REFINEMENTS OF FEJÉR'S INEQUALITY FOR CONVEX FUNCTIONS

K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR

 $\label{eq:ABSTRACT. In this paper, we establish some new refinements for the celebrated Fejér's and Hermite-Hadamard's integral inequalities for convex functions.$

1. INTRODUCTION

One of the most important integral inequalities with various applications for generalised means, information measures, quadrature rules, etc., is the well known *Hermite-Hadamard inequality* [1]

(1.1)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2},$$

where $f:[a,b] \to \mathbb{R}$ is a convex function on the interval [a,b].

In order to refine and generalize this classical result for weighted integrals, we define the following functions on [0, 1], namely

$$\begin{split} G\left(t\right) &= \frac{1}{2} \left[f\left(ta + (1-t)\frac{a+b}{2}\right) + f\left(tb + (1-t)\frac{a+b}{2}\right) \right]; \\ H\left(t\right) &= \frac{1}{b-a} \int_{a}^{b} f\left(tx + (1-t)\frac{a+b}{2}\right) dx; \\ H_{g}\left(t\right) &= \int_{a}^{b} f\left(tx + (1-t)\frac{a+b}{2}\right) g\left(x\right) dx; \\ I\left(t\right) &= \int_{a}^{b} \frac{1}{2} \left[f\left(t\frac{x+a}{2} + (1-t)\frac{a+b}{2}\right) + f\left(t\frac{x+b}{2} + (1-t)\frac{a+b}{2}\right) \right] g\left(x\right) dx; \\ F\left(t\right) &= \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(tx + (1-t)y\right) dxdy; \end{split}$$

$$\begin{split} K(t) &= \int_{a}^{b} \int_{a}^{b} \frac{1}{4} \left[f\left(t \frac{x+a}{2} + (1-t) \frac{y+a}{2} \right) \right. \\ &+ f\left(t \frac{x+a}{2} + (1-t) \frac{y+b}{2} \right) + f\left(t \frac{x+b}{2} + (1-t) \frac{y+a}{2} \right) \right. \\ &+ f\left(t \frac{x+b}{2} + (1-t) \frac{y+b}{2} \right) \right] g\left(x \right) g\left(y \right) dxdy; \end{split}$$

1991 Mathematics Subject Classification. 26D15.

Key words and phrases. Hermite-Hadamard inequality, Fejér inequality, Convex function. This research was partially supported by grant NSC 98-2115-M-156-004.

K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR

$$L(t) = \frac{1}{2(b-a)} \int_{a}^{b} \left[f(ta + (1-t)x) + f(tb + (1-t)x) \right] dx;$$

$$L_{g}(t) = \frac{1}{2} \int_{a}^{b} \left[f(ta + (1-t)x) + f(tb + (1-t)x) \right] g(x) dx;$$

$$S_{g}(t) = \frac{1}{4} \int_{a}^{b} \left[f\left(ta + (1-t)\frac{x+a}{2}\right) + f\left(ta + (1-t)\frac{x+b}{2}\right) + f\left(tb + (1-t)\frac{x+a}{2}\right) + f\left(tb + (1-t)\frac{x+b}{2}\right) \right] g(x) dx$$

and

$$N(t) = \int_{a}^{b} \frac{1}{2} \left[f\left(ta + (1-t)\frac{x+a}{2} \right) + f\left(tb + (1-t)\frac{x+b}{2} \right) \right] g(x) \, dx.$$

where $f: [a,b] \to \mathbb{R}$ is convex, $g: [a,b] \to [0,\infty)$ is integrable and symmetric to $\frac{a+b}{2}$.

Remark 1. We note that $H = H_g = I$, F = K and $L = L_g = S_g$ on [0,1] as $g(x) = \frac{1}{b-a} (x \in [a, b]).$

For some results which generalize, improve, and extend the famous Hermite-Hadamard integral inequality see [2] - [20].

In [8], Fejér established the following weighted generalization of (1.1).

Theorem A. Let f, g be defined as above. Then

(1.2)
$$f\left(\frac{a+b}{2}\right)\int_{a}^{b}g(x)\,dx \le \int_{a}^{b}f(x)\,g(x)\,dx \le \frac{f(a)+f(b)}{2}\int_{a}^{b}g(x)\,dx.$$

In [11], Tseng et al. established the following Fejér-type inequalities.

Theorem B. Let f, g be defined as above. Then we have

$$\begin{aligned} f\left(\frac{a+b}{2}\right)\int_{a}^{b}g\left(x\right)dx &\leq \frac{f\left(\frac{3a+b}{4}\right)+f\left(\frac{a+3b}{4}\right)}{2}\int_{a}^{b}g\left(x\right)dx\\ &\leq \int_{a}^{b}\frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right]g\left(x\right)dx\\ &\leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f\left(a\right)+f\left(b\right)}{2}\right]\int_{a}^{b}g\left(x\right)dx\\ &\leq \frac{f\left(a\right)+f\left(b\right)}{2}\int_{a}^{b}g\left(x\right)dx. \end{aligned}$$

$$(1.3)$$

In [2], Dragomir improved the first part of the Hermite-Hadamard inequality by considering the functions H, F as follows:

Theorem C. Let f, H be defined as above. Then H is convex, increasing on [0, 1], and for all $t \in [0, 1]$, we have

(1.4)
$$f\left(\frac{a+b}{2}\right) = H(0) \le H(t) \le H(1) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

Theorem D. Let f, F be defined as above. Then

(1) *F* is convex on [0,1], symmetric about $\frac{1}{2}$, *F* is decreasing on $[0,\frac{1}{2}]$ and increasing on $[\frac{1}{2},1]$, and for all $t \in [0,1]$,

$$\sup_{t \in [0,1]} F(t) = F(0) = F(1) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

and

$$\inf_{t \in [0,1]} F(t) = F\left(\frac{1}{2}\right) = \frac{1}{(b-a)^2} \int_a^b \int_a^b f\left(\frac{x+y}{2}\right) dxdy.$$

(2) We have:

(1.5)
$$f\left(\frac{a+b}{2}\right) \le F\left(\frac{1}{2}\right); \qquad H(t) \le F(t), \quad t \in [0,1].$$

In [11], Tseng et al. established the following Fejér-type inequality related to the functions I, N, which is also the weighted generalization of Theorem C.

Theorem E. Let f, g, I, N be defined as above. Then I, N are convex, increasing on [0, 1], and for all $t \in [0, 1]$, we have

$$f\left(\frac{a+b}{2}\right)\int_{a}^{b}g\left(x\right)dx = I\left(0\right) \leq I\left(t\right) \quad \leq I\left(1\right)$$
$$= \int_{a}^{b}\frac{1}{2}\left[f\left(\frac{x+a}{2}\right) + f\left(\frac{x+b}{2}\right)\right]g\left(x\right)dx$$
$$= N\left(0\right) \leq N\left(t\right) \leq N\left(1\right)$$
$$= \frac{f\left(a\right) + f\left(b\right)}{2}\int_{a}^{b}g\left(x\right)dx.$$
$$(1.6)$$

In [7], Dragomir et al. established the following Hermite-Hadamard-type inequality related to the functions H, G, L.

Theorem F. Let f, H, G, L be defined as above. Then G is convex, increasing on [0,1], L is convex on [0,1], and for all $t \in [0,1]$, we have

(1.7)
$$H(t) \le G(t) \le L(t) \le \frac{1-t}{b-a} \int_{a}^{b} f(x) \, dx + t \cdot \frac{f(a) + f(b)}{2} \le \frac{f(a) + f(b)}{2}.$$

In [12] – [13], Tseng et al. established the following theorem related to Fejér-type inequalities concerning the functions G, H_g, L_g, I, S_g and which provides a weighted generalizations of the inequality (1.7).

Theorem G ([12]). Let f, g, G, H_g, L_g be defined as above. Then L_g is convex, increasing on [0, 1], and for all $t \in [0, 1]$, we have

(1.8)

$$H_{g}(t) \leq G(t) \int_{a}^{b} g(x) dx \leq L_{g}(t)$$

$$\leq (1-t) \int_{a}^{b} f(x) g(x) dx + t \cdot \frac{f(a) + f(b)}{2} \int_{a}^{b} g(x) dx$$

$$\leq \frac{f(a) + f(b)}{2} \int_{a}^{b} g(x) dx.$$

Theorem H ([13]). Let f, g, G, I, S_g be defined as above. Then S_g is convex, increasing on [0, 1], and for all $t \in [0, 1]$, we have

$$I(t) \leq G(t) \int_{a}^{b} g(x) dx \leq S_{g}(t)$$

$$\leq (1-t) \int_{a}^{b} \frac{1}{2} \left[f\left(\frac{x+a}{2}\right) + f\left(\frac{x+b}{2}\right) \right] g(x) dx$$

$$+ t \cdot \frac{f(a) + f(b)}{2} \int_{a}^{b} g(x) dx$$

$$1.9) \leq \frac{f(a) + f(b)}{2} \int_{a}^{b} g(x) dx.$$

Finally, we notice that in [5], Dragomir established the following Hermite-Hadamard-type inequalities related to the functions H, F, L.

Theorem I. Let F, H, L be defined as above. Then we have the inequality

(1.10)
$$0 \le F(t) - H(t) \le L(1-t) - F(t)$$

for all $t \in [0, 1]$.

In this paper, we establish some Fejér-type and Hermite-Hadamard-type inequalities related to the functions $H, F, L, H_g, L_g, I, S_g, K$ defined above. As an important consequence we also obtain the weighted generalizations of Theorems D and I.

2. Main Results

The following lemma plays a key role in proving the new results:

Lemma 2 (see [9]). Let $f : [a,b] \to \mathbb{R}$ be a convex function and let $a \le A \le C \le D \le B \le b$ with A + B = C + D. Then

 $f(C) + f(D) \le f(A) + f(B).$

We can state now the following result:

Theorem 3. Let f, g, I, K be defined as above. Then:

- (1) K is convex on [0,1] and symmetric about $\frac{1}{2}$.
- (2) K is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$,

(2.1)
$$\sup_{t \in [0,1]} K(t) = K(0) = K(1)$$

$$= \int_{a}^{b} \frac{1}{2} \left[f\left(\frac{x+a}{2}\right) + f\left(\frac{x+b}{2}\right) \right] g\left(x\right) dx \cdot \int_{a}^{b} g\left(x\right) dx$$

and

(2.2)

$$\inf_{t \in [0,1]} K(t) = K\left(\frac{1}{2}\right)$$

$$= \int_{a}^{b} \int_{a}^{b} \frac{1}{4} \left[f\left(\frac{x+y+2a}{4}\right) + 2f\left(\frac{x+y+a+b}{4}\right) + f\left(\frac{x+y+2b}{4}\right) \right] g(x) g(y) dxdy.$$

(

(3) We have

(2.3)
$$I(t) \int_{a}^{b} g(x) dx \leq K(t)$$

and

(2.4)
$$f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b}g\left(x\right)dx\right)^{2} \leq K\left(\frac{1}{2}\right)$$

for all $t \in [0, 1]$.

Proof. (1) It is easily observed from the convexity of f that K is convex on [0, 1]. By changing the variable, we have that

$$K(t) = K(1-t), \quad t \in [0,1],$$

from which we get that K is symmetric about $\frac{1}{2}$.

(2) Let $t_1 < t_2$ in $\left[0, \frac{1}{2}\right]$. Using the symmetry of K, we have

(2.5)
$$K(t_1) = \frac{1}{2} \left[K(t_1) + K(1 - t_1) \right],$$

(2.6)
$$K(t_2) = \frac{1}{2} \left[K(t_2) + K(1 - t_2) \right]$$

and, by Lemma 2, we have

(2.7)
$$\frac{1}{2} \left[K(t_2) + K(1 - t_2) \right] \le \frac{1}{2} \left[K(t_1) + K(1 - t_1) \right].$$

From (2.5) – (2.7), we obtain that K is decreasing on $[0, \frac{1}{2}]$. Since K is symmetric about $\frac{1}{2}$ and K is decreasing on $[0, \frac{1}{2}]$, we get that K is increasing on $[\frac{1}{2}, 1]$. Using the symmetry and monotonicity of K, we derive (2.1) and (2.2).

(3) Using substitution rules for integration and the hypothesis of g, we have the following identity

$$(2.8) \quad K(t) = \int_{a}^{b} \int_{a}^{b} \frac{1}{4} \left[f\left(t\frac{x+a}{2} + (1-t)\frac{y+a}{2}\right) + f\left(t\frac{x+a}{2} + (1-t)\frac{a+2b-y}{2}\right) + f\left(t\frac{x+b}{2} + (1-t)\frac{y+a}{2}\right) + f\left(t\frac{x+b}{2} + (1-t)\frac{a+2b-y}{2}\right) \right] g(x)g(y) \, dy \, dx$$

for all $t \in [0, 1]$.

By Lemma 2, the following inequalities hold for all $t \in [0,1]\,,\, x \in [a,b]$ and $y \in [a,b]$. The inequality

$$(2.9) \quad \frac{1}{2}f\left(t\frac{x+a}{2} + (1-t)\frac{a+b}{2}\right) \\ \leq \frac{1}{4}\left[f\left(t\frac{x+a}{2} + (1-t)\frac{y+a}{2}\right) + f\left(t\frac{x+a}{2} + (1-t)\frac{a+2b-y}{2}\right)\right]$$

holds when

$$A = t \frac{x+a}{2} + (1-t) \frac{y+a}{2},$$

$$C = D = t \frac{x+a}{2} + (1-t) \frac{a+b}{2} \quad \text{and} \quad$$

$$B = t \frac{x+a}{2} + (1-t) \frac{a+2b-y}{2}$$

in Lemma 2. The inequality

$$(2.10) \quad \frac{1}{2}f\left(t\frac{x+b}{2} + (1-t)\frac{a+b}{2}\right) \\ \leq \frac{1}{4}\left[f\left(t\frac{x+b}{2} + (1-t)\frac{y+a}{2}\right) + f\left(t\frac{x+b}{2} + (1-t)\frac{a+2b-y}{2}\right)\right]$$
holds when

holds when

$$A = t\frac{x+b}{2} + (1-t)\frac{y+a}{2},$$

$$C = D = t\frac{x+b}{2} + (1-t)\frac{a+b}{2} \quad \text{and} \quad$$

$$B = t\frac{x+b}{2} + (1-t)\frac{a+2b-y}{2}$$

in Lemma 2.

Multiplying the inequalities (2.9) and (2.10) by g(x)g(y), integrating them over x on [a, b], over y on [a, b] and using identities (2.8), we derive the inequality (2.3).

From the inequality (2.3) and the monotonicity of I, we have

$$f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b}g\left(x\right)dx\right)^{2} = I\left(0\right)\int_{a}^{b}g\left(x\right)dx$$
$$\leq I\left(\frac{1}{2}\right)\int_{a}^{b}g\left(x\right)dx \leq K\left(\frac{1}{2}\right)$$

from which we derive the inequality (2.4).

This completes the proof.

Remark 4. Let $g(x) = \frac{1}{b-a} (x \in [a, b])$ in Theorem 3. Then I(t) = H(t), K(t) = F(t) $(t \in [0, 1])$ and Theorem 3 reduces to Theorem D.

Remark 5. From Theorem E and Theorem 3, we obtain the following Fejér-type inequality

$$\begin{aligned} f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b}g\left(x\right)dx\right)^{2} &\leq I\left(t\right)\int_{a}^{b}g\left(x\right)dx \leq K\left(t\right) \\ &\leq \int_{a}^{b}\frac{1}{2}\left[f\left(\frac{x+a}{2}\right) + f\left(\frac{x+b}{2}\right)\right]g\left(x\right)dx \cdot \int_{a}^{b}g\left(x\right)dx \end{aligned}$$

Theorem 6. Let f, g, I, K, S_g be defined as above. Then we have the inequality

(2.11)
$$0 \le K(t) - I(t) \int_{a}^{b} g(x) \, dx \le S_{g}(1-t) \int_{a}^{b} g(x) \, dx - K(t) \, ,$$

for all $t \in [0, 1]$.

6

 $\mathit{Proof.}$ Using substitution rules for integration and the hypothesis of g, we have the following identity

$$\begin{split} K(t) &= \int_{a}^{b} \int_{a}^{b} \frac{1}{4} \left[f\left(t \frac{x+a}{2} + (1-t) \frac{y+a}{2} \right) \\ &+ f\left(t \frac{x+a}{2} + (1-t) \frac{a+2b-y}{2} \right) + f\left(t \frac{x+b}{2} + (1-t) \frac{y+a}{2} \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \frac{a+2b-y}{2} \right) \right] g(x) g(y) dy dx \\ &= \int_{a}^{b} \int_{a}^{\frac{a+b}{2}} \frac{1}{2} \left[f\left(t \frac{x+a}{2} + (1-t) y \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) (a+b-y) \right) + f\left(t \frac{x+b}{2} + (1-t) y \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) (a+b-y) \right) \right] g(x) g(2y-a) dy dx \\ &= \frac{1}{2} \int_{a}^{b} \int_{a}^{\frac{3a+b}{4}} \left[f\left(t \frac{x+a}{2} + (1-t) \left(\frac{3a+b}{2} - y \right) \right) \\ &+ f\left(t \frac{x+a}{2} + (1-t) \left(\frac{3a+b}{2} - y \right) \right) \\ &+ f\left(t \frac{x+a}{2} + (1-t) \left(\frac{b-a}{2} + y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(a+b-y \right) \right) \\ &+ f\left(t \frac{x+b}{2} + (1-t) \left(t \frac{x+b}{2} + t \right) \right) \\ &+ f\left(t \frac{x+b}{2} + t \right) \\ &+ f\left(t \frac{x+b$$

for all $t \in [0,1]$.

By Lemma 2, the following inequalities hold for all $t \in [0,1]$, $x \in [a,b]$ and $y \in \left[a, \frac{3a+b}{4}\right]$. The inequality

$$(2.13) \quad f\left(t\frac{x+a}{2} + (1-t)y\right) + f\left(t\frac{x+a}{2} + (1-t)\left(\frac{3a+b}{2} - y\right)\right) \\ \leq f\left(t\frac{x+a}{2} + (1-t)a\right) + f\left(t\frac{x+a}{2} + (1-t)\frac{a+b}{2}\right)$$

holds when

$$A = t\frac{x+a}{2} + (1-t)a, \qquad C = t\frac{x+a}{2} + (1-t)y,$$
$$D = t\frac{x+a}{2} + (1-t)\left(\frac{3a+b}{2} - y\right) \quad \text{and} \quad B = t\frac{x+a}{2} + (1-t)\frac{a+b}{2}$$

in Lemma 2. The inequality

$$(2.14) \quad f\left(t\frac{x+a}{2} + (1-t)\left(\frac{b-a}{2} + y\right)\right) + f\left(t\frac{x+a}{2} + (1-t)(a+b-y)\right) \\ \leq f\left(t\frac{x+a}{2} + (1-t)\frac{a+b}{2}\right) + f\left(t\frac{x+a}{2} + (1-t)b\right)$$

holds when

$$A = t\frac{x+a}{2} + (1-t)\frac{a+b}{2}, \qquad C = t\frac{x+a}{2} + (1-t)\left(\frac{b-a}{2} + y\right)$$
$$D = t\frac{x+a}{2} + (1-t)(a+b-y) \quad \text{and} \quad B = t\frac{x+a}{2} + (1-t)b$$

in Lemma 2. The inequality

$$(2.15) \quad f\left(t\frac{x+b}{2} + (1-t)y\right) + f\left(t\frac{x+b}{2} + (1-t)\left(\frac{3a+b}{2} - y\right)\right) \\ \leq f\left(t\frac{x+b}{2} + (1-t)a\right) + f\left(t\frac{x+b}{2} + (1-t)\frac{a+b}{2}\right)$$

holds when

$$A = t\frac{x+b}{2} + (1-t)a, \quad C = t\frac{x+b}{2} + (1-t)y,$$

$$D = t\frac{x+b}{2} + (1-t)\left(\frac{3a+b}{2} - y\right) \quad \text{and} \quad B = t\frac{x+b}{2} + (1-t)\frac{a+b}{2}$$

in Lemma 2. The inequality

$$(2.16) \quad f\left(t\frac{x+b}{2} + (1-t)\left(\frac{b-a}{2} + y\right)\right) + f\left(t\frac{x+b}{2} + (1-t)(a+b-y)\right) \\ \leq f\left(t\frac{x+b}{2} + (1-t)\frac{a+b}{2}\right) + f\left(t\frac{x+b}{2} + (1-t)b\right)$$

holds when

$$A = t\frac{x+b}{2} + (1-t)\frac{a+b}{2}, \qquad C = t\frac{x+b}{2} + (1-t)\left(\frac{b-a}{2} + y\right),$$
$$D = t\frac{x+b}{2} + (1-t)(a+b-y) \qquad \text{and} \qquad B = t\frac{x+b}{2} + (1-t)b$$

in Lemma 2.

Multiplying the inequalities (2.13) and (2.16) by g(x)g(2y-a), integrating them over x on [a, b], over y on $[a, \frac{3a+b}{4}]$ and using identity (2.12), we have the inequality

(2.17)
$$2K(t) \le [I(t) + S_g(1-t)] \int_a^b g(x) \, dx,$$

for all $t \in [0,1]$. Using (2.3) and (2.17), we derive (2.11). This completes the proof.

Remark 7. Let $g(x) = \frac{1}{b-a} (x \in [a, b])$ in Theorem 6. Then K(t) = F(t), I(t) = H(t), $S_g(1-t) = L(1-t)$ $(t \in [0, 1])$ and Theorem 6 reduces to Theorem I.

The following two Fejér-type inequalities are natural consequences of Theorems 3, 6, E, G, H and we omit their proofs.

Theorem 8. Let f, g, G, I, K, L_g, S_g be defined as above. Then, for all $t \in [0, 1]$, we have

$$\begin{aligned} f\left(\frac{a+b}{2}\right) \left(\int_{a}^{b} g\left(x\right) dx\right)^{2} &\leq I\left(t\right) \int_{a}^{b} g\left(x\right) dx \leq K\left(t\right) \\ &\leq \frac{1}{2} \left[I\left(t\right) + S_{g}\left(1-t\right)\right] \int_{a}^{b} g\left(x\right) dx \\ &\leq \frac{1}{2} \left[G\left(t\right) \int_{a}^{b} g\left(x\right) dx + S_{g}\left(1-t\right)\right] \int_{a}^{b} g\left(x\right) dx \\ &\leq \frac{1}{2} \left[L_{g}\left(t\right) + S_{g}\left(1-t\right)\right] \int_{a}^{b} g\left(x\right) dx \\ &\leq \frac{1}{2} \left(\left(1-t\right) \int_{a}^{b} f\left(x\right) g\left(x\right) dx \\ &\quad + t \int_{a}^{b} \frac{1}{2} \left[f\left(\frac{x+a}{2}\right) + f\left(\frac{x+b}{2}\right)\right] g\left(x\right) dx \\ &\quad + \frac{f\left(a\right) + f\left(b\right)}{2} \int_{a}^{b} g\left(x\right) dx \right) \int_{a}^{b} g\left(x\right) dx \end{aligned}$$

$$(2.18) \qquad \leq \frac{f\left(a\right) + f\left(b\right)}{2} \left(\int_{a}^{b} g\left(x\right) dx\right)^{2} \end{aligned}$$

and

$$\begin{aligned} f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b}g\left(x\right)dx\right)^{2} &\leq I\left(t\right)\int_{a}^{b}g\left(x\right)dx \leq K\left(t\right) \\ &\leq \frac{1}{2}\left[I\left(t\right)+S_{g}\left(1-t\right)\right]\int_{a}^{b}g\left(x\right)dx \\ &\leq \frac{1}{2}\left[G\left(t\right)\int_{a}^{b}g\left(x\right)dx+S_{g}\left(1-t\right)\right]\int_{a}^{b}g\left(x\right)dx \\ &\leq \frac{1}{2}\left[S_{g}\left(t\right)+S_{g}\left(1-t\right)\right]\int_{a}^{b}g\left(x\right)dx \\ &\leq \frac{1}{2}\left(\int_{a}^{b}\frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right]g\left(x\right)dx \\ &\quad +\frac{f\left(a\right)+f\left(b\right)}{2}\int_{a}^{b}g\left(x\right)dx\right)\int_{a}^{b}g\left(x\right)dx \end{aligned}$$

$$(2.19) \qquad \leq \frac{f\left(a\right)+f\left(b\right)}{2}\left(\int_{a}^{b}g\left(x\right)dx\right)^{2}. \end{aligned}$$

Let $g(x) = \frac{1}{b-a} (x \in [a, b])$. Then we have the following Hermite-Hadamard-type inequality which is a natural consequence of Theorem 8.

Corollary 9. Let f, g, G, H, F, L be defined as above. Then, for all $t \in [0, 1]$, we have

$$f\left(\frac{a+b}{2}\right) \le H(t) \le F(t) \le \frac{1}{2} \left[H(t) + L(1-t)\right]$$
$$\le \frac{1}{2} \left[G(t) + L(1-t)\right] \le \frac{1}{2} \left[L(t) + L(1-t)\right]$$
$$\le \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f(x) \, dx + \frac{f(a) + f(b)}{2}\right] \le \frac{f(a) + f(b)}{2}$$

References

- J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
- [2] S. S. Dragomir, Two Mappings in Connection to Hadamard's Inequalities, J. Math. Anal. Appl. 167 (1992), 49-56.
- [3] S. S. Dragomir, A Refinement of Hadamard's Inequality for Isotonic Linear Functionals, Tamkang. J. Math., 24 (1993), 101-106.
- [4] S. S. Dragomir, On the Hadamard's Inequality for Convex Functions on the Co-ordinates in a Rectangle from the Plane, *Taiwanese J. Math.*, 5 (4) (2001), 775-788.
- [5] S. S. Dragomir, Further Properties of Some Mappings Associated with Hermite-Hadamard Inequalities, *Tamkang. J. Math.* 34 (1) (2003), 45-57.
- [6] S. S. Dragomir, Y.-J. Cho and S.-S. Kim, Inequalities of Hadamard's type for Lipschitzian Mappings and Their Applications, J. Math. Anal. Appl. 245 (2000),489-501.
- [7] S. S. Dragomir, D. S. Milošević and József Sándor, On Some Refinements of Hadamard's Inequalities and Applications, Univ. Belgrad. Publ. Elek. Fak. Sci. Math. 4 (1993), 3-10.
- [8] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss. 24 (1906),369-390. (In Hungarian).
- [9] D.-Y. Hwang, K.-L. Tseng and G.-S. Yang, Some Hadamard's Inequalities for Co-ordinated Convex Functions in a Rectangle from the Plane, *Taiwanese J. Math.*, 11 (1) (2007), 63-73.
- [10] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, On Some New Inequalities of Hermite-Hadamard-Fejér Type Involving Convex Functions, *Demonstratio Math.* XL (1) (2007), 51-64.
- [11] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Fejér-type Inequalities (I). (Submitted), Preprint *RGMIA Res. Rep. Coll.* **12**(2009), No.4, Article 5. [Online http://www.staff.vu.edu.au/RGMIA/v12n4.asp].
- [12] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Fejér-type Inequalities (II). (Submitted) Preprint *RGMIA Res. Rep. Coll.* **12**(2009), Supplement, Article 15.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
- [13] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Some Companions of Fejer's Inequality for Convex Functions. (Submitted) Preprint *RGMIA Res. Rep. Coll.* 12(2009), Supplement, Article 19.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
- [14] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, On Some Weighted Integral Inequalities for Convex Functions Related to Fejér's Result (Submitted) Preprint *RGMIA Res. Rep. Coll.* 12(2009), Supplement, Article 20.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
- [15] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, On Some Inequalities of Hadamard's Type and Applications, *Taiwanese J. Math.*, 13.
- [16] G.-S. Yang and M.-C. Hong, A Note on Hadamard's Inequality, Tamkang. J. Math. 28 (1) (1997), 33-37.
- [17] G.-S. Yang and K.-L. Tseng, On Certain Integral Inequalities Related to Hermite-Hadamard Inequalities, J. Math. Anal. Appl. 239 (1999), 180-187.
- [18] G.-S. Yang and K.-L. Tseng, Inequalities of Hadamard's Type for Lipschitzian Mappings, J. Math. Anal. Appl. 260 (2001),230-238.
- [19] G.-S. Yang and K.-L. Tseng, On Certain Multiple Integral Inequalities Related to Hermite-Hadamard Inequalities, *Utilitas Math.*, 62 (2002), 131-142.
- [20] G.-S. Yang and K.-L. Tseng, Inequalities of Hermite-Hadamard-Fejér Type for Convex Functions and Lipschitzian Functions, *Taiwanese J. Math.*, 7 (3) (2003), 433-440.

Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103. E-mail address: kltseng@email.au.edu.tw

CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY, NANKANG, TAIPEI, TAIWAN 11522 $E\text{-}mail\ address:\ hsru@cc.cust.edu.tw$

School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: sever.dragomir@.vu.edu.au *URL*: http://www.staff.vu.edu.au/RGMIA/dragomir/