Periodic solution for a delay integro-differential equation in biomathematics

Alexandru Bica
Department of Mathematics, University of Oradea, Str. Armatei Romane no. 5, 410087 Oradea, Romania smbica@yahoo.com, abica@uoradea.ro
Sorin Muresan
Department of Mathematics, University of Oradea, Str. Armatei Romane no. 5, 410087 Oradea, Romania smuresan@uoradea.ro

January 19, 2004

Abstract

Sufficient conditions for the existence and uniqueness of periodic solution of a delay integro-differential equation which arise in biomathematics are given. The results use a bidimensional variant of the Perov's fixed point theorem.

AMS Mathematics Subject Classification: Primary 45J05, Secondary 34A12, 65R20, 65D32.

Keywords and phrases: delay integro-differential equation, Perov's fixed point theorem, successive approximations.

1 Introduction

In this paper we consider a model for the spread of certain infections disease with a contact rate that varies seasonally. This model is govern by the following integro-differential equation

$$
\begin{equation*}
x(t)=\int_{t-\tau}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s \tag{1}
\end{equation*}
$$

where:
(i) $x(t)$ is the proportion of infectious in population at time t;
(ii) $\tau>0$ is the length of time in which an individual remains infectious;
(iii) $x^{\prime}(t)$ is the speed of infectivity;
(iv) $f\left(t, x(t), x^{\prime}(t)\right)$ is the proportion of new infections on unit time.

We study the existence and uniqueness of a positive and periodic solution for equation (1).

A similary integral equation which models the same problem

$$
\begin{equation*}
x(t)=\int_{t-\tau}^{t} f(s, x(s)) d s \tag{2}
\end{equation*}
$$

has been considered in [4], [5], [9], [8], [13] and [10] where sufficient conditions for the existence of nontrivial periodic nonnegative and continous solutions for this equation are given in the case of a periodic contact rate: $f(t+\omega, x)=f(t, x)$, $\forall t \in \mathbb{R}$. The tools were: Banach fixed point principle in [10], topological fixed point theorems in [4], [5], [8], [13], fixed point index theory in [5] and monotone technique in [5], [8], [9]. Also, a system of integral equations in the form (2) has been studied in [2] and [11] using: the monotone technique in [2] and the Perov's fixed point theorem for differentiable dependence by the parameter of the solution in [11]. In [1], sufficient conditions for the existence and uniqueness of a positive, continuous solution of the following initial value problem

$$
x(t)=\left\{\begin{array}{c}
\int_{t-\tau}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s, \quad t \in[0, T] \\
\varphi(t), \quad t \in[-\tau, 0]
\end{array}\right.
$$

are obtained.
In the following, if X is a nonempty set then by a generalized metric d on X we understand a function $d: X \times X \rightarrow \mathbb{R}^{n}$ which fulfils the following:

$$
\begin{gathered}
0_{\mathbb{R}^{n}} \leq d(x, y), \forall x, y \in X \text { and } d(x, y)=0_{\mathbb{R}^{n}} \Leftrightarrow x=y \\
d(x, y)=d(y, x), \forall x, y \in X \\
d(x, y) \leq d(x, z)+d(z, y), \forall x, y, z \in X,
\end{gathered}
$$

where for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ from \mathbb{R}^{n} we have $x \leq y \Leftrightarrow$ $x_{i} \leq y_{i}$, for any $i=\overline{1, n}$. The pair ($\left.X, d\right)$ will be called generalized metric space.

2 Existence and uniqueness

We suppose that $f \in C\left(\mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}\right)$ and exists $\varpi>0$ such that

$$
f(t+\varpi, x, y)=f(t, x, y), \forall(t, x, y) \in \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}
$$

We consider the following functional spaces

$$
\begin{gathered}
X(\varpi)=\{y \in C(\mathbb{R}): y(t+\varpi)=y(t), \forall t \in \mathbb{R}\} \\
X_{1}(\varpi)=\left\{x \in C^{1}(\mathbb{R}): x(t+\varpi)=x(t), \forall t \in \mathbb{R}\right\} \\
X_{+}(\varpi)=\left\{x \in X_{1}(\varpi): x(t) \geq 0, \forall t \in \mathbb{R}\right\}
\end{gathered}
$$

and denote by X the product space $X=X_{+}(\varpi) \times X(\varpi)$ which is generalized metric space with

$$
d_{C}: X \times X \rightarrow \mathbb{R}^{2}, d_{C}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\left\|x_{1}-x_{2}\right\|,\left\|y_{1}-y_{2}\right\|\right),
$$

where

$$
\|u\|=\max \{|u(t)|: t \in[0, \varpi]\}
$$

for any $u \in X(\varpi)$
.To obtain the existence and uniqueness result for the integro-differential equation (1) we use the following Perov's fixed point theorem [7] (see also [3], [6])

Theorem 1 (Perov, see [7]) Let (X,d) a complete generalized metric space with $d(x, y) \in \mathbb{R}^{n}$. If $T: X \rightarrow X$ is a map for which exists a matrix $A \in \mathcal{M}_{n}(\mathbb{R})$ such that

$$
d(T(x), T(y)) \leq A d(x, y), \forall x, y \in X
$$

and the eigenvalues of A lies in the open unit disc from \mathbb{R}^{2}, then T has a unique fixed point x^{*} and the sequence of successive approximations $x_{m}=T^{m}\left(x_{0}\right)$ converges to x^{*} for any $x_{0} \in X$. Moreover, the following estimation holds

$$
d\left(x_{m}, x^{*}\right) \leq A^{m}\left(I_{2}-A\right)^{-1} d\left(x_{0}, x_{1}\right), \forall m \in \mathbb{N}^{*} .
$$

If we derive (1) with respect t and denoting $y(t)=x^{\prime}(t)$ we obtain

$$
y(t)=f(t, x(t), y(t))-f(t-\tau, x(t-\tau), y(t-\tau)), \forall t \in \mathbb{R} .
$$

which lead to

$$
\left\{\begin{array}{c}
x(t)=\int_{t-\tau}^{t} f(s, x(s), y(s)) d s \tag{3}\\
y(t)=f(t, x(t), y(t))-f(t-\tau, x(t-\tau), y(t-\tau))
\end{array}\right.
$$

Let $T: X \rightarrow C(\mathbb{R}) \times C(\mathbb{R})$ the map given by

$$
\begin{gather*}
T(x, y)=\left(T_{1}(x, y), T_{2}(x, y)\right) \\
\binom{T_{1}(x, y)(t)}{T_{2}(x, y)(t)}=\binom{\int_{t-\tau}^{t} f(s, x(s), y(s)) d s}{f(t, x(t), y(t))-f(t-\tau, x(t-\tau), y(t-\tau))} \tag{4}
\end{gather*}
$$

We impose the following conditions:
(i) $f \in C\left(\mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}\right)$ and exists $m, M \geq 0$ such that

$$
m \leq f(t, x, y) \leq M, \forall(t, x, y) \in \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}
$$

(ii) f has the property

$$
f(t+\varpi, x, y)=f(t, x, y), \forall(t, x, y) \in \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}
$$

(iii) exists $\alpha, \beta>0$ such that

$$
\left|f(t, u, v)-f\left(t, u^{\prime}, v^{\prime}\right)\right| \leq \alpha\left|u-u^{\prime}\right|+\beta\left|v-v^{\prime}\right|
$$

$\forall t \in \mathbb{R}, \forall u, u^{\prime} \in \mathbb{R}_{+}, \forall v, v^{\prime} \in \mathbb{R}$.
From condition (i) we see that $T_{1}(X) \subseteq C^{1}(\mathbb{R})$ and

$$
T_{1}(x, y)(t)=\int_{t-\tau}^{t} f(s, x(s), y(s)) d s \geq \int_{t-\tau}^{t} m d s=m \tau
$$

$\forall t \in \mathbb{R}$. It is obvious that $T_{1}(x, y)(t) \leq M \tau \forall t \in \mathbb{R}, \forall(x, y) \in X$.
Theorem 2 If the conditions (i)-(iii) are satisfied and $\alpha \tau+2 \beta<1$ then the integro-differential equation (1) have in $X_{+}(\varpi)$ an unique solution.

Proof. From condition (ii) follows that $T_{1}(X) \subset X_{+}(\varpi)$. Indeed,

$$
\begin{gathered}
T_{1}(x, y)(t+\varpi)=\int_{t+\varpi-\tau}^{t+\varpi} f(s, x(s), y(s)) d s= \\
=\int_{t-\tau}^{t} f(u-\varpi, x(u-\varpi), y(u-\varpi)) d u= \\
=\int_{t-\tau}^{t} f(u-\varpi+\varpi, x(u-\varpi+\varpi), y(u-\varpi+\varpi)) d u= \\
=T_{1}(x, y)(t), \forall t \in \mathbb{R}, \forall(x, y) \in X .
\end{gathered}
$$

In adition

$$
\begin{gathered}
T_{2}(x, y)(t+\varpi)=f(t+\varpi, x(t+\varpi), y(t+\varpi))- \\
-f(t+\varpi-\tau, x(t+\varpi-\tau), y(t+\varpi-\tau))= \\
=f(t+\varpi, x(t), y(t))-f(t+\varpi-\tau, x(t-\tau), y(t-\tau)) \\
=f(t, x(t), y(t))-f(t-\tau, x(t-\tau), y(t-\tau))=T_{2}(x, y)(t)
\end{gathered}
$$

$\forall t \in \mathbb{R}, \forall(x, y) \in X$. Consquently, $T(X) \subset X$. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X$.

$$
\begin{gathered}
\left|T_{1}\left(x_{1}, y_{1}\right)(t)-T_{1}\left(x_{2}, y_{2}\right)(t)\right|= \\
=\left|\int_{t-\tau}^{t} f\left(s, x_{1}(s), y_{1}(s)\right) d s-\int_{t-\tau}^{t} f\left(s, x_{2}(s), y_{2}(s)\right) d s\right| \leq \\
\leq \int_{t-\tau}^{t}\left|f\left(s, x_{1}(s), y_{1}(s)\right)-f\left(s, x_{2}(s), y_{2}(s)\right)\right| d s \leq
\end{gathered}
$$

$$
\begin{aligned}
& \leq \int_{t-\tau}^{t}\left[\alpha\left|x_{1}(s)-x_{2}(s)\right|+\beta\left|y_{1}(s)-y_{2}(s)\right|\right] d s \leq \\
& \quad \leq \alpha \tau\left\|x_{1}-x_{2}\right\|+\beta \tau\left\|y_{1}-y_{2}\right\|, \forall t \in[0, \varpi] .
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|T_{2}\left(x_{1}, y_{1}\right)(t)-T_{2}\left(x_{2}, y_{2}\right)(t)\right|=\mid f\left(t, x_{1}(t), y_{1}(t)\right)- \\
& -f\left(t-\tau, x_{1}(t-\tau), y_{1}(t-\tau)\right)-f\left(t, x_{2}(t), y_{2}(t)\right)+ \\
& +f\left(t-\tau, x_{2}(t-\tau), y_{2}(t-\tau)\right)|\leq| f\left(t, x_{1}(t), y_{1}(t)\right)- \\
& -f\left(t, x_{2}(t), y_{2}(t)\right)|+| f\left(t-\tau, x_{1}(t-\tau), y_{1}(t-\tau)\right) \\
& -f\left(t-\tau, x_{2}(t-\tau), y_{2}(t-\tau)\right)|\leq \alpha| x_{1}(t)-x_{2}(t) \mid+ \\
& \quad+\beta\left|y_{1}(t)-y_{2}(t)\right|+\alpha\left|x_{1}(t-\tau)-x_{2}(t-\tau)\right|+ \\
& \quad+\beta\left|y_{1}(t-\tau)-y_{2}(t-\tau)\right| \leq 2 \alpha\left\|x_{1}-x_{2}\right\|+ \\
& +2 \beta\left\|y_{1}-y_{2}\right\|, \forall t \in[0, \varpi], \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X
\end{aligned}
$$

Then

$$
\begin{aligned}
& \binom{\left\|T_{1}\left(x_{1}, y_{1}\right)-T_{1}\left(x_{2}, y_{2}\right)\right\|}{\left\|T_{2}\left(x_{1}, y_{1}\right)-T_{2}\left(x_{2}, y_{2}\right)\right\|} \leq \\
\leq & \binom{\alpha \tau\left\|x_{1}-x_{2}\right\|+\beta \tau\left\|y_{1}-y_{2}\right\|}{2 \alpha\left\|x_{1}-x_{2}\right\|+2 \beta\left\|y_{1}-y_{2}\right\|}= \\
= & \left(\begin{array}{ll}
\alpha \tau & \beta \tau \\
2 \alpha & 2 \beta
\end{array}\right) \cdot\binom{\left\|x_{1}-x_{2}\right\|}{\left\|y_{1}-y_{2}\right\|}
\end{aligned}
$$

that is

$$
d_{C}\left(T\left(x_{1}, y_{1}\right), T\left(x_{2}, y_{2}\right)\right) \leq A \cdot d_{C}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)
$$

The matrix

$$
A=\left(\begin{array}{ll}
\alpha \tau & \beta \tau \tag{5}\\
2 \alpha & 2 \beta
\end{array}\right)
$$

has the eigenvalues $\lambda_{1}=0$ and $\lambda_{2}=2 \beta+\alpha \tau$. Since $\alpha \tau+2 \beta<1$, by the Perov's fixed point theorem we infer that T has in X an unique fixed point,. denoted by $x_{*}=\left(x^{*}, y^{*}\right)$. It is easy to see that $\left(x^{*}\right)^{\prime}(t)=y^{*}(t), \forall t \in \mathbb{R}$. Indeed,

$$
\begin{gathered}
y^{*}(t)=f\left(t, x^{*}(t), y^{*}(t)\right)-f\left(t-\tau, x^{*}(t-\tau), y^{*}(t-\tau)\right) \\
x^{*}(t)=\int_{t-\tau}^{t} f\left(s, x^{*}(s), y^{*}(s)\right) d s
\end{gathered}
$$

and after derivation,

$$
\left(x^{*}\right)^{\prime}(t)=f\left(t, x^{*}(t), y^{*}(t)\right)-f\left(t-\tau, x^{*}(t-\tau), y^{*}(t-\tau)\right)
$$

Then, $x^{*} \in X_{+}(\varpi)$ is the solution of the equation (1).
From the above result, the solution x^{*} of (1) and his derivative are ϖ periodic.

Theorem 3 In the conditions of Theorem 2 the solution x_{*} of (3), which is obtained by the successive approximations method starting from any $x^{0}=$ $\left(x_{0}, y_{0}\right) \in X$, verify the following estimation

$$
d_{C}\left(x^{m}, x_{*}\right) \leq \frac{\lambda_{2}^{m-1}}{1-\lambda_{2}}\left(\begin{array}{cc}
\alpha \tau & \beta \tau \\
2 \alpha & 2 \beta
\end{array}\right) d_{C}\left(x^{1}, x^{0}\right)
$$

where $x^{m}=T\left(x^{m-1}\right), x^{m}=\left(x_{m}, y_{m}\right), \forall m \in \mathbb{N}^{*}$.
Proof. From Theorem 1, in conditions of Theorem 2 we have that

$$
d_{B}\left(x^{m}, x^{*}\right) \leq A^{m}(I-A)^{-1} d_{B}\left(x^{1}, x^{0}\right), \forall m \in \mathbb{N}^{*} .
$$

For the matrix A given in (5) we have $A^{m}=\lambda_{2}^{m-1} A, \forall m \in \mathbb{N}^{*}$ and $(I-A)^{-1}=$ $\frac{1}{1-\lambda_{2}}\left(\begin{array}{ll}1-2 \beta & \beta \tau \\ 2 \alpha & 1-\alpha \tau\end{array}\right)$.

The solution of (1) and his derivative can be obtained by the successive approximations method starting from any element of X.

References

[1] A.Bica, S.Muresan, H.Oros, Existence result and numerical method for a delay integro-differential equation arising in infectious diseases, Proceedings of the 11-th Conference on Applied and Industrial Mathematics (2003), 3441, Oradea, Romania..
[2] A.Canada, A.Zertiti, Systems of nonlinear delay integral equations modelling population growth in a periodic environment, Coment. Math. Carolinae 35, 4 (1994), 633-644.
[3] B.Ćirić, Fixed and periodic points in Kurepa spaces, Math. Balcanika, 2 (1972), 13-20.
[4] K.L.Cooke, J.L.Kaplan, A periodicity threshold theorem for epidemics and population growth, Math.Biosciences, 31 (1976), 87-104.
[5] D.Guo, V.Lakshmikantham, Positive solutions of nonlinear integral equations arising in infectious diseases, J. Math. Anal. Appl., 134(1988), 1-8.
[6] A.I.Perov, On the Cauchy's problem for a system of ordinary differential equations (in Russian), Priblizhen. Metod. Reshenia Urav., Kiev, 1964.
[7] A.I.Perov, A.V.Kidenko, On a general method to study the boundary value problems, Iz. Akad. Nauk., 30(1966), pp249-264.
[8] R.Precup, Periodic solutions for an integral equation from biomathematics via Leray-Schauder principle, Studia Univ. "Babes-Bolyai", Mathematica, vol. XXXIX, 1, 1994, 47-58.
[9] R.Precup, Monotone technique to the initial value problem for a delay integral equation from biomathematics, Studia Univ. "Babes-Bolyai", Mathematica, XL,2, (1995), 63-73.
[10] I.A.Rus, A delay integral equation from biomathematics, Seminar of Differential Equations, Preprint3, Cluj-Napoca, 1989, p. 87-90.
[11] I.A.Rus, Fiber Picard operators on generalized metric spaces and an application, Scripta Scientiarum Mathematicarum, Tomus I,Fasc. II,Anno MCMXCIX, 355-363.
[12] I.A.Rus, Principles and applications of the fixed point theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
[13] L.R.Williams, R.W.Leggett, Nonzero solutions of nonlinear integral equations modeling infectious disease, SIAM J. Math. Anal., 13(1982), 112-121.

