ≤ 1, the function qα,β(t) is increasing
in (−∞,∞).
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Figure 6. (α, β)-domain where the function qα,β(t) is decreasing
in (−∞,∞) in Theorem 1 and Corollary 1

If α < β < α + 1 and β ≥ 1, then limt→−∞ ϕα,β(t) ≤ 0, ϕα,β(t) < 0 and
p′α,β(t) < 0 in (−∞,∞), and then pα,β(t) and qα,β(t) are decreasing in (−∞,∞).
Therefore, for α + 1 ≤ α + β < 2β < α + β + 1, the function qα,β(t) is decreasing
in (−∞,∞).

If α < β < α + 1 and α + β ≤ 1, then limt→0 ϕα,β(t) ≥ 0, ϕα,β(t) > 0 and
p′α,β(t) > 0 in (−∞, 0), and then pα,β(t) and qα,β(t) are increasing in (−∞, 0). As
a result, for α + β < 2β < α + β + 1 ≤ 2, the function qα,β(t) is increasing in
(−∞, 0).

If α < β < α + 1 and α + β ≥ 1, then limt→0 ϕα,β(t) ≤ 0, ϕα,β(t) < 0 and
p′α,β(t) < 0 in (0,∞), and then pα,β(t) and qα,β(t) are decreasing in (0,∞). Con-
sequently, for 1 ≤ α + β < 2β < α + β + 1, the function qα,β(t) is decreasing in
(0,∞).

3. If α > β + 1, then β − α < 0, |α− β| > 1, limt→−∞ ϕα,β(t) = 2(1 − α) and
limt→∞ ϕα,β(t) = −2β. Further, if β ≥ 0, then ϕα,β(t) < 0 and p′α,β(t) > 0 in
(−∞,∞), and then pα,β(t) and qα,β(t) are increasing in (−∞,∞). Therefore, for
α > β + 1 ≥ 1, the function qα,β(t) is increasing in (−∞,∞).
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Figure 7. (α, β)-domain where the function qα,β(t) is increasing
in (0,∞) in Theorem 1

If α > β + 1 and α ≤ 1, then limt→−∞ ϕα,β(t) ≥ 0, ϕα,β(t) > 0 and p′α,β(t) < 0
in (−∞,∞), and then pα,β(t) and qα,β(t) are decreasing in (−∞,∞). Hence, for
1 ≥ α > β + 1, the function qα,β(t) is decreasing in (−∞,∞).

If α > β+1 and α+β ≤ 1, then limt→0 ϕα,β(t) ≥ 0, ϕα,β(t) > 0 and p′α,β(t) < 0
in (0,∞), and then pα,β(t) and qα,β(t) are decreasing in (0,∞). Accordingly, for
1 ≥ α+ β > 2β + 1, the function qα,β(t) is decreasing in (0,∞).

If α > β+1 and α+β ≥ 1, then limt→0 ϕα,β(t) ≤ 0, ϕα,β(t) < 0 and p′α,β(t) > 0
in (−∞, 0), and then pα,β(t) and qα,β(t) are increasing in (−∞, 0). Hence, for
2α > α+ β + 1 ≥ 2, the function qα,β(t) is increasing in (−∞, 0).

4. If β < α < β + 1, then β − α < 0 and |α− β| < 1. Further, if β ≤ 0, then
ϕα,β(t) > 0 and p′α,β(t) < 0 in (−∞,∞), and then pα,β(t) and qα,β(t) are decreasing
in (−∞,∞). Therefore, for β < α < β + 1 ≤ 1, the function qα,β(t) is decreasing
in (−∞,∞).

If β < α < β + 1 and α ≥ 1, then limt→−∞ ϕα,β(t) ≤ 0, ϕα,β(t) < 0 and
p′α,β(t) > 0 in (−∞,∞), and then pα,β(t) and qα,β(t) are increasing in (−∞,∞).
Accordingly, for β + 1 ≤ α+ β < 2α < α+ β + 1, the function qα,β(t) is increasing
in (−∞,∞).

If β < α < β + 1 and α + β ≤ 1, then limt→0 ϕα,β(t) ≥ 0, ϕα,β(t) > 0 and
p′α,β(t) < 0 in (−∞, 0), and then pα,β(t) and qα,β(t) are decreasing in (−∞, 0).
Consequently, for α+ β < 2α < α+ β+ 1 ≤ 2, the function qα,β(t) is decreasing in
(−∞, 0).

If β < α < β + 1 and α + β ≥ 1, then limt→0 ϕα,β(t) ≤ 0, ϕα,β(t) < 0 and
p′α,β(t) > 0 in (0,∞), and then pα,β(t) and qα,β(t) are increasing in (0,∞). As a
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Figure 8. (α, β)-domain where the function qα,β(t) is decreasing
in (0,∞) in Theorem 1

result, for 1 ≤ α+ β < 2α < α+ β + 1, the function qα,β(t) is increasing in (0,∞).
The proof of Theorem 1 is complete. �

Proof of Theorem 2. For β > α, the functions qα,β(t) and pα,β(t), related by (2),
are positive. Taking logarithm of pα,β(t) and differentiating yields

ln pα,β(t) = ln sinh((β − α)t)− ln sinh t+ (1− α− β)t,

[ln pα,β(t)]′ = (β − α) coth((β − α)t)− coth t− α− β + 1 = ϕα,β(t),

where ϕα,β(t) is defined by (3).
By the same argument as in the proof of Theorem 1 on page 5, it is easy to

see that ϕ′α,β(t) = [ln pα,β(t)]′′ ≥ 0 for β − α > 1 and ϕ′α,β(t) = [pα,β(t)]′′ ≤ 0 for
0 < β − α < 1 in (−∞,∞). This means that the function pα,β(t) = qα,β(2t) is
logarithmically convex for β−α > 1 and logarithmically concave for 0 < β−α < 1
in the whole axis (−∞,∞). The proof of Theorem 2 is complete. �
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Figure 10. (α, β)-domain where the function qα,β(t) is decreasing
in (−∞, 0) in Theorem 1


