A Note on Short Intervals Containing Primes

Mehdi Hassani
Narges Sariolgalam
Department of Mathematics
Institute for Advanced Studies in Basic Sciences
Zanjan, Iran
mhassani@iasbs.ac.ir
s-ghalam@iasbs.ac.ir

Abstract

In 1999, P. Dusart showed that for $x \geq 3275$, there exists at least a prime number in the interval $\left(x, x\left(1+\frac{1}{2 \ln ^{2} x}\right)\right.$] and in 2003, O. Ramaré and Y. Saouter showed that for $x \geq$ 10726905041 there exists at least a prime number in the interval $\left(x\left(1-\Delta^{-1}\right), x\right]$, in which $\Delta=28314000$. In this note, we show that for $x \geq 1.17 \times 10^{1634}$, we can yield Ramaré-Saouter's result from Dusart's result.

2000 Mathematics Subject Classification: 11A41.
Keywords: Primes.

As usual, suppose \mathbb{P} be the set of all prime numbers. In 1999, P. Dusart [1] showed that for every $x \geq 3275$, we have

$$
\mathbb{P} \cap\left(x, x\left(1+\frac{1}{2 \ln ^{2} x}\right)\right] \neq \phi
$$

In 2003, O. Ramaré and Y. Saouter [2] showed that for $x \geq 10726905041$, we have

$$
\mathbb{P} \cap\left(x\left(1-\Delta^{-1}\right), x\right] \neq \phi,
$$

in which $\Delta=28314000$. If $L_{D}(x)$ denotes the length of Dusart's interval, $\left(x, x\left(1+\frac{1}{2 \ln ^{2} x}\right)\right.$], and $L_{R S}(x)$ denotes the length of Ramaré-Saouter's interval, $\left(x\left(1-\Delta^{-1}\right), x\right]$, then clearly we have:

$$
L_{D}(x)=\frac{x}{2 \ln ^{2} x}=O\left(\frac{x}{\ln ^{2} x}\right)
$$

and

$$
L_{R S}(x)=\frac{x}{\Delta}=O(x)
$$

Also, we observe that

$$
\lim _{x \rightarrow \infty} \frac{L_{D}(x)}{L_{R S}(x)}=0
$$

and this suggest that for sufficiently large values of x 's, Dusart's interval become shorter than Ramaré-Saouter's interval. In this research report, we show that for $x \geq 1.17 \times 10^{1634}$, we can yield Ramaré-Saouter's interval from Dusart's interval.
Let $d(x)=x\left(1+\frac{1}{2 \ln ^{2} x}\right)$. For $x>0, d^{\prime}(x)>0 ;$ so, $d^{-1}(x)$, the inverse of the function $d(x)$, is welldefine. According to Dusart, for $x \geq 3275, \mathbb{P} \cap(x, d(x)] \neq \phi$, and so for such x 's that $d^{-1}(x) \geq 3275$, we have

$$
\mathbb{P} \cap\left(d^{-1}(x), x\right] \neq \phi
$$

Therefore, $\mathbb{P} \cap\left(d^{-1}(x), x\right] \neq \phi$ holds for $x \geq d(3275)$ or for $x \geq 3300$. Now, we search such x 's that $x\left(1-\Delta^{-1}\right) \leq d^{-1}(x)$ or $d\left(x\left(1-\Delta^{-1}\right)\right) \leq x$ and this is equivalent to

$$
x\left(1-\Delta^{-1}\right)\left(1+\frac{1}{2 \ln ^{2}\left(x\left(1-\Delta^{-1}\right)\right)}\right) \leq x
$$

and since $x>0$, we yield that for $x \geq \frac{e \sqrt{\frac{\Delta-1}{2}}}{1-\frac{1}{\Delta}} \approx 1.167417545 \times 10^{1634}$, Dusart's interval yields Ramaré-Saouter's interval. This prove our claim at above.
We end this short note with a question about Dusart's interval:
Question. For every $x \in \mathbb{R}$, let

$$
n(x):=\# \mathbb{P} \cap\left(x, x\left(1+\frac{1}{2 \ln ^{2} x}\right)\right]
$$

Is there some elementary function $f(x)$ such that $n(x) \sim f(x)$, when $x \rightarrow \infty$?
More generally study of $n(x)$ is a nice subject.
Note. All computations in this note done by Maple software.

Acknowledgment. We would like to express our gratitude to G.A. Pirayesh for his nice computational comments.

References

[1] P. Dusart, Inégalités explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59.
[2] O. Ramaré and Y. Saouter, Short effective intervals containing primes, Journal of Number Theory, 98 (2003), 10-33.

