A NOTE ON OSTROWSKI’'S INEQUALITY
CONSTANTIN P. NICULESCU AND AURELIA FLOREA

ABSTRACT. This paper deals with the problem of estimating the deviation of
the values of a function from its mean value. We consider the following special
cases: 1) the case of random variables (attached to arbitrary probability fields);
ii) the comparison is performed additively or multiplicatively; iii) the mean
value is attached to a multiplicative averaging process.

1. INTRODUCTION

The inequality of Ostrowski [10] gives us an estimate for the deviation of the
values of a smooth function from its mean value. More precisely, if f : [a,b] — R
is a differentiable function with bounded derivative, then

(0) f(x)b_la/bf(t)dt _ (L, @=(axb)/2)”
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for every x € [a,b]. Moreover the constant 1/4 is the best possible.

The proof is an application of Lagrangian’s mean value theorem:
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The optimality of the constant 1/4 is also immediate, checking the inequality
for the family of functions f,(t) = |z —t|* - (b—a) (¢t € [a,b], @ > 1) and then
passing to the limit as o — 1 4.
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It is worth to notice that the smoothness condition can be relaxed. In fact, the
Lipschitz class suffices as well, by replacing || f’||, with the Lipschitz constant of

f, e,
f@) - )
x—y '

The extension to the context of vector-valued functions, with values in a Banach
space, is straightforward.

Since a Lipschitz function on [a,b] is absolutely continuous, a natural direction
of generalization of the Ostrowski inequality was its investigation within this larger
class of functions (with refinements for f' € L?([a,b]), 1 < p < o0). See Fink [5].
Also, several Ostrowski type inequalities are known within the framework of Holder
functions as well as for functions of bounded variation.

The problem to estimate the deviation of a function from its mean value can be
investigated from many other points of view:

[l = sup
T#Y

e by considering random variables (attached to arbitrary probability fields);

e by changing the algebraic nature of the comparison (e.g., switching to the
multiplicative framework);

e by considering other means (for example, the geometric mean);

e by estimating the deviation via other norms (the classical case refers to the
sup norm, but LP-norms are better motivated in other situations).

The aim of this paper is to present a number of examples giving support to this
program.

2. OSTROWSKI TYPE INEQUALITIES FOR RANDOM VARIABLES

In what follows X will denote a locally compact metric space and E a Banach
space.

Theorem 1. The following two assertions are equivalent for f : X — E a contin-
UOUS MAPPING:

i) f is Lipschitz i.e., ||f||L = sup,, W < 00;

i) For every x € X and every Borel probability measure u on X such that
f € LY(p) we have

s [ ran <o [ dwa a
X X
Here * marks the upper integral.

Proof. i) = ii). As d(z,-) is continuous it is also Borel measurable, so being
nonnegative its upper integral is perfectly motivated. Then we can proceed as in
the classical case, described in the Introduction.

it) = 1). Consider the particular case of Dirac measure d, (concentrated at y).
Then

1f (@) = fl < I flL d(z,y)
which shows that f must be Lipschitz. W
If X is a bounded metric space, the above theorem works for all continuous
mappings. In fact, if || f||r < oo then f is necessarily bounded (and thus it belongs
to £L°(n) C LY(p)). Also, the mappings d(z,-) are p-integrable (which makes *
unnecessary).
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The condition f € L£'(u) is automatically fulfilled by all continuous bounded
functions regardless what Borel probability measure p we consider on X; in fact,
they are in £%°(u) C L£'(u). In general, not every continuous function f is u-
integrable. For, think at the case where X =R, f(z) =z, and p = m dx.

We shall illustrate Theorem 1 in a number of particular situations. The first

one, concerns the case of classical probability fields:

Corollary 1. Let E be a normed vector space and let x4, ...,z, be n vectors in E.

Then
1 & 1]/, n—|—1>2 n?—1
T — — il < — 1 — + - su Tpa1 — Trl|-
R n[( ; | e -

Proof. We consider the measure space (X ,3, ), where X = {1,...,n}, ¥ = P(X)
and p(A) = |A| for every A C X.
X has a natural structure of metric subspace of R. The function

[ X =B, [G) =,
is Lipschitz, with Lipschitz constant

(L) L= sup ||zps1 —xpl-
1<k<n-—1

In fact, if ¢ < j,
1 (@) = FODII = [lwi — ]
< lwi — il + -+ [lzj—1 — 2]

<(—i)- sup ||lzpgr — 2],
1<k<n—1

which proves the inequality < in (L). The other inequality is clear.

According to Theorem 1,
. 1 L .
1) =5 [ 10 dutw)] < [ li = dut)

which can be easily shown to be equivalent to the inequality in the statement of
Corollary 1 because

. L. .on+1 2 p21
/X|z—k|du(k):2|z—k|:<z— 5 >+ . =

k=1
Notice that the right hand side of the inequality in Corollary 1 is > +/var (f),

where
1 1 2
war (f) = = /X @)= s /X Fdut) du(z)

represents the variance of f. According to the classical Chebyshev inequality,
var f

M{f_u(lx)/x fdu’<s}>1_ >

and the discussion above shows that the range of interest in this inequality is
precisely

2 2
1 1 -1
Varf<5§l(i—n+ ) +n4 1 sup ||zg41 — zi||-
n

2 1<k<n—1
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As well known, convolution by smooth kernels leads to good approximation
schemes. Theorem 1 allows us to estimate the speed of convergence. Here is an
example:

Corollary 2. Let f : R — E be a Lipschitz mapping. Then

__n “n?(z—t)?/ 2| £
|10~ o | 10 o] < gy

for every x € R. Particularly, f is the uniform limit of a sequence (fy)n of Lipschitz
functions of class C*°, with || fu|l, < ||fll, for every n.

We end this section with the case of functions of several variables:

Corollary 3. Let f = f(x,y) be a differentiable function defined on a compact
2—dimensional interval X = [a,b] X [¢,d] such that |0f/0x| < L and |0f/0y| < M.
Then

Hf(%y) — ArelaX //X f(u, v)dudv

1 r — atb 2
<L Z+ 2 2 Area X+
—a

1 y_c+d 2
+ M Z+ d 2 Area X.
—c

Proof. Clearly, we may assume that L, M > 0. Then f is a Lipschitz function (with
Lipschitz constant 1) provided that X is endowed with the metric

d((x,y), (u,v)) = Lz —ul+ My —v].

Now the conclusion follows from Theorem 1. W

3. COMPARISON OF ARITHMETIC MEANS

Suppose that X is a locally compact bounded metric space on which there are
given two Borel probability measures p and v. We are interested to estimate the

difference
[ tdu= [ gav
X X

for f a Lipschitz function on X, with values in a Banach space E. For v = §,, this
reduces to the classical Ostrowski inequality.
Following the ideas in the preceding section we are led to

H/X fdu—/x fdv SIIfIIL/X/X d(z, y)du(z)dv(y)

but this is not always the best result.
For example, for = dz/(b—a) and v = (0, + ) /2 (on X = [a,b]) it yields the
trapezoid inequality

Lo fa) + f(®)
m/@ f(x) dz — - 9

with C' = 1/2. This can be improved up to C' = 1/4 within Ostrowski theory (by
applying (O) to f|[a, (a+b)/2] and f|[(a+Db)/2,b], for = a and 2 = b respectively).

<Clfll, (b—a),




However, the Iyengar inequality gives us a better upper bound:

L e T@Q O] Il F0) = f(@)?
T A e IR (=

See [6], [7], or [9] for details. We can combine (O) and (Iy) to get a more general

result:
b_la/ab ) o= ar (42) +<1_A>f(a);f(b)}|
IIf

Iz
4

(1y)

(f(b) = f(a))®
b=a) == a1,

for every Lipschitz function f and every X € [0,1]. This is optimal in the Lipschitz
class, but better results are known for smooth functions. See [7].

There is a large activity (motivated by the problems in numerical integration)
concerning the approximation of probability measures by convex combinations of
Dirac measures. However, sharp general formulas remain to be found.

<

4. THE MULTIPLICATIVE SETTING

According to [8], the multiplicative mean value of a continuous function f :
[a,b] — (0,00) (where 0 < a < b) is defined by the formula

1 logb
M, (f) = exp (k)gbloga /1 log f(et)dt>

oga

1 b dt
P (logb—loga/a log /(1) t)

The main properties of the multiplicative mean are listed below:
M.(1)=1
m<f<M =>m<M(f) <M
M.(fg) = M.(f) M.(g)-

Given a function f : I — (0,00) (with I C (0,00)) we shall say that f is multiplica-
tively Lipschitzian provided there exists a constant L > 0 such that

L
ax{f(:v), f(y)} < (g)
fy)" fx) z
for all z < y in I; the smallest L for which the above inequality holds constitutes
the multiplicative Lipschitz constant of f and it will be denoted by || f||+ Lip-

Remark 1. Though the family of multiplicatively Lipschitz functions is large enough
(to deserve attention in its own), we know the exact value of the multiplicative Lip-
schitz constant only in few cases:

i) If f is of the form f(x) = x®, then ||f||<Lip = a.

i1) If f = exp]|la,b] (where 0 < a < b), then ||f||«Lip = b

i13) Clearly, ||f||>rip <1 for every non-decreasing functions f such that f(x)/x

is mon-increasing. For example, this is the case of the functions sin and sec on

(0,7/2).
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w) If f and g are two multiplicatively Lipschitzian functions (defined on the same
interval) and o, B € R, then f*gP is multiplicatively Lipschitzian too. Moreover,

179" 1 Lip < lal - [1f1l- Lip + 18] - 19|+ Lip-

The following result represents the multiplicative counterpart of the classical
Ostrowski inequality:

Theorem 2. Let f : [a,b] — (0,00) be a multiplicatively Lipschitz function with
| fllsLip = L. Then

L(1/4+1og?(x/V/ab)/ log?(b/a)
max{ /(@) M*(f)}< (b>< o o)

Proof. In fact,

f(x)

1 b f(t) dt
logb—loga/a 10g(x)t>

<o (gt ([ [t ))
(
(

L 2
W (10g$(2logx—loga—logb) —log?x + % + log? b))

L (logz — loga)? + (logb — log x)2>

logb/a 2

and a similar estimate is valid for f(x)/M.(f). N
For f = exp]|[a,b] (where 0 < a < b), we have M. (f) = exp (b_i“) and

log b—log a
|| f||xLip = b. By Theorem 3.4, we infer the inequalities

b—a b b(1/4+1log?(z/Vab)/ log® (b/a))
- - < (=
P logb —loga x' - <a>
i.e.,
b—a log?(z/+/ab)
— — 2| <b|1/4+ ——"— | (logb—1
logb — loga = < /A+ (logb —loga)? (log 0ga)

for every = € [a, b]. Particularly,

b—a \/@

e B <
logb — loga -

(logh —loga).

NG

5. AN OPEN PROBLEM

The deviation of the values of a function from its mean value can be estimated
via a variety of norms. For example, the Ostrowski inequality yields

b
(©) Hf(x)—b_la [ raa

for every f € C'([a,b]).

b—a
2

<

11

oo
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In some instances, the LP-norms are more suitable. An old result in this direction
is the following inequality due to W. Stekloff [12], [13], [7],
1/2

@ ([ ) oo (/jumfw)m

that works also for every f € C'([a,b]). In terms of variance, (S) may be read as

b
f@) - [ s

_ b
var (f) < 2252 [P a,

so that, combined with the Schwarz inequality, it yields the following estimate for
the covariance of two random variables (of class C1) :

cov (f,g) < var'/2(f) - var'/?(g)

. b . 1/2 b , 1/2
< ( [ 17 dt) ( [1g el dt) .

There is a large literature in this area, including deep results in the higher
dimensional case. See [7].

A natural way to pack together (O’) and (5) is as follows.

Consider a separable Banach lattice E. Then E contains quasi-interior points
u > 0 and admits strictly positive functionals 2’ € E’. This means that

lim ||z — 2z Anu| =0 for every x € E, = >0,

and
x>0, 2'(z) = 0 implies x = 0.

See H. H. Schaefer [11], for details.
To each such a pair (u,2’) with #’(u) = 1, one can associate a positive linear
projection,

M:E—E, M(x)=1(z) u,

whose image is R - u. Clearly, this projection provides an analogue of the integral
mean.

Open Problem. Characterize all the pairs (u,z’) as above, for which there exist
a densely defined linear operator D : dom D C E — E and a positive constant
C = C(2',u) such that

|le — M(z)|| < C|D(z)| for every x € dom D.

In the examples at the beginning of this section, F is one of the spaces C(]a, b))
or L?([a,b]), u is the function identically 1, 2’ is the normalized Lebesgue measure
and D is the differential. The same picture follows from Corollary 3 above. The
problem is how general could be the existence of a differential like operator in the
context of separable Banach lattices.
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