REFINEMENTS OF FEJÉR'S INEQUALITY FOR CONVEX FUNCTIONS

K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR

Abstract. In this paper, we establish some new refinements for the celebrated Fejér's and Hermite-Hadamard's integral inequalities for convex functions.

1. Introduction

One of the most important integral inequalities with various applications for generalised means, information measures, quadrature rules, etc., is the well known Hermite-Hadamard inequality [1]

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

where $f:[a, b] \rightarrow \mathbb{R}$ is a convex function on the interval $[a, b]$.
In order to refine and generalize this classical result for weighted integrals, we define the following functions on $[0,1]$, namely

$$
\begin{gathered}
G(t)=\frac{1}{2}\left[f\left(t a+(1-t) \frac{a+b}{2}\right)+f\left(t b+(1-t) \frac{a+b}{2}\right)\right] \\
H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x \\
H_{g}(t)=\int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) g(x) d x \\
I(t)=\int_{a}^{b} \frac{1}{2}\left[f\left(t \frac{x+a}{2}+(1-t) \frac{a+b}{2}\right)+f\left(t \frac{x+b}{2}+(1-t) \frac{a+b}{2}\right)\right] g(x) d x \\
K(t)=\int_{a}^{b} \int_{a}^{b} \frac{1}{4}\left[f\left(t \frac{x+a}{2}+(1-t) \frac{y+a}{2}\right)\right. \\
+f\left(t \frac{x+a}{2}+(1-t) \frac{y+b}{2}\right)+f\left(t \frac{x+b}{2}+(1-t) \frac{y+a}{2}\right) \\
\left.+f\left(t \frac{x+b}{2}+(1-t) \frac{y+b}{2}\right)\right] g(x) g(y) d x d y
\end{gathered}
$$

[^0]\[

$$
\begin{gathered}
L(t)=\frac{1}{2(b-a)} \int_{a}^{b}[f(t a+(1-t) x)+f(t b+(1-t) x)] d x \\
L_{g}(t)= \\
\frac{1}{2} \int_{a}^{b}[f(t a+(1-t) x)+f(t b+(1-t) x)] g(x) d x \\
S_{g}(t)=\frac{1}{4} \int_{a}^{b}\left[f\left(t a+(1-t) \frac{x+a}{2}\right)+f\left(t a+(1-t) \frac{x+b}{2}\right)\right. \\
\left.\quad+f\left(t b+(1-t) \frac{x+a}{2}\right)+f\left(t b+(1-t) \frac{x+b}{2}\right)\right] g(x) d x
\end{gathered}
$$
\]

and

$$
N(t)=\int_{a}^{b} \frac{1}{2}\left[f\left(t a+(1-t) \frac{x+a}{2}\right)+f\left(t b+(1-t) \frac{x+b}{2}\right)\right] g(x) d x
$$

where $f:[a, b] \rightarrow \mathbb{R}$ is convex, $g:[a, b] \rightarrow[0, \infty)$ is integrable and symmetric to $\frac{a+b}{2}$.
Remark 1. We note that $H=H_{g}=I, F=K$ and $L=L_{g}=S_{g}$ on $[0,1]$ as $g(x)=\frac{1}{b-a}(x \in[a, b])$.

For some results which generalize, improve, and extend the famous HermiteHadamard integral inequality see [2] - [20].

In [8], Fejér established the following weighted generalization of (1.1).
Theorem A. Let f, g be defined as above. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{1.2}
\end{equation*}
$$

In [11], Tseng et al. established the following Fejér-type inequalities.
Theorem B. Let f, g be defined as above. Then we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & \leq \frac{f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)}{2} \int_{a}^{b} g(x) d x \\
& \leq \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{1.3}
\end{align*}
$$

In [2], Dragomir improved the first part of the Hermite-Hadamard inequality by considering the functions H, F as follows:

Theorem C. Let f, H be defined as above. Then H is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)=H(0) \leq H(t) \leq H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.4}
\end{equation*}
$$

Theorem D. Let f, F be defined as above. Then
(1) F is convex on $[0,1]$, symmetric about $\frac{1}{2}, F$ is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$, and for all $t \in[0,1]$,

$$
\sup _{t \in[0,1]} F(t)=F(0)=F(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and

$$
\inf _{t \in[0,1]} F(t)=F\left(\frac{1}{2}\right)=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(\frac{x+y}{2}\right) d x d y
$$

(2) We have:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq F\left(\frac{1}{2}\right) ; \quad H(t) \leq F(t), \quad t \in[0,1] \tag{1.5}
\end{equation*}
$$

In [11], Tseng et al. established the following Fejér-type inequality related to the functions I, N, which is also the weighted generalization of Theorem C.

Theorem E. Let f, g, I, N be defined as above. Then I, N are convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x & =I(0) \leq I(t) \leq I(1) \\
& =\int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& =N(0) \leq N(t) \leq N(1) \\
& =\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{1.6}
\end{align*}
$$

In [7], Dragomir et al. established the following Hermite-Hadamard-type inequality related to the functions H, G, L.

Theorem F. Let f, H, G, L be defined as above. Then G is convex, increasing on $[0,1], L$ is convex on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
H(t) \leq G(t) \leq L(t) & \leq \frac{1-t}{b-a} \int_{a}^{b} f(x) d x+t \cdot \frac{f(a)+f(b)}{2} \\
& \leq \frac{f(a)+f(b)}{2} \tag{1.7}
\end{align*}
$$

In [12] - [13], Tseng et al. established the following theorem related to Fejér-type inequalities concerning the functions $G, H_{g}, L_{g}, I, S_{g}$ and which provides a weighted generalizations of the inequality (1.7).

Theorem G ([12]). Let f, g, G, H_{g}, L_{g} be defined as above. Then L_{g} is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
H_{g}(t) & \leq G(t) \int_{a}^{b} g(x) d x \leq L_{g}(t) \\
& \leq(1-t) \int_{a}^{b} f(x) g(x) d x+t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{1.8}
\end{align*}
$$

Theorem H ([13]). Let f, g, G, I, S_{g} be defined as above. Then S_{g} is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
I(t) \leq & G(t) \int_{a}^{b} g(x) d x \leq S_{g}(t) \\
\leq & (1-t) \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& +t \cdot \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \\
\leq & \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x . \tag{1.9}
\end{align*}
$$

Finally, we notice that in [5], Dragomir established the following Hermite-Hadamardtype inequalities related to the functions H, F, L.

Theorem I. Let F, H, L be defined as above. Then we have the inequality

$$
\begin{equation*}
0 \leq F(t)-H(t) \leq L(1-t)-F(t) \tag{1.10}
\end{equation*}
$$

for all $t \in[0,1]$.
In this paper, we establish some Fejér-type and Hermite-Hadamard-type inequalities related to the functions $H, F, L, H_{g}, L_{g}, I, S_{g}, K$ defined above. As an important consequence we also obtain the weighted generalizations of Theorems D and I.

2. Main Results

The following lemma plays a key role in proving the new results:
Lemma 2 (see [9]). Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function and let $a \leq A \leq C \leq$ $D \leq B \leq b$ with $A+B=C+D$. Then

$$
f(C)+f(D) \leq f(A)+f(B)
$$

We can state now the following result:
Theorem 3. Let f, g, I, K be defined as above. Then:
(1) K is convex on $[0,1]$ and symmetric about $\frac{1}{2}$.
(2) K is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$,

$$
\begin{align*}
\sup _{t \in[0,1]} K(t) & =K(0)=K(1) \tag{2.1}\\
& =\int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \cdot \int_{a}^{b} g(x) d x
\end{align*}
$$

and

$$
\begin{aligned}
& \inf _{t \in[0,1]} K(t)= K\left(\frac{1}{2}\right) \\
&= \int_{a}^{b} \int_{a}^{b} \\
& \frac{1}{4}\left[f\left(\frac{x+y+2 a}{4}\right)+2 f\left(\frac{x+y+a+b}{4}\right)\right. \\
&\left.+f\left(\frac{x+y+2 b}{4}\right)\right] g(x) g(y) d x d y
\end{aligned}
$$

(3) We have

$$
\begin{equation*}
I(t) \int_{a}^{b} g(x) d x \leq K(t) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b} g(x) d x\right)^{2} \leq K\left(\frac{1}{2}\right) \tag{2.4}
\end{equation*}
$$

for all $t \in[0,1]$.
Proof. (1) It is easily observed from the convexity of f that K is convex on $[0,1]$. By changing the variable, we have that

$$
K(t)=K(1-t), \quad t \in[0,1]
$$

from which we get that K is symmetric about $\frac{1}{2}$.
(2) Let $t_{1}<t_{2}$ in $\left[0, \frac{1}{2}\right]$. Using the symmetry of K, we have

$$
\begin{align*}
K\left(t_{1}\right) & =\frac{1}{2}\left[K\left(t_{1}\right)+K\left(1-t_{1}\right)\right] \tag{2.5}\\
K\left(t_{2}\right) & =\frac{1}{2}\left[K\left(t_{2}\right)+K\left(1-t_{2}\right)\right] \tag{2.6}
\end{align*}
$$

and, by Lemma 2, we have

$$
\begin{equation*}
\frac{1}{2}\left[K\left(t_{2}\right)+K\left(1-t_{2}\right)\right] \leq \frac{1}{2}\left[K\left(t_{1}\right)+K\left(1-t_{1}\right)\right] \tag{2.7}
\end{equation*}
$$

From (2.5) - (2.7), we obtain that K is decreasing on $\left[0, \frac{1}{2}\right]$. Since K is symmetric about $\frac{1}{2}$ and K is decreasing on $\left[0, \frac{1}{2}\right]$, we get that K is increasing on $\left[\frac{1}{2}, 1\right]$. Using the symmetry and monotonicity of K, we derive (2.1) and (2.2).
(3) Using substitution rules for integration and the hypothesis of g, we have the following identity

$$
\begin{align*}
& K(t)=\int_{a}^{b} \int_{a}^{b} \frac{1}{4}\left[f\left(t \frac{x+a}{2}+(1-t) \frac{y+a}{2}\right)\right. \tag{2.8}\\
& +f\left(t \frac{x+a}{2}+(1-t) \frac{a+2 b-y}{2}\right)+f\left(t \frac{x+b}{2}+(1-t) \frac{y+a}{2}\right) \\
& \\
& \left.\quad+f\left(t \frac{x+b}{2}+(1-t) \frac{a+2 b-y}{2}\right)\right] g(x) g(y) d y d x
\end{align*}
$$

for all $t \in[0,1]$.
By Lemma 2, the following inequalities hold for all $t \in[0,1], x \in[a, b]$ and $y \in[a, b]$. The inequality

$$
\begin{align*}
& \frac{1}{2} f\left(t \frac{x+a}{2}+(1-t) \frac{a+b}{2}\right) \tag{2.9}\\
& \quad \leq \frac{1}{4}\left[f\left(t \frac{x+a}{2}+(1-t) \frac{y+a}{2}\right)+f\left(t \frac{x+a}{2}+(1-t) \frac{a+2 b-y}{2}\right)\right]
\end{align*}
$$

holds when

$$
\begin{aligned}
& A=t \frac{x+a}{2}+(1-t) \frac{y+a}{2} \\
& C=D=t \frac{x+a}{2}+(1-t) \frac{a+b}{2} \quad \text { and } \\
& B=t \frac{x+a}{2}+(1-t) \frac{a+2 b-y}{2}
\end{aligned}
$$

in Lemma 2. The inequality

$$
\begin{align*}
& \frac{1}{2} f\left(t \frac{x+b}{2}+(1-t) \frac{a+b}{2}\right) \tag{2.10}\\
& \quad \leq \frac{1}{4}\left[f\left(t \frac{x+b}{2}+(1-t) \frac{y+a}{2}\right)+f\left(t \frac{x+b}{2}+(1-t) \frac{a+2 b-y}{2}\right)\right]
\end{align*}
$$

holds when

$$
\begin{aligned}
& A=t \frac{x+b}{2}+(1-t) \frac{y+a}{2}, \\
& C=D=t \frac{x+b}{2}+(1-t) \frac{a+b}{2} \quad \text { and } \\
& B=t \frac{x+b}{2}+(1-t) \frac{a+2 b-y}{2}
\end{aligned}
$$

in Lemma 2.
Multiplying the inequalities (2.9) and (2.10) by $g(x) g(y)$, integrating them over x on $[a, b]$, over y on $[a, b]$ and using identities (2.8), we derive the inequality (2.3).

From the inequality (2.3) and the monotonicity of I, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b} g(x) d x\right)^{2} & =I(0) \int_{a}^{b} g(x) d x \\
& \leq I\left(\frac{1}{2}\right) \int_{a}^{b} g(x) d x \leq K\left(\frac{1}{2}\right)
\end{aligned}
$$

from which we derive the inequality (2.4).
This completes the proof.
Remark 4. Let $g(x)=\frac{1}{b-a}(x \in[a, b])$ in Theorem 3. Then $I(t)=H(t), K(t)=$ $F(t)(t \in[0,1])$ and Theorem 3 reduces to Theorem D.
Remark 5. From Theorem E and Theorem 3, we obtain the following Fejér-type inequality

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b} g(x) d x\right)^{2} & \leq I(t) \int_{a}^{b} g(x) d x \leq K(t) \\
& \leq \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \cdot \int_{a}^{b} g(x) d x
\end{aligned}
$$

Theorem 6. Let f, g, I, K, S_{g} be defined as above. Then we have the inequality

$$
\begin{equation*}
0 \leq K(t)-I(t) \int_{a}^{b} g(x) d x \leq S_{g}(1-t) \int_{a}^{b} g(x) d x-K(t) \tag{2.11}
\end{equation*}
$$

for all $t \in[0,1]$.

Proof. Using substitution rules for integration and the hypothesis of g, we have the following identity

$$
\begin{align*}
& K(t)=\int_{a}^{b} \int_{a}^{b} \frac{1}{4}\left[f\left(t \frac{x+a}{2}+(1-t) \frac{y+a}{2}\right)\right. \\
&+f\left(t \frac{x+a}{2}+(1-t) \frac{a+2 b-y}{2}\right)+f\left(t \frac{x+b}{2}+(1-t) \frac{y+a}{2}\right) \\
&\left.+f\left(t \frac{x+b}{2}+(1-t) \frac{a+2 b-y}{2}\right)\right] g(x) g(y) d y d x \\
&=\int_{a}^{b} \int_{a}^{\frac{a+b}{2}} \frac{1}{2}\left[f\left(t \frac{x+a}{2}+(1-t) y\right)\right. \\
&+f\left(t \frac{x+a}{2}+(1-t)(a+b-y)\right)+f\left(t \frac{x+b}{2}+(1-t) y\right) \\
&\left.+f\left(t \frac{x+b}{2}+(1-t)(a+b-y)\right)\right] g(x) g(2 y-a) d y d x \\
&=\frac{1}{2} \int_{a}^{b} \int_{a}^{\frac{3 a+b}{4}}\left[f\left(t \frac{x+a}{2}+(1-t) y\right)\right. \\
&+f\left(t \frac{x+a}{2}+(1-t)\left(\frac{3 a+b}{2}-y\right)\right) \\
&+f\left(t \frac{x+a}{2}+(1-t)(a+b-y)\right) \\
&+f\left(t \frac{x+a}{2}+(1-t)\left(\frac{b-a}{2}+y\right)\right) \\
&+f\left(t \frac{x+b}{2}+(1-t) y\right)+f\left(t \frac{x+b}{2}+(1-t)\left(\frac{3 a+b}{2}-y\right)\right) \\
&+f\left(t \frac{x+b}{2}+(1-t)(a+b-y)\right) \\
&\left.+f\left(t \frac{x+b}{2}+(1-t)\left(\frac{b-a}{2}+y\right)\right)\right] g(x) g(2 y-a) d y d x \tag{2.12}\\
&2.12)=
\end{align*}
$$

for all $t \in[0,1]$.
By Lemma 2, the following inequalities hold for all $t \in[0,1], x \in[a, b]$ and $y \in\left[a, \frac{3 a+b}{4}\right]$. The inequality

$$
\begin{align*}
& f\left(t \frac{x+a}{2}+(1-t) y\right)+f\left(t \frac{x+a}{2}+(1-t)\left(\frac{3 a+b}{2}-y\right)\right) \tag{2.13}\\
& \leq f\left(t \frac{x+a}{2}+(1-t) a\right)+f\left(t \frac{x+a}{2}+(1-t) \frac{a+b}{2}\right)
\end{align*}
$$

holds when

$$
\begin{aligned}
& A=t \frac{x+a}{2}+(1-t) a, \quad C=t \frac{x+a}{2}+(1-t) y \\
& D=t \frac{x+a}{2}+(1-t)\left(\frac{3 a+b}{2}-y\right) \quad \text { and } \quad B=t \frac{x+a}{2}+(1-t) \frac{a+b}{2}
\end{aligned}
$$

in Lemma 2. The inequality

$$
\begin{array}{r}
f\left(t \frac{x+a}{2}+(1-t)\left(\frac{b-a}{2}+y\right)\right)+f\left(t \frac{x+a}{2}+(1-t)(a+b-y)\right) \tag{2.14}\\
\leq f\left(t \frac{x+a}{2}+(1-t) \frac{a+b}{2}\right)+f\left(t \frac{x+a}{2}+(1-t) b\right)
\end{array}
$$

holds when

$$
\begin{aligned}
& A=t \frac{x+a}{2}+(1-t) \frac{a+b}{2}, \quad C=t \frac{x+a}{2}+(1-t)\left(\frac{b-a}{2}+y\right), \\
& D=t \frac{x+a}{2}+(1-t)(a+b-y) \quad \text { and } \quad B=t \frac{x+a}{2}+(1-t) b
\end{aligned}
$$

in Lemma 2. The inequality

$$
\begin{align*}
& f\left(t \frac{x+b}{2}+(1-t) y\right)+f\left(t \frac{x+b}{2}+(1-t)\left(\frac{3 a+b}{2}-y\right)\right) \tag{2.15}\\
& \leq f\left(t \frac{x+b}{2}+(1-t) a\right)+f\left(t \frac{x+b}{2}+(1-t) \frac{a+b}{2}\right)
\end{align*}
$$

holds when

$$
\begin{aligned}
& A=t \frac{x+b}{2}+(1-t) a, \quad C=t \frac{x+b}{2}+(1-t) y \\
& D=t \frac{x+b}{2}+(1-t)\left(\frac{3 a+b}{2}-y\right) \quad \text { and } \quad B=t \frac{x+b}{2}+(1-t) \frac{a+b}{2}
\end{aligned}
$$

in Lemma 2. The inequality

$$
\begin{align*}
& f\left(t \frac{x+b}{2}+(1-t)\right.\left.\left(\frac{b-a}{2}+y\right)\right)+f\left(t \frac{x+b}{2}+(1-t)(a+b-y)\right) \tag{2.16}\\
& \leq f\left(t \frac{x+b}{2}+(1-t) \frac{a+b}{2}\right)+f\left(t \frac{x+b}{2}+(1-t) b\right)
\end{align*}
$$

holds when

$$
\begin{aligned}
& A=t \frac{x+b}{2}+(1-t) \frac{a+b}{2}, \quad C=t \frac{x+b}{2}+(1-t)\left(\frac{b-a}{2}+y\right) \\
& D=t \frac{x+b}{2}+(1-t)(a+b-y) \quad \text { and } \quad B=t \frac{x+b}{2}+(1-t) b
\end{aligned}
$$

in Lemma 2.
Multiplying the inequalities (2.13) and (2.16) by $g(x) g(2 y-a)$, integrating them over x on $[a, b]$, over y on $\left[a, \frac{3 a+b}{4}\right]$ and using identity (2.12), we have the inequality

$$
\begin{equation*}
2 K(t) \leq\left[I(t)+S_{g}(1-t)\right] \int_{a}^{b} g(x) d x \tag{2.17}
\end{equation*}
$$

for all $t \in[0,1]$. Using (2.3) and (2.17), we derive (2.11). This completes the proof.
Remark 7. Let $g(x)=\frac{1}{b-a}(x \in[a, b])$ in Theorem 6. Then $K(t)=F(t), I(t)=$ $H(t), S_{g}(1-t)=L(1-t)(t \in[0,1])$ and Theorem 6 reduces to Theorem I.

The following two Fejér-type inequalities are natural consequences of Theorems $3,6, \mathrm{E}, \mathrm{G}, \mathrm{H}$ and we omit their proofs.

Theorem 8. Let $f, g, G, I, K, L_{g}, S_{g}$ be defined as above. Then, for all $t \in[0,1]$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b} g(x) d x\right)^{2} & \leq I(t) \int_{a}^{b} g(x) d x \leq K(t) \\
& \leq \frac{1}{2}\left[I(t)+S_{g}(1-t)\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{1}{2}\left[G(t) \int_{a}^{b} g(x) d x+S_{g}(1-t)\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{1}{2}\left[L_{g}(t)+S_{g}(1-t)\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{1}{2}\left((1-t) \int_{a}^{b} f(x) g(x) d x\right. \\
& +t \int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x \\
& \left.+\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x\right) \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2}\left(\int_{a}^{b} g(x) d x\right)^{2}
\end{aligned}
$$

and

$$
\begin{align*}
f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b} g(x) d x\right)^{2} & \leq I(t) \int_{a}^{b} g(x) d x \leq K(t) \\
& \leq \frac{1}{2}\left[I(t)+S_{g}(1-t)\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{1}{2}\left[G(t) \int_{a}^{b} g(x) d x+S_{g}(1-t)\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{1}{2}\left[S_{g}(t)+S_{g}(1-t)\right] \int_{a}^{b} g(x) d x \\
& \leq \frac{1}{2}\left(\int_{a}^{b} \frac{1}{2}\left[f\left(\frac{x+a}{2}\right)+f\left(\frac{x+b}{2}\right)\right] g(x) d x\right. \\
& \left.+\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x\right) \int_{a}^{b} g(x) d x \\
& \leq \frac{f(a)+f(b)}{2}\left(\int_{a}^{b} g(x) d x\right)^{2} \tag{2.19}
\end{align*}
$$

Let $g(x)=\frac{1}{b-a}(x \in[a, b])$. Then we have the following Hermite-Hadamard-type inequality which is a natural consequence of Theorem 8.

Corollary 9. Let f, g, G, H, F, L be defined as above. Then, for all $t \in[0,1]$, we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq H(t) \leq F(t) \leq \frac{1}{2}[H(t)+L(1-t)] \\
& \leq \frac{1}{2}[G(t)+L(1-t)] \leq \frac{1}{2}[L(t)+L(1-t)] \\
& \leq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x+\frac{f(a)+f(b)}{2}\right] \leq \frac{f(a)+f(b)}{2} \tag{2.20}
\end{align*}
$$

References

[1] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
[2] S. S. Dragomir, Two Mappings in Connection to Hadamard's Inequalities, J. Math. Anal. Appl. 167 (1992), 49-56.
[3] S. S. Dragomir, A Refinement of Hadamard's Inequality for Isotonic Linear Functionals, Tamkang. J. Math., 24 (1993), 101-106.
[4] S. S. Dragomir, On the Hadamard's Inequality for Convex Functions on the Co-ordinates in a Rectangle from the Plane, Taiwanese J. Math., 5 (4) (2001), 775-788.
[5] S. S. Dragomir, Further Properties of Some Mappings Associated with Hermite-Hadamard Inequalities, Tamkang. J. Math. 34 (1) (2003), 45-57.
[6] S. S. Dragomir, Y.-J. Cho and S.-S. Kim, Inequalities of Hadamard's type for Lipschitzian Mappings and Their Applications, J. Math. Anal. Appl. 245 (2000),489-501.
[7] S. S. Dragomir, D. S. Milošević and József Sándor, On Some Refinements of Hadamard's Inequalities and Applications, Univ. Belgrad. Publ. Elek. Fak. Sci. Math. 4 (1993), 3-10.
[8] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss. 24 (1906),369390. (In Hungarian).
[9] D.-Y. Hwang, K.-L. Tseng and G.-S. Yang, Some Hadamard's Inequalities for Co-ordinated Convex Functions in a Rectangle from the Plane, Taiwanese J. Math., 11 (1) (2007), 63-73.
[10] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, On Some New Inequalities of Hermite-Hadamard-Fejér Type Involving Convex Functions, Demonstratio Math. XL (1) (2007), 51-64.
[11] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Fejér-type Inequalities (I). (Submitted), Preprint RGMIA Res. Rep. Coll. $\mathbf{1 2}(2009)$, No.4, Article 5. [Online http://www.staff.vu.edu.au/RGMIA/v12n4.asp].
[12] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Fejér-type Inequalities (II). (Submitted) Preprint RGMIA Res. Rep. Coll. 12(2009), Supplement, Article 15.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
[13] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir, Some Companions of Fejer's Inequality for Convex Functions. (Submitted) Preprint RGMIA Res. Rep. Coll. 12 (2009), Supplement, Article 19.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
[14] K.-L. Tseng, S.-R. Hwang and S. S. Dragomir,On Some Weighted Integral Inequalities for Convex Functions Related to Fejér's Result (Submitted) Preprint RGMIA Res. Rep. Coll. $12(2009)$, Supplement, Article 20.[Online http://www.staff.vu.edu.au/RGMIA/v12(E).asp].
[15] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, On Some Inequalities of Hadamard's Type and Applications, Taiwanese J. Math., 13.
[16] G.-S. Yang and M.-C. Hong, A Note on Hadamard's Inequality, Tamkang. J. Math. 28 (1) (1997), 33-37.
[17] G.-S. Yang and K.-L. Tseng, On Certain Integral Inequalities Related to Hermite-Hadamard Inequalities, J. Math. Anal. Appl. 239 (1999), 180-187.
[18] G.-S. Yang and K.-L. Tseng, Inequalities of Hadamard's Type for Lipschitzian Mappings, J. Math. Anal. Appl. 260 (2001),230-238.
[19] G.-S. Yang and K.-L. Tseng, On Certain Multiple Integral Inequalities Related to HermiteHadamard Inequalities, Utilitas Math., 62 (2002), 131-142.
[20] G.-S. Yang and K.-L. Tseng, Inequalities of Hermite-Hadamard-Fejér Type for Convex Functions and Lipschitzian Functions, Taiwanese J. Math., 7 (3) (2003), 433-440.

Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103.
E-mail address: kltseng@email.au.edu.tw
China University of Science and Technology, Nankang, Taipei, Taiwan 11522
E-mail address: hsru@cc.cust.edu.tw
School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: sever.dragomir@.vu.edu.au
URL: http://www.staff.vu.edu.au/RGMIA/dragomir/

[^0]: 1991 Mathematics Subject Classification. 26D15.
 Key words and phrases. Hermite-Hadamard inequality, Fejér inequality, Convex function.
 This research was partially supported by grant NSC $98-2115-\mathrm{M}-156-004$.

