INTEGRAL CHARACTERIZATIONS FOR EXPONENTIAL STABILITY OF SEMIGROUPS AND EVOLUTION FAMILIES ON BANACH SPACES

C. BUŞE, N.S. BARNETT, P. CERONE, AND S.S. DRAGOMIR

ABSTRACT. Let X be a real or complex Banach space and $\mathcal{U} = \{U(t, s)\}_{t>s>0}$ be a strongly continuous and exponentially bounded evolution family on \overline{X} . Let J be a non-negative functional on the positive cone of the space of all realvalued locally bounded functions on $\mathbb{R}_+ := [0, \infty)$. We suppose that J satisfies some extra-assumptions. Then the family $\mathcal U$ is uniformly exponentially stable provided that for every $x \in X$ we have:

$$
\sup_{s\geq 0} J(||U(s+\cdot,s)x||) < \infty.
$$

This result is connected to the uniform asymptotic stability of the well-posed linear and non-autonomous abstract Cauchy problem

$$
\begin{cases}\n\dot{u}(t) = A(t)u(t), & t \ge s \ge 0, \\
u(s) = x & x \in X.\n\end{cases}
$$

In the autonomous case, i.e. when $U(t, s) = T(t - s)$ for some strongly continuous semigroup $\{T(t)\}_{t\geq 0}$ we obtain the well-known theorems of Datko, Littman, Neerven, Pazy and Rolewicz.

1. Introduction

Let X be a real or complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all linear and bounded operators acting on X . The norm of vectors in X and operators in $\mathcal{L}(X)$ will be denoted by $||\cdot||$. Let $\mathbf{T} := {T(t)}_{t\geq0}$ be a semigroup of operators acting on X, that is, $T(t) \in \mathcal{L}(X)$ for every $t \geq 0$, $T(0) = I$ the identity operator in $\mathcal{L}(X)$ and $T(t + s) = T(t) \circ T(s)$ for every $t \geq 0$ and $s \geq 0$. The semigroup **T** is called strongly continuous if for each $x \in X$ the map $t \mapsto T(t)x : [0,\infty) \to X$ is continuous. Every strongly continuous semigroup is locally bounded, that is, there exist $h > 0$ and $M \ge 1$ such that $||T(t)|| \le M$ for all $t \in [0, h]$. It is easy to see that every locally bounded semigroup is exponentially bounded, that is, there exist $\omega \in \mathbb{R}_+$ and $M \geq 1$ such that

$$
||T(t)|| \le Me^{\omega t} \text{ for all } t \ge 0.
$$

It is well-known that if $\mathbf{T} = \{T(t)\}_{t\geq 0}$ is a strongly continuous semigroup on a Banach space X and there exists $p \in [1,\infty)$ such that for each $x \in X$ one has

(1.1)
$$
\int_0^\infty ||T(t)x||^p dt = M(p,x) < \infty,
$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 47D03.

Key words and phrases. Locally bounded semigroups, Evolution families, Exponential stability, Datko-Pazy and Rolewicz's theorems.

then T is exponentially stable, that is, its uniform growth bound

$$
\omega_0(\mathbf{T}) := \inf_{t>0} \frac{\ln ||T(t)||}{t},
$$

is negative. This result is usually referred to as the Datko-Pazy theorem, see [\[6,](#page-7-0) [12\]](#page-7-1). An important application of the Datko-Pazy theorem can be found in [\[16\]](#page-7-2). A quantitative version of this theorem states that if $M(p, x)$ from [\(1.1\)](#page-0-0) is equal to $C||x||^p$, where C is some positive constant, then $\omega_0(\mathbf{T}) < -\frac{1}{pC}$. See [\[10\]](#page-7-3) Theorem 3.1.8 for details. An important generalization of the Datko-Pazy theorem was given by S. Rolewicz, [\[13\]](#page-7-4). In the autonomous case the Rolewicz theorem reads as follows. Let $\mathbf{T} = \{T(t)\}_{t>0}$ be a strongly continuous semigroup on a Banach space X. If there exists a continuous non-decreasing function $\phi : [0, \infty) \to [0, \infty)$ such that $\phi(t) > 0$ for each $t > 0$ and if

(1.2)
$$
\int_0^\infty \phi(||T(t)x||)dt := M_\phi(x) < \infty \text{ for each } x \in X,
$$

then the semigroup \bf{T} is exponentially stable. The same result was obtained independently by Littman [\[8\]](#page-7-5). In particular, from Rolewicz's theorem it follows that the Datko-Pazy theorem remains valid for $p \in (0,1)$. The condition [\(1.1\)](#page-0-0) indicates that for each $x \in X$ the map $t \mapsto T(t)x$ belongs to $L^p(\mathbb{R}_+)$. Jan van Neerven has shown in [\[9\]](#page-7-6) that a strongly continuous semigroup $\mathbf T$ on X is uniformly exponentially stable if there exists a Banach function space over $\mathbb{R}_+ := [0, \infty)$ with the property that

(1.3)
$$
\lim_{t \to \infty} ||1_{[0,t]}||_E = \infty,
$$

such that

(1.4)
$$
||T(\cdot)x|| \in E \text{ for every } x \in X.
$$

He has also shown that the autonomous variant of the Rolewicz theorem can be derived from his result by taking for E a suitable Orlicz space over \mathbb{R}_+ . In another paper, [\[11\]](#page-7-7), Jan van Neerven has come to the same conclusion by replacing either [\(1.1\)](#page-0-0), [\(1.2\)](#page-1-0) or [\(1.4\)](#page-1-1) by the hypothesis that the set of all $x \in X$ for which the following inequality holds

$$
J(||T(\cdot)x||) < \infty,
$$

is of the second category in X . Here J is a certain lower semi-continuous functional as defined in Theorem 2 from [\[11\]](#page-7-7). The proof of this latter result is based on a non-trivial result from operator theory given by V. Müler, see Lemma 1 from $[11]$, for further details. We give here a surprisingly simple proof for a result of the same type, moreover, we do not require the lower semi-continuity of J.

In order to introduce some non-autonomous results of this type we recall the notion of an evolution family.

A family $\mathcal{U} = \{U(t, s)\}_{t>s>0}$ of bounded linear operators on a Banach space X is a strongly continuous evolution family if

- (1) $U(t, t) = I$ and $U(r, s) = U(t, s)$ for $t \ge r \ge s \ge 0$.
- (2) The map $t \mapsto U(t, s)x : [s, \infty) \to X$ is continuous for every $s \geq 0$ and every $x \in X$.

The family U is exponentially bounded if there exist $\omega \in \mathbb{R}$ and $M_{\omega} \geq 0$ such that

$$
||U(t,s)|| \le M_{\omega} e^{\omega(t-s)} \text{ for } t \ge s \ge 0.
$$

Then $\omega(\mathcal{U}) := \inf{\omega \in \mathbb{R} : \text{there is } M_{\omega} \geq 0 \text{ such that } (1.5) \text{ holds}}$ $\omega(\mathcal{U}) := \inf{\omega \in \mathbb{R} : \text{there is } M_{\omega} \geq 0 \text{ such that } (1.5) \text{ holds}}$ $\omega(\mathcal{U}) := \inf{\omega \in \mathbb{R} : \text{there is } M_{\omega} \geq 0 \text{ such that } (1.5) \text{ holds}}$ is called the growth bound of U . The family U is uniformly exponentially stable if its growth bound is negative.

In [\[1\]](#page-7-8) it is proved that an exponentially bounded evolution family U is uniformly exponentially stable if there exists a solid space E satisfying (1.3) such that for each $s \geq 0$ and each $x \in X$ the map $||U(s + \cdot, s)x||$ belongs to E and

$$
\sup_{s \ge 0} |||U(s + \cdot, s)x|| := K(x) < \infty.
$$

The non-autonomous Datko theorem, [\[7\]](#page-7-9), follows from this by taking $E = L^p(\mathbb{R}_+).$ The theorem of Rolewicz, $[14]$, can be derived as well by taking for E a suitable Orlicz space over \mathbb{R}_+ , see Theorem 2.10 from [\[1\]](#page-7-8). New guidelines about the proof of the Datko theorem can be found in [\[5\]](#page-7-11) and [\[15\]](#page-7-12). In this paper we propose a more natural generalization of the theorems of Datko and Rolewicz which can also be extended to the general non-autonomous case. For some recently obtained autonomous or periodic versions of the above; see [\[4\]](#page-7-13), [\[11\]](#page-7-7).

2. A Generalization of the Datko-Pazy Theorem

We begin by stating and proving two lemmas which are useful later.

Lemma 1. Let $\mathbf{T} = \{T(t) : t \geq 0\}$ be a locally bounded semigroup on a Banach space X. If for each $x \in X$ there exists $t(x) > 0$ such that $T(t(x))x = 0$, then T is uniformly exponentially stable.

Proof. It is easy to see that T is uniformly bounded. Indeed, if not, then there exists a sequence (t_n) of positive real numbers with $t_n \to \infty$ such that $||T(t_n)|| \to \infty$. By the Uniform Boundedness Theorem it follows that there exists $x \in X$ such that $||T(t_n)x|| \to \infty$. This is in contradiction to the hypothesis. Now let $\nu > 0$. The semigroup $\{e^{\nu t}T(t)\}\$ verifies the hypothesis of the present Lemma and it is uniformly bounded. Finally, we deduce that T is uniformly exponentially stable.

Lemma 2. Let $\mathbf{T} = \{T(t)\}_{t>0}$ be a locally bounded semigroup such that for each $x \in X$ the map $t \mapsto ||T(t)x||$ is continuous on $(0,\infty)$. If there exist a positive h and $0 < q < 1$ such that for all $x \in X$ there exists $t(x) \in (0, h]$ with

(2.1)
$$
||T(t(x))x|| \le q||x||,
$$

then the semigroup $\mathbf T$ is uniformly exponentially stable.

Proof. Let $x \in X$ be fixed and $t_1 \in (0, h]$ such that $||T(t_1)x|| \leq q||x||$, then there exists $t_2 \in (0, h]$ such that

$$
||T(t_2+t_1)x|| \le q||T(t_1)x|| \le q^2||x||.
$$

By mathematical induction it is easy to see that there exists a sequence (t_n) , with $0 < t_n \le h$ such that $||T(s_n)x|| \le q^n ||x||$, where $s_n := t_1 + t_2 + \cdots + t_n$.

If $s_n \to \infty$, then for each $t \in [s_n, s_{n+1}]$ we have that $t < (n+1)h$ and

$$
||T(t)x|| \le Mq^n ||x|| \le M e^{-\ln(q)} e^{\frac{\ln(q)}{T}t} ||x||,
$$

that is, T is exponentially stable.

If the sequence (s_n) is bounded, let $t(x)$ be the limit of (s_n) . By the assumption of continuity it follows that $T(t(x)) = 0$ and then application of Lemma [1](#page-2-0) completes the proof. \blacksquare

We can now state the main result of this section.

Theorem 1. Let $\mathcal{M}_{loc}([0,\infty))$ be the space of all real valued locally bounded functions on $\mathbb{R}_+ = [0,\infty)$ endowed with the topology of uniform convergence on bounded sets and $\mathcal{M}_{loc}^+(\mathbb{R}_+)$ its positive cone.

Let $J : \overline{\mathcal{M}}_{loc}^{\dagger}(\mathbb{R}_{+}) \to [0,\infty]$ be a map with the following properties:

1. J is nondecreasing.

2. For each positive real number ρ ,

$$
\lim_{t \to \infty} J(\rho \cdot 1_{[0,t]}) = \infty.
$$

If T is a semigroup on a Banach space X as in Lemma [2](#page-2-1) such that

(2.2)
$$
\sup_{||x|| \le 1} J(||T(\cdot)x||) := K_J < \infty,
$$

then $\mathbf T$ is exponentially stable.

Proof. Suppose that **T** is not exponentially stable. For all $h > 0$ and all $0 < q < 1$ then there exists $x_0 \in X$ of norm one such that

$$
||T(t)x_0|| > q
$$
 for every $t \in [0, h],$

as proved in Lemma [2.](#page-2-1) It follows then that

$$
K_J \ge J(||T(\cdot)x_0||) \ge J(q \cdot 1_{[0,h]})
$$

which contradicts (2.2) .

Corollary 1. Let $\mathbf{T} = \{T(t)\}_{t>0}$ be a semigroup on a Banach space X as in Lemma [2](#page-2-1) and $1 \leq p < \infty$. If $(1,1)$ holds for all $x \in X$ then the semigroup $\mathbf T$ is exponentially stable.

Proof. For each fixed positive h consider the bounded linear operator

$$
x \mapsto T_h x : X \to L^p(\mathbb{R}_+, X)
$$

defined by

$$
(T_h x)(t) = \begin{cases} T(t)x, & \text{if } 0 \le t \le h \\ 0, & \text{if } t > h. \end{cases}
$$

For each $x \in X$ we have:

$$
||T_hx||_{L^p(\mathbb{R}_+,X)} = \left(\int_0^h ||T(t)x||^p dt\right)^{\frac{1}{p}} \le M(p,x)^{\frac{1}{p}}.
$$

From the Uniform Boundedness Theorem it follows that there exists a positive constant C_p such that

$$
||T_hx||_{L^p(\mathbb{R}_+,X)} \leq C_p||x||
$$
 for every $x \in X$.

Now it is easy to derive the inequality

$$
\sup_{||x|| \le 1} \int_0^\infty ||T(t)x||^p dt \le K_p < \infty,
$$

where K_p is a positive constant. Choose $J(f) := \int_0^\infty f(t)^p dt$, apply Theorem [1](#page-2-2) and the proof is complete.

Corollary 2. Let $\mathbf{T} = \{T(t)\}_{t\geq0}$ be a semigroup on a Banach space X as in the above Lemma [2.](#page-2-1) If there exists a non-decreasing function $\phi : [0, \infty) \to [0, \infty)$ such that $\phi(t) > 0$ for each $t > 0$ and [\(1.2\)](#page-1-0) holds then the semigroup **T** is exponentially stable.

Proof. Seemingly we could proceed as in the proof of Corollary [1,](#page-3-1) but, however, we cannot directly apply the Uniform Boundedness Theorem. First we prove that the semigroup $\mathbf T$ is uniformly bounded. In fact, this has been done in [\[2\]](#page-7-14) in the general framework of the evolution families. For the sake of completeness we mention some steps of that proof for this particular case. We may assume that $\phi(0) = 0, \phi(1) = 1$ and that ϕ is strictly increasing on \mathbb{R}_+ , if not, we replace ϕ by some multiple of the function

$$
t\mapsto \bar{\phi}(t):=\left\{\begin{array}{lll} \int_0^t\phi(u)du, & \text{ if } & 0\leq t\leq 1\\ \frac{at}{at+1-a}, & \text{ if } & t>1, \end{array}\right.
$$

where $a := \int_0^1 \phi(u) du$.

Let $x \in X$ be fixed, N be a positive integer such that $M_{\phi}(x) < N$ and let $t \geq N$. For each $\tau \in [t - N, t]$ and all $u \geq 0$ we have:

$$
e^{-\omega N}1_{[t-N,t]}(u)||T(t)x|| \leq e^{-\omega(t-\tau)}1_{[t-N,t]}(u)||T(t-\tau)T(\tau)x|| \leq M||T(u)x||
$$

and then

$$
N\phi\left(\frac{||T(t)x||}{Me^{\omega N}}\right) \le \int_{t-N}^t \phi\left(\frac{||T(t)x||}{Me^{\omega N}}\right) du \le M_\phi(x).
$$

Hence $||T(t)x|| \le Me^{\omega N} M_\phi(x)$ for every $t \ge N$, and so the semigroup **T** is uniformly bounded.

From [\[11\]](#page-7-7) Lemma 3.2.1 it follows that there exists an Orlicz's space E satisfying [\(1.3\)](#page-1-3) such that for each $x \in X$ which satisfies [\(1.2\)](#page-1-0), the map $t \mapsto T(t)x$ belongs to E . For each non-negative, bounded and measurable real-valued function f we put $J(f) := \sup |1_{[0,t]}f|_E$, giving, $t\geq 0$

$$
J(||T(\cdot)x||) = \sup_{t \ge 0} |1_{[0,t]}|||T(\cdot)x|||_E \le |||T(\cdot)x|||_E < \infty,
$$

for every $x \in X$.

Arguing as in Corollary [1](#page-3-1) it follows that there exists a positive constant K_{ϕ} , independent of x , such that

$$
\sup_{||x||\leq 1} J(||T(\cdot)x||) < K_\phi < \infty.
$$

Application of Theorem [1](#page-2-2) completes the proof.

3. The Non-autonomous Case

We state and prove two lemmas that will be used in the sequel.

Lemma 3. Let $\mathcal{U} = \{U(t, s)\}_{t \geq s \geq 0}$ be an exponentially bounded evolution family on a Banach space X. If for each $x \in X$ there exists $t(x) > 0$ such that $U(s+t(x), s)x =$ 0 for every $s \geq 0$ then the family U is uniformly exponentially stable.

Proof. First we prove that there exists $M > 0$ such that

$$
\sup_{s\geq 0} ||U(s+t, s)|| \leq M
$$
 for all $t \geq 0$.

Indeed, if we suppose the contrary then there exists a sequence (t_n) of positive real numbers with $t_n \to \infty$ such that $\lim_{n\to\infty} ||U(s+t_n, s)|| = \infty$. From the Uniform Boundedness Theorem it follows that there exists $x \in X$ such that $||U(s+t_n, s)x|| \rightarrow$ ∞ when $n \to \infty$ which is in contradiction to the hypothesis. We now observe that

the family $\{e^{\nu(t-s)}U(t,s)\}_{t\geq s\geq 0}$ verifies the hypothesis of the present lemma and then

$$
||U(t,s)|| \le Me^{-\nu(t-s)} \text{ for all } t \ge s,
$$

i.e. the assertion holds.

Lemma 4. Let $\mathcal{U} = \{U(t, s)\}_{t \geq s \geq 0}$ be an exponentially bounded evolution family on a Banach space X such that for each $y \in X$ and each $s \geq 0$ the map

$$
t \mapsto ||U(s+t,s)y|| : \mathbb{R}_+ \to \mathbb{R}_+
$$

is continuous on $(0,\infty)$. If there exist positive real numbers h and $q < 1$ such that for every $x \in X$ there exists $t(x) \in (0, h]$ with the property that

$$
\sup_{s\geq 0} ||U(s+t(x),s)x|| \leq q||x||,
$$

then the family U is exponentially stable.

Proof. Is similar to that of Lemma [2](#page-2-1) and so we omit the details. \blacksquare

Theorem 2. Let $\mathcal{U} = \{U(t, s)\}_{t \geq s \geq 0}$ be an evolution family on a Banach space X as in the above Lemma [4](#page-5-0) and let \overline{J} be a functional as in Theorem [1.](#page-2-2) If there exists $r > 0$ such that

(3.1)
$$
\sup_{s\geq 0} \sup_{||x||\leq r} J(||U(s + \cdot, s)x||) := L(J, r) < \infty,
$$

then the evolution family U is uniformly exponentially stable.

Proof. Suppose that the family U is not uniformly exponentially stable. Under such circumstances as proved in Lemma [4,](#page-5-0) for every positive real number h and every $q \in (0,1)$ there exist $x_0 \in X$ of norm one and $s_0 \geq 0$ such that

$$
||U(s_0 + t, s_0)x_0|| > q \text{ for all } t \in [0, h].
$$

Thus

$$
L(J,r) \ge J(||U(s_0 + t, s_0)rx_0||) \ge J(rq \cdot 1_{[0,h]})
$$

for each $h > 0$, which contradicts [\(3.1\)](#page-5-1).

Theorem 3. Let J be as in the above Theorem [1.](#page-2-2) We suppose, in addition, that J is lower semi-continuous and convex in the sense of Jensen (or sub-additive, that is, $J(f+g) \leq J(f) + J(g)$ for every f and g in $\mathcal{M}_{loc}(\mathbb{R}_+))$. Let U be an evolution family as in the Lemma [4.](#page-5-0) If the set X of all $x \in X$ for which

$$
\sup_{s\geq 0} J(||U(s+\cdot,s)x||) < \infty
$$

is of the second category in X, then the family U is uniformly exponentially stable.

Proof. Let $s \geq 0$, be fixed. The map $x \mapsto ||U(s + \cdot, s)x|| : X \to M_{loc}(\mathbb{R}_+)$ is continuous. As a consequence, the map

$$
x \mapsto \Phi_s(x) := J(||U(s + \cdot, s)x||) : X \to [0, \infty]
$$

is lower semi-continuous as well. For each positive integer k , the set

$$
X_k(s) := \{ x \in X : J(||U(s + \cdot, s)x||) \le k \}
$$

is closed, because it is the reverse image of the real closed interval $[0, k]$ by the map Φ_s . It is clear that the set

$$
X_k := \left\{ x \in X : \sup_{s \ge 0} J(||U(s + \cdot, s)x||) \le k \right\} = \cap_{s \ge 0} X_k(s)
$$

is also closed and moreover that X is the union of all sets X_k . Because X is of the second category in X, there exists a set X_{k_0} whose interior is non empty. Let $x_0 \in X$ and $r_0 > 0$ such that $B(x_0, r_0)$ belongs to X_{k_0} . It is easy to see that $B\left(0, \frac{1}{2}r_0\right)$ belongs to X_{k_0} , that is,

$$
\sup_{s\geq 0} \sup_{||x|| \leq \frac{1}{2}r_0} J(||U(s + \cdot, s)x||) \leq k_0.
$$

Indeed for every $x \in X$ with $||x|| \le r_0$ we have:

$$
J\left(\left\|U(s + \cdot, s)\left(\frac{1}{2}x\right)\right\|\right) = J\left(\frac{1}{2}||U(s + \cdot, s)[(x + x_0) - x_0]||\right)
$$

\n
$$
\leq J\left(\frac{1}{2} [||U(s + \cdot, s)(x + x_0) + ||U(s + \cdot, s)x_0||]\right)
$$

\n
$$
\leq \frac{1}{2}J(||U(s + \cdot, s)(x + x_0)||) + \frac{1}{2}J(||U(s + \cdot, s)x_0||)
$$

\n
$$
\leq k_0.
$$

Application of Theorem [2](#page-5-2) completes the proof. ■

Corollary 3. Let $\mathcal{U} = \{U(t, s)\}_{t \geq s \geq 0}$ be an exponentially bounded evolution family on a Banach space X such that for each $x \in X$ the map $t \mapsto ||U(s + t, s)x||$ is continuous on $(0, \infty)$ for every $s \geq 0$. Consider the following three inequalities:

1. There exists $p \in [1,\infty)$ such that

$$
\sup_{s\geq 0}\int_0^\infty ||U(s+t,s)x||^pdt<\infty
$$

for every $x \in X$.

2. There exists a Banach function space E satisfying (1.3) such that for each $s \geq 0$ and each $x \in X$ the map $U(s + \cdot, s)x$ belongs to E and for every $x \in X$ we have

$$
\sup_{s\geq 0}|||U(s+\cdot,s)x|||_E<\infty.
$$

3. There exists a non-decreasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(t) > 0$ for each $t > 0$ such that

$$
\sup_{s\geq o}\int_0^\infty \phi(||U(s+t,s)x||)dt < \infty
$$

for every $x \in X$.

If any one of these statements is true then the family U is exponentially stable.

Acknowledgement 1. Professor Constantin Buşe was supported by the Victoria University Discovery Research Grant D03/02 and by the Faculty of Mathematics, West Univesity of Timişoara, research funding.

REFERENCES

- [1] S. Bârză, C. Bușe, J. Pečarić, New characterizations of asymptotic stability for evolution families on Banach spaces, Electronic J. Diff. Eqns., Vol. $(2004)(2004)$, No. 38, pp.1-9.
- [2] C. Buşe, S. S. Dragomir, A theorem of Rolewicz's type for measurable evolution families in Banach spaces, Electonic J. of Diff. Eqns., Vol. 2001(2001), No. 70, pp.1-5.
- [3] C. Buşe, S.S. Dragomir, A theorem of Rolewicz type in solid function spaces, Glasgow Math. J. 44(2002), 125-135.
- [4] C. Buşe, A characterization of exponential stability for periodic evolution families in terms of lower semicontinuous functionals, Electronic Journal of Qualitative Theory of Differential Equations (2004), to apperar.
- [5] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surv. Monogr. 70, AMS, Providence, R. I., 1999.
- [6] R. Datko, *Extending a theorem of A. M. Liapunov to Hilbert space*, J. Math. Anal. Appl. 32 (1970), 610-616.
- [7] R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM. J. Math Analysis 3, (1973), 428-445.
- [8] W. Littman, A generalization of a therem of Datko and Pazy in Lect. Notes in Control and Inform Sci. 130, Springer-Verlag, (1989), 318-323.
- [9] J. M. A. M. van Neerven, Exponential stability of operators and operator semigroups, J. Func. Anal. 130 (1995), 293-309.
- [10] J. M. A. M. van Neerven, The Asymptotic Behaviuor of Semigroups of Linear Operators, Birkhäuser Verlag, 1996.
- [11] J. M. A. M. van Neerven, Lower semicontinuity and the theorem of Datko and Pazy, Integr. Equ. Oper.. Theory, 42(2002), 482-492.
- [12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.
- [13] S. Rolewicz, On uniform N-equistability, J. Math. Anal. Appl. 115 (1986), 434-441.
- [14] S. Rolewicz, Functional Analysis and Control Theory (D. Riedel and PWN-Polish Scientific Publishers, Dordrecht-Warszawa, 1987)
- [15] R. Schnaubelt, Well-posedness and asymptotic behaviour of non-autonomous linear evolution equations, Evolution Equations Semigroups and Functional Analysis (Milano 2000) 311-338, Prog. Nonlinear Differential Equations Appl. 50, Birkhäuser, Basel, 2002.
- [16] G. Weiss, Weak L^p -stability of a linear semigroup on a Hilbert space implies exponential stability, J. Diff. Eq. 76(1988), 269-285.

Department of Mathematics, West University of Timisoara, Timisoara, 1900, Bd. V. Parvan. Nr. 4, Romania

E-mail address: buse@math.uvt.ro URL: http://rgmia.vu.edu.au/BuseCVhtml/index.html

School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, MCMC 8001, Victoria, Australia.

 $\it E\mbox{-}mail\;address:$ neil@csm.vu.edu.au

E-mail address: pc@csm.vu.edu.au URL: http://rgmia.vu.edu.au/cerone

E-mail address: sever.dragomir@vu.edu.au URL: http://rgmia.vu.edu.au/SSDragomirWeb.html