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Abstract

Sufficient conditions for the existence and uniqueness of periodic solu-
tion of a delay integro-differential equation which arise in biomathematics
are given. The results use a bidimensional variant of the Perov’s fixed
point theorem.
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1 Introduction

In this paper we consider a model for the spread of certain infections disease
with a contact rate that varies seasonally. This model is govern by the following
integro-differential equation

x (t) =

t∫
t−τ

f (s, x (s) , x′ (s)) ds (1)

where:
(i) x (t) is the proportion of infectious in population at time t;
(ii) τ > 0 is the length of time in which an individual remains infectious;
(iii) x′ (t) is the speed of infectivity;
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(iv) f (t, x (t) , x′ (t)) is the proportion of new infections on unit time.
We study the existence and uniqueness of a positive and periodic solution

for equation (1).
A similary integral equation which models the same problem

x (t) =

t∫
t−τ

f (s, x (s)) ds (2)

has been considered in [4], [5], [9], [8], [13] and [10] where sufficient conditions for
the existence of nontrivial periodic nonnegative and continous solutions for this
equation are given in the case of a periodic contact rate: f (t + ω, x) = f (t, x) ,
∀t ∈ R. The tools were: Banach fixed point principle in [10], topological fixed
point theorems in [4], [5], [8], [13], fixed point index theory in [5] and monotone
technique in [5], [8], [9]. Also, a system of integral equations in the form (2)
has been studied in [2] and [11] using: the monotone technique in [2] and the
Perov’s fixed point theorem for differentiable dependence by the parameter of
the solution in [11]. In [1], sufficient conditions for the existence and uniqueness
of a positive, continuous solution of the following initial value problem

x(t) =


t∫

t−τ

f (s, x (s) , x′ (s)) ds, t ∈ [0, T ]

ϕ(t), t ∈ [−τ , 0]

are obtained.
In the following, if X is a nonempty set then by a generalized metric d on

X we understand a function d : X ×X → Rn which fulfils the following:

0Rn ≤ d (x, y) ,∀x, y ∈ X and d (x, y) = 0Rn ⇔ x = y
d (x, y) = d (y, x) ,∀x, y ∈ X

d (x, y) ≤ d (x, z) + d (z, y) ,∀x, y, z ∈ X,

where for x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) from Rn we have x ≤ y ⇔
xi ≤ yi, for any i = 1, n. The pair (X, d) will be called generalized metric space.

2 Existence and uniqueness

We suppose that f ∈ C(R× R+ × R) and exists $ > 0 such that

f(t + $,x, y) = f(t, x, y), ∀(t, x, y) ∈ R× R+ × R.

We consider the following functional spaces

X($) = {y ∈ C(R) : y(t + $) = y(t), ∀t ∈ R}

X1($) = {x ∈ C1(R) : x(t + $) = x(t), ∀t ∈ R}

X+($) = {x ∈ X1($) : x(t) ≥ 0, ∀t ∈ R}.
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and denote by X the product space X = X+($) ×X($) which is generalized
metric space with

dC : X ×X → R2, dC ((x1, y1) , (x2, y2)) = (‖x1 − x2‖, ‖y1 − y2‖) ,

where
‖u‖ = max{|u (t)| : t ∈ [0, $]}

for any u ∈ X($) .
.To obtain the existence and uniqueness result for the integro-differential

equation (1) we use the following Perov’s fixed point theorem [7] (see also [3],
[6])

Theorem 1 (Perov, see [7] ) Let (X, d) a complete generalized metric space
with d (x, y) ∈ Rn. If T : X → X is a map for which exists a matrix A ∈Mn (R)
such that

d (T (x) , T (y)) ≤ Ad (x, y) ,∀x, y ∈ X

and the eigenvalues of A lies in the open unit disc from R2, then T has a unique
fixed point x∗ and the sequence of successive approximations xm = Tm (x0)
converges to x∗ for any x0 ∈ X. Moreover, the following estimation holds

d (xm, x∗) ≤ Am (I2 −A)−1
d (x0, x1) ,∀m ∈ N∗.

If we derive (1) with respect t and denoting y (t) = x′ (t) we obtain

y (t) = f (t, x (t) , y (t))− f (t− τ , x (t− τ) , y (t− τ)) , ∀t ∈ R.

which lead to x(t) =
t∫

t−τ

f (s, x (s) , y (s)) ds

y(t) = f (t, x (t) , y (t))− f (t− τ , x (t− τ) , y (t− τ))
(3)

Let T : X → C(R)× C(R) the map given by

T (x, y) = (T1(x, y), T2(x, y))

(
T1(x, y)(t)
T2(x, y)(t)

)
=

 t∫
t−τ

f (s, x (s) , y (s)) ds

f (t, x (t) , y (t))− f (t− τ , x (t− τ) , y (t− τ))

 (4)

We impose the following conditions:
(i) f ∈ C(R× R+ × R) and exists m,M ≥ 0 such that

m ≤ f(t, x, y) ≤ M, ∀(t, x, y) ∈ R× R+ × R.

(ii) f has the property

f(t + $,x, y) = f(t, x, y), ∀(t, x, y) ∈ R× R+ × R.
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(iii) exists α, β > 0 such that

|f(t, u, v)− f(t, u′, v′)| ≤ α |u− u′|+ β |v − v′|

∀t ∈ R,∀u, u′ ∈ R+,∀v, v′ ∈ R.
From condition (i) we see that T1 (X) ⊆ C1(R) and

T1(x, y)(t) =

t∫
t−τ

f (s, x (s) , y (s)) ds ≥
t∫

t−τ

mds = mτ

∀t ∈ R. It is obvious that T1(x, y)(t) ≤ Mτ ∀t ∈ R, ∀(x, y) ∈ X.

Theorem 2 If the conditions (i)-(iii) are satisfied and ατ + 2β < 1 then the
integro-differential equation (1) have in X+($) an unique solution.

Proof. From condition (ii) follows that T1(X) ⊂ X+($). Indeed,

T1(x, y)(t + $) =

t+$∫
t+$−τ

f (s, x (s) , y (s)) ds =

=

t∫
t−τ

f (u−$,x (u−$) , y (u−$)) du =

=

t∫
t−τ

f (u−$ + $,x (u−$ + $) , y (u−$ + $)) du =

= T1(x, y)(t), ∀t ∈ R,∀(x, y) ∈ X.

In adition
T2(x, y)(t + $) = f (t + $,x (t + $) , y (t + $))−

−f (t + $ − τ , x (t + $ − τ) , y (t + $ − τ)) =

= f (t + $,x (t) , y (t))− f (t + $ − τ , x (t− τ) , y (t− τ))

= f (t, x (t) , y (t))− f (t− τ , x (t− τ) , y (t− τ)) = T2(x, y)(t)

∀t ∈ R,∀(x, y) ∈ X. Consquently, T (X) ⊂ X. Let (x1, y1), (x2, y2) ∈ X.

|T1(x1, y1)(t)− T1(x2, y2)(t)| =

=

∣∣∣∣∣∣
t∫

t−τ

f (s, x1 (s) , y1 (s)) ds−
t∫

t−τ

f (s, x2 (s) , y2 (s)) ds

∣∣∣∣∣∣ ≤
≤

t∫
t−τ

|f (s, x1 (s) , y1 (s))− f (s, x2 (s) , y2 (s))| ds ≤
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≤
t∫

t−τ

[α |x1 (s)− x2 (s)|+ β |y1 (s)− y2 (s)|]ds ≤

≤ ατ‖x1 − x2‖+ βτ‖y1 − y2‖,∀t ∈ [0, $].

and
|T2(x1, y1)(t)− T2(x2, y2)(t)| =| f (t, x1 (t) , y1 (t))−
−f (t− τ , x1 (t− τ) , y1 (t− τ))− f (t, x2 (t) , y2 (t))+

+f (t− τ , x2 (t− τ) , y2 (t− τ)) |≤| f (t, x1 (t) , y1 (t))−
−f (t, x2 (t) , y2 (t)) | + | f (t− τ , x1 (t− τ) , y1 (t− τ))

−f (t− τ , x2 (t− τ) , y2 (t− τ)) |≤ α |x1 (t)− x2 (t)|+
+β |y1 (t)− y2 (t)|+ α |x1 (t− τ)− x2 (t− τ)|+

+β |y1 (t− τ)− y2 (t− τ)| ≤ 2α‖x1 − x2‖+
+2β‖y1 − y2‖,∀t ∈ [0, $],∀(x1, y1), (x2, y2) ∈ X

Then (
‖T1(x1, y1)− T1(x2, y2)‖
‖T2(x1, y1)− T2(x2, y2)‖

)
≤

≤
(

ατ‖x1 − x2‖+ βτ‖y1 − y2‖
2α‖x1 − x2‖+ 2β‖y1 − y2‖

)
=

=
(

ατ βτ
2α 2β

)
·
(
‖x1 − x2‖
‖y1 − y2‖

)
that is

dC (T (x1, y1) , T (x2, y2)) ≤ A · dC ((x1, y1) , (x2, y2))

The matrix

A =
(

ατ βτ
2α 2β

)
(5)

has the eigenvalues λ1 = 0 and λ2 = 2β +ατ . Since ατ +2β < 1, by the Perov’s
fixed point theorem we infer that T has in X an unique fixed point,.denoted by
x∗ = (x∗, y∗). It is easy to see that (x∗)′(t) = y∗(t), ∀t ∈ R. Indeed,

y∗(t) = f (t, x∗ (t) , y∗ (t))− f (t− τ , x∗ (t− τ) , y∗ (t− τ))

x∗ (t) =

t∫
t−τ

f (s, x∗ (s) , y∗ (s)) ds

and after derivation,

(x∗)′(t) = f (t, x∗ (t) , y∗ (t))− f (t− τ , x∗ (t− τ) , y∗ (t− τ))

Then, x∗ ∈ X+($) is the solution of the equation (1).
From the above result, the solution x∗ of (1) and his derivative are $-

periodic.
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Theorem 3 In the conditions of Theorem 2 the solution x∗ of (3), which
is obtained by the successive approximations method starting from any x0 =
(x0, y0) ∈ X, verify the following estimation

dC (xm, x∗) ≤
λm−1

2

1− λ2

(
ατ βτ
2α 2β

)
dC

(
x1, x0

)
.

where xm = T
(
xm−1

)
, xm = (xm, ym),∀m ∈ N∗.

Proof. From Theorem 1, in conditions of Theorem 2 we have that

dB (xm, x∗) ≤ Am (I −A)−1
dB

(
x1, x0

)
,∀m ∈ N∗.

For the matrix A given in (5) we have Am = λm−1
2 A, ∀m ∈ N∗ and (I −A)−1 =

1
1−λ2

(
1− 2β βτ
2α 1− ατ

)
.

The solution of (1) and his derivative can be obtained by the successive
approximations method starting from any element of X.
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