Primes in the Quadratic Intervals

Mehdi Hassani
Narges Rezvani Majid
Department of Mathematics
Institute for Advanced Studies in Basic Sciences
Zanjan, Iran
mhassani@iasbs.ac.ir
n_rezvani@iasbs.ac.ir

Abstract

In this note, we prove that for $n \geq 30$, there exists at lest a prime number in the interval $\left(n^{2},(n+f(n))^{2}\right]$ in which $f(n)$ is a function with the order of $O\left(\frac{n}{\ln ^{2} n}\right)$, and we count the number of primes in this interval. By using the result of this counting, we estimate the probability that a prime exists in the interval $\left(n^{2},(n+1)^{2}\right)$. Also, we show that there exists $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$, the interval $\left[(n-g(n))^{2}, n^{2}\right)$, in which $g(n)=O\left(n^{\frac{1}{20}}\right)$.

2000 Mathematics Subject Classification: 11A41, 46N30, 11N05.
Keywords: primes, probability, distribution of primes.

1 Introduction

It seems that the story of studying intervals containing primes becomes to Bertrand, where he conjectured that for all $n \in \mathbb{N}, \mathbb{P} \cap(n, 2 n] \neq \phi$. Note that, as usual, we let \mathbb{P} be the set of all prime numbers. In this area, many activities have done until now,
for example two of more recent of them are as follows:

- In 1999, P. Dusart [2] showed that for every $x \geq 3275$, we have

$$
\mathbb{P} \cap\left(x, x\left(1+\frac{1}{2 \ln ^{2} x}\right)\right] \neq \phi
$$

- In 2001, Baker, Harman and Pintz [1] proved that there exists real x_{0} such that for all $x>x_{0}$ the interval $\left[x-x^{0.525}, x\right]$ contains a prime.

Ok! What we are going to do? Before answering, we introduce some notations: We denote the interval $\left(n^{2},(n+f(n))^{2}\right]$, by $I_{+f(n)}^{2}$. So, we have $I_{+1}^{2}=\left(n^{2},(n+1)^{2}\right]$. Also, by $I_{-g(n)}^{2}$ we will mean the interval $\left[(n-g(n))^{2}, n^{2}\right)$.
In this note, we study existence of primes in the intervals $I_{+f(n)}^{2}$ and $I_{-g(n)}^{2}$. Also, we consider the following open problem:

$$
\mathbb{P} \cap I_{1}^{2} \neq \phi \quad(n \in \mathbb{N})
$$

We study the probabilistic existence of primes in the interval I_{+1}^{2}. For estimate above probability, we will need the following sharp bounds for the function $\pi(x)=\# \mathbb{P} \cap[1, x]$:

$$
L(x)=\frac{x}{\ln x}\left(1+\frac{1}{\ln x}+\frac{1.8}{\ln ^{2} x}\right) \leq \pi(x) \quad(x \geq 32299)
$$

and

$$
\pi(x) \leq U(x)=\frac{x}{\ln x}\left(1+\frac{1}{\ln x}+\frac{2.51}{\ln ^{2} x}\right) \quad(x \geq 355991)
$$

These results are due to P. Dusart [2].

2 Existence of Primes in $I_{+f(n)}^{2}$ and $I_{-g(n)}^{2}$

2.1 \quad Study of $I_{+f(n)}^{2}$

In this part, we prove the following theorem:
Theorem 1 If $n \geq 30$, then we have

$$
\mathbb{P} \cap I_{+f(n)}^{2} \neq \phi
$$

in which,

$$
f(n)=\frac{n}{8 \ln ^{2} n+\sqrt{8} \ln n \sqrt{1+8 \ln ^{2} n}}=O\left(\frac{n}{\ln ^{2} n}\right) .
$$

For prove this theorem, we need the following lemma which help us to change the form of intervals.

Lemma 1 Suppose $a, b>0$. We have,

$$
a^{2}+b^{2}=\left(a+\frac{b^{2}}{a+\sqrt{a^{2}+b^{2}}}\right)^{2} .
$$

Proof. Let $a^{2}+b^{2}=\left(a+\frac{b}{M}\right)^{2}$, with $M>0$. Solving this quadratic equation with respect to M, we have

$$
M=\frac{a}{b}+\sqrt{1+\left(\frac{a}{b}\right)^{2}},
$$

and this yields the result.
Now, proof of theorem 1:
Proof. For $30 \leq n \leq 57$ we can check the result by computer. For $n \geq 58=$ $\lceil\sqrt{3275}\rceil$, according to P. Dusart [2], there exists at least a prime p such that

$$
n^{2}<p \leq n^{2}\left(1+\frac{1}{2 \ln ^{2}\left(n^{2}\right)}\right)
$$

Now, by lemma 1, we have

$$
n^{2}\left(1+\frac{1}{2 \ln ^{2}\left(n^{2}\right)}\right)=n^{2}+\left(\frac{n}{\sqrt{8} \ln n}\right)^{2}=(n+f(n))^{2}
$$

such that,

$$
f(n)=\frac{n}{8 \ln ^{2} n+\sqrt{8} \ln n \sqrt{1+8 \ln ^{2} n}}=O\left(\frac{n}{\ln ^{2} n}\right) .
$$

This completes the proof.
Note 1 The truth of theorem 1, holds also for

$$
n=2,4,6,9,10,14,15,16,17,20,21,22,24,25,26,27,28 .
$$

2.2 Study of $I_{-g(n)}^{2}$

Theorem 2 There exists $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$ we have

$$
\mathbb{P} \cap I_{-g(n)}^{2} \neq \phi
$$

in which,

$$
g(n)=n-\sqrt{n^{2}-n^{1.05}}=O\left(n^{\frac{1}{20}}\right) .
$$

Proof. We know that [1], there exists real x_{0} such that for all $x>x_{0}$ we have

$$
\mathbb{P} \cap\left[x-x^{0.525}, x\right] \neq \phi
$$

Let $x=n^{2}$. So, for $n>n_{0}=\left\lceil\sqrt{x_{0}}\right\rceil$ we have $\mathbb{P} \cap\left[n^{2}-n^{1.05}, n^{2}\right] \neq \phi$. Now, let $n^{2}-n^{1.05}=(n-g(n))^{2}$. This completes the proof.

Note 2 We can see that $g(n) \sim \frac{1}{2} n^{\frac{1}{20}}$. Beside, we have the following bounds for $g(n)$:

$$
\frac{1}{2} n^{\frac{1}{20}}<g(n)<n^{\frac{1}{20}}
$$

which hold for all $n>1$. Also, for every $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$ we have

$$
\frac{1}{2} n^{\frac{1}{20}}<g(n)<\frac{1}{2-\epsilon} n^{\frac{1}{20}}
$$

3 How Many Primes?

3.1 Counting Primes in $I_{+f(n)}^{2}$

Let $F(n)$ is the number of primes in $I_{+f(n)}^{2}$; i.e.

$$
F(n)=\# \mathbb{P} \cap I_{f(n)}^{2}=\pi\left((n+f(n))^{2}\right)-\pi\left(n^{2}\right)
$$

By using Prime Number Theorem we can see that:

$$
F(n) \sim \frac{1}{2}\left(\frac{(n+f(n))^{2}}{\ln (n+f(n))}-\frac{n^{2}}{\ln n}\right) \quad(n \rightarrow \infty)
$$

Beside, by considering asymptotic behavior of $f(n)$ we yield:

$$
F(n) \sim \frac{1}{32}\left(\frac{\left(n+\frac{n}{\ln ^{2} n}\right)^{2}}{\ln \left(n+\frac{n}{\ln ^{2} n}\right)}-\frac{n^{2}}{\ln n}\right) \quad(n \rightarrow \infty)
$$

Theorem 1, asserts that for $n \geq 58$ we have $F(n)>0$. By using P. Dusart's bounds on $\pi(x)$ we can yield the following bounds for $F(n)$:

$$
L\left((n+f(n))^{2}\right)-U\left(n^{2}\right) \leq F(n) \leq U\left((n+f(n))^{2}\right)-L\left(n^{2}\right)
$$

which holds for all $n \geq \max \{\lceil\sqrt{355991}\rceil,\lceil\sqrt{32299}\rceil\}=597$.
But, since $\lim _{n \rightarrow \infty} L\left((n+f(n))^{2}\right)-U\left(n^{2}\right)=-\infty$, we replace above lower bound by trivial one, 1. So, we have

$$
1 \leq F(n) \leq U\left((n+f(n))^{2}\right)-L\left(n^{2}\right) \quad(n \geq 597)
$$

About sharp lower and upper bounds for $F(n)$, we have the following conjecture which supported by some computational evidences:

Conjecture 1 For every $\epsilon>0$, there exists $n_{0}(\epsilon) \in \mathbb{N}$, such that for every $n \geq n_{0}$ we have

$$
\frac{1}{32-\epsilon}\left(\frac{\left(n+\frac{n}{\ln ^{2} n}\right)^{2}}{\ln \left(n+\frac{n}{\ln ^{2} n}\right)}-\frac{n^{2}}{\ln n}\right) \leq F(n) \leq \frac{1}{32+\epsilon}\left(\frac{\left(n+\frac{n}{\ln ^{2} n}\right)^{2}}{\ln \left(n+\frac{n}{\ln ^{2} n}\right)}-\frac{n^{2}}{\ln n}\right)
$$

3.2 Probabilistic Existence of Primes in I_{1}^{2}

Estimating of $F(n)$ can be useful in the following theorem.
Theorem 3 The probability that the interval I_{1}^{2} contains a prime is

$$
1-\left(\frac{(n+f(n))^{2}-(n+1)^{2}}{(n+f(n))^{2}-n^{2}}\right)^{F(n)}
$$

Note that $f(n)$ and $F(n)$ are defined in above.
Proof. There are $F(n)$ primes between n^{2} and $(n+f(n))^{2}$. Since $n^{2}<(n+1)^{2}<$ $(n+f(n))^{2}$, and because these primes distributed randomly, the probability that all of these primes are between $(n+1)^{2}$ and $(n+f(n))^{2}$ is equal to

$$
\left(\frac{(n+f(n))^{2}-(n+1)^{2}}{(n+f(n))^{2}-n^{2}}\right)^{F(n)}
$$

and this yields the result.

References

1. R. C. Baker, G. HARMAN and J. PINTZ, THE DIFFERENCE BETWEEN CONSECUTIVE PRIMES, II, Proc. London Math. Soc. (3) 83 (2001) 532-562.
2. P. Dusart, Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59.
