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Abstract. Let c > b > a and r be real numbers, and let f be a positive, twice

differentiable function and satisfy f ′(t) > 0 and (ln f(t))′′ ≥ 0 on (a, +∞).
Then

supx∈[a,b] f(x)

supx∈[a,c] f(x)
<

 1
b−a

∫ b
a fr(x) dx

1
c−a

∫ c
a fr(x) dx

1/r

< 1 for all real r,

 1
b−a

∫ b
a fr(x) dx

1
c−a

∫ c
a fr(x) dx

1/r

≶
exp

(
1

b−a

∫ b
a ln f(x) dx

)
exp

(
1

c−a

∫ c
a ln f(x) dx

) according as r ≷ 0.

This solves a recently open problem of B.-N. Guo and F. Qi.

1. Introduction

It was shown in [1, 2, 8, 13, 17] that let n be a positive integer, then for r > 0,

n

n + 1
<

(
1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir

)1/r

<
n
√

n!
n+1
√

(n + 1)!
(1)

We call the left-hand side of (1) H. Alzer’s inequality [1], and the right-hand side
of (1) J. S. Martins’ inequality [8]. In [3, 14] Alzer’s inequality is extended to all
real r. In [5] it was proved that Martins’ inequality is reversed for r < 0.

F. Qi and B.-N. Guo [10, 11] presented an integral version of inequality (1) as
follows: Let b > a > 0 and δ > 0, then for r > 0,

b

b + δ
<

(
1

b−a

∫ b

a
xr dx

1
b+δ−a

∫ b+δ

a
xr dx

)1/r

<
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
. (2)

We note that the inequality (4) can be written for r > 0 as

b

b + δ
<

Lr(a, b)
Lr(a, b + δ)

<
I(a, b)

I(a, b + δ)
, (3)

where Lr(a, b) and I(a, b) are respectively the generalized logarithmic mean and the
exponential mean of two positive numbers a, b, defined in [6, 15, 16] by, for a = b
by Lr(a, b) = a and for a 6= b by

Lr(a, b) =
(

br+1 − ar+1

(r + 1)(b− a)

)1/r

, r 6= −1, 0;
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L−1(a, b) =
b− a

ln b− ln a
= L(a, b);

L0(a, b) =
1
e

(
bb

aa

)1/(b−a)

= I(a, b).

L(a, b) is the logarithmic mean of two positive numbers a, b. When a 6= b, Lr(a, b)
is a strictly increasing function of r. In particular,

lim
r→−∞

Lr(a, b) = min{a, b}, lim
r→+∞

Lr(a, b) = max{a, b}.

In [4], it was indirectly shown that the function r 7→ Lr(a, b)/Lr(a, b + δ) is strictly
decreasing with r ∈ (−∞,+∞). This yields that

b

b + δ
<

(
1

b−a

∫ b

a
xr dx

1
b+δ−a

∫ b+δ

a
xr dx

)1/r

for all real r, (4)

(
1

b−a

∫ b

a
xr dx

1
b+δ−a

∫ b+δ

a
xr dx

)1/r

≶
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
according as r ≷ 0. (5)

In [7], B.-N. Guo and F. Qi ask under which conditions the inequality

supx∈[a,b] f(x)
supx∈[a,b+δ] f(x)

<

(
1

b−a

∫ b

a
fr(x) dx

1
b+δ−a

∫ b+δ

a
fr(x) dx

)1/r

<
exp

(
1

b−a

∫ b

a
ln f(x) dx

)
exp

(
1

b+δ−a

∫ b+δ

a
ln f(x) dx

)
(6)

holds for b > a > 0, δ > 0 and r > 0.
V. Mascioni [9] found the sufficient conditions on the function f , and proved the

right-hand inequality of (6) for r > 0. Motivated by the paper of Mascioni [9], we
establish the following

Theorem. Let c > b > a and r be real numbers, and let f be a positive, twice
differentiable function and satisfy f ′(t) > 0 and (ln f(t))′′ ≥ 0 on (a,+∞). Then

supx∈[a,b] f(x)
supx∈[a,c] f(x)

<

(
1

b−a

∫ b

a
fr(x) dx

1
c−a

∫ c

a
fr(x) dx

)1/r

< 1 for all real r, (7)

(
1

b−a

∫ b

a
fr(x) dx

1
c−a

∫ c

a
fr(x) dx

)1/r

≶
exp

(
1

b−a

∫ b

a
ln f(x) dx

)
exp

(
1

c−a

∫ c

a
ln f(x) dx

) according as r ≷ 0. (8)

Both bounds in (7) are best possible.

2. Lemmas

Lemma 1. Let the function f be a positive and twice differentiable on (a,+∞),
where a is a given real number, and let

G(t) =
1

t−a

∫ t

a
f(x) dx

f(t)
, t > a.

Then we have
(i) If f ′(t) > 0 and (ln f(t))′′ ≥ 0, then the function G is strictly decreasing on

(a,+∞).
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(ii) If f ′(t) < 0 and (ln f(t))′′ ≤ 0, then the function G is strictly increasing on
(a,+∞).

Proof. Easy calculation reveals that

[(t− a)f(t)]2G′(t)
f(t) + (t− a)f ′(t)

=
(t− a)f2(t)

f(t) + (t− a)f ′(t)
−
∫ t

a

f(x) , H(t),

[f(t) + (t− a)f ′(t)]2H ′(t)
(t− a)f3(t)

= −(t− a)
f ′′(t)f(t)− [f ′(t)]2

f2(t)
− f ′(t)

f(t)
= −[(t− a)(ln(f(t))′′ + (ln f(t))′].

If (ln f(t))′ > (<)0 and (ln(f(t))′′ ≥ (≤)0 for t > a, then H ′(t) < (>)0 for t >
a, and then, H(t) < (>)H(a) = 0 and G′(t) < (>)0 for t > a. The proof is
complete. �

Lemma 2 ([12]). If F(t) is a strictly increasing (decreasing) integrable function
on an interval I ⊆ R, then the arithmetic mean G(r, s) of function F(t),

G(r, s) =


1

s− r

∫ s

r

F(t) dt, r 6= s,

F(r), r = s,

is also strictly increasing (decreasing) with both r and s on I.

3. Proof of Theorem

For r = 0, (7) can be interpreted as

f(b)
f(c)

<
exp

(
1

b−a

∫ b

a
ln f(x) dx

)
exp

(
1

c−a

∫ c

a
ln f(x) dx

) < 1. (9)

Define for t > a,

P (t) =
exp

(
1

t−a

∫ t

a
ln f(x) dx

)
f(t)

.

A simple computation yields

(t− a)2
P ′(t)
P (t)

= (t− a) ln f(t)−
∫ t

a

ln f(x) dx− (t− a)(ln f(t))′ , Q(t),

Q′(t) = −(t− a) [(ln f(t))′ + (t− a)(ln(f(t))′′] < 0.

Hence, we have Q(t) < Q(a) = 0 and P ′(t) < 0 for t > a. This means the left-hand
inequality of (9) holds for c > b > a. By Lemma 2, the right-hand inequality of (9)
holds clearly.

For r 6= 0, (7) is equivalent to

fr(b)
fr(c)

≶
1

b−a

∫ b

a
fr(x) dx

1
c−a

∫ c

a
fr(x) dx

≶ 1, according as r ≷ 0. (10)

Define for t > a,

Gr(t) =
1

t−a

∫ t

a
fr(x) dx

fr(t)
.



4 CH.-P. CHEN AND F. QI

It is easy to see that

(ln fr(t))′t ≷ 0 and (ln(fr(t))′′t T 0, according as r ≷ 0. (11)

By Lemma 1, the function t 7→ Gr(t) strictly
decreases
increases with respect to t ∈

(a,+∞) according as r ≷ 0. This produces the left-hand inequality of (10). By
Lemma 2, the right-hand inequality of (10) holds clearly.

Both bounds in (7) are best possible because of

lim
r→+∞

(
1

b−a

∫ b

a
fr(x) dx

1
c−a

∫ c

a
fr(x) dx

)1/r

=
supx∈[a,b] f(x)
supx∈[a,c] f(x)

,

lim
r→−∞

(
1

b−a

∫ b

a
fr(x) dx

1
c−a

∫ c

a
fr(x) dx

)1/r

=
infx∈[a,b] f(x)
infx∈[a,c] f(x)

= 1.

The inequality (8) is equivalent to

1
b−a

∫ b

a
fr(x) dx

1
c−a

∫ c

a
fr(x) dx

<
exp

(
1

b−a

∫ b

a
ln fr(x) dx

)
exp

(
1

c−a

∫ c

a
ln fr(x) dx

) for r 6= 0. (12)

Define for t > a,

Fr(t) =
1

t−a

∫ t

a
fr(x) dx

exp
(

1
t−a

∫ t

a
ln fr(x) dx

) .

It is easy to see from the proof of Theorem 1 of [9] that if f ′(t) > 0 and (ln f(t))′′ ≥
0, then the function F1 is strictly increasing on (a,+∞); If f ′(t) < 0 and (ln f(t))′′ ≤
0, then the function F1 is strictly decreasing on (a,+∞). Applying this result,

together with (11), we obviously imply the function t 7→ Fr(t) strictly
increases
decreases

with respect to t ∈ (a,+∞) according as r ≷ 0. This produces (12). The proof is
complete.
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