ON THE BOMBIERI INEQUALITY IN INNER PRODUCT
SPACES

S.S. DRAGOMIR

ABSTRACT. New results related to the Bombieri generalisation of Bessel’s in-
equality in inner product spaces are given.

1. INTRODUCTION

Let (H; (-,-)) be an inner product space over the real or complex number field K.
If (€i),<;<,, are orthonormal vectors in the inner product space H, i.e., (e;, e;) = di;
foralli,j € {1,...,n} where §;; is the Kronecker delta, then the following inequality
is well known in the literature as Bessel’s inequality (see for example [8, p. 391]):
(1.1) Z |(z, &) < ||z||> for any = € H.

i=1

For other results related to Bessel’s inequality, see [4] — [6] and Chapter XV in
the book [8].

In 1971, E. Bombieri [3] (see also [8, p. 394]) gave the following generalisation
of Bessel’s inequality.

Theorem 1. If z,y1,...,yn are vectors in the inner product space (H;(-,-)), then
the following inequality:

n

(1.2) D M@y < max > iyl ¢ s
=1

i=1
holds.

It is obvious that if (y;),.;~,, are supposed to be orthonormal, then from (1.2)
one would deduce Bessel’s inequality (1.1).

Another generalisation of Bessel’s inequality was obtained by A. Selberg (see for
example [8, p. 394]):

Theorem 2. Let x,y1,...,yn be vectors in H withy; #0 (i =1,...,n). Then one
has the inequality:

x yz
(13) Z z T =1
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In this case, also, if (y;),,,, are orthonormal, then from (1.3) one may deduce
Bessel’s inequality. T

Another type of inequality related to Bessel’s result, was discovered in 1958 by
H. Heilbronn [7] (see also [8, p. 395]).

Theorem 3. With the assumptions in Theorem 1, one has

=

n

(1.4) Zl(x,yi)l <l | D2 1w w)

ij=1

If in (1.4) one chooses y; = e; (i =1,...,n), where (e;),.,,, are orthonormal
vectors in H, then o

(1.5) Z|(x,ei)| <+V/nlz|, forany z € H.
i=1
In 1992 J.E. Pecari¢ [9] (see also [8, p. 394]) proved the following general in-

equality in inner product spaces.

Theorem 4. Let x,y1,...,yn € H and c1,...,c, € K. Then

(1.6)

2 n n
2 2
<l Y fesl® { D 1w ;)]
i=1 j=1

Zci (z,y:)
i=1

n n
2 2
< Jlall® Y lerl” amax &S 1w
i=1 == =1

He showed that the Bombieri inequality (1.2) may be obtained from (1.6) for the

choice ¢; = (z,y;) (using the second inequality), the Selberg inequality (1.3) may
be obtained from the first part of (1.6) for the choice

(x7yz) -
S C3 ) e SRR ¥
Y ()]

while the Heilbronn inequality (1.4) may be obtained from the first part of (1.6) if
_ (zyi)

=y’
For other results connected with the above ones, see [5] and [6].

one chooses ¢; for any i € {1,...,n}.

2. SOME PRELIMINARY RESULTS

We start with the following lemma which is also interesting in itself.
Lemma 1. Let z1,...,2, € H and ay,...,a, € K. Then one has the inequality:

n
E Q24
i=1

(2.1)
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Proof. We observe that

(2.2)

2 n n
= E 25, E Qjzj
i=1 j=1

n
E Qi Z4
i=1

:5 g ;0 (2, 25) E E ;0 (24, 25)

=1 5=1 =1 j=1
n n

<ZZ|O%HO‘JHZ“ZJ |—Z|O‘z| ZlO‘JHZZaZJ
=1 j5=1

= M.
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Using Holder’s inequality, we may write that

(2.3)

n

> a1z, 25)] <

Jj=1

for any i € {1,...,

M <

max oy J; (20, 2))

n
2 lowl max 1(zi, z)|

n}, giving

n
1r<nk§E< |ak|;:1 i Z |(2i, 2)| =2 Mq;

q

(Z (24, )] )

p>1,

n n
> lak| D2 lag| max |(24,2))] = Moo
k=1 i=1 1<j<n

n
5 Jal

i=1

(é;kmp>;

D =

By Holder’s inequality we also have:

n n
2ol | 21621, )
i=1 j=1

s ol 3 1(20,%)

< (Emv) (2 (z |(zi,zj)|> ) 7
i=1 a\=
z; o 1?1’22(7; <g¥1 (Z“ZJ)|> ;
and thus
113132( |ak| 7JZ_ (=i, 2)] 5
: n n S %
<4 o ol (£ o) Q?(EK%@M>>

1<k<n

max |l Z |a;| max

<§|@n%)>;

1<i<n

and the first 3 inequalities in (2.1) are obtained.

. :
n P n
(z&mﬂ (zua@mﬂ Cpe 1,
k=1 j=1

= M,

+

1 _ 1.
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By Holder’s inequality we also have:

1
n »
Mp < (Z |ak|p>
k=1

. :
max Joul 3 ( 1zl )

n t +
x (Zai)
i=1 i=1 \ 4

" o] o @KMN)Q ;

.
i

o+

3

3
Qe

I
[NgE

1(Zi,2j)|q> , t>1, %-l-%:].,

i=1 1<i<n

and the next 3 inequalities in (2.1) are proved.
Finally, by the same Holder inequality we may state that:

o] £ (s[5 59)1)

3

1<5<

n % (= N
My < |ovge| X (Z |ai|7n> <Z (max (zl,z])|) ) , om>1, L4 =1
i=1

n
2 laa|  max (i, 2)[;
i=1 1<4,5<

and the last 3 inequalities in (2.1) are proved. d

If we would like to have some bounds for ||>7" aizin in terms of Y7, o),
then the following corollaries may be used.

Corollary 1. Let z1,...,z, and ai,...,a, be as in Lemma 1. If 1 < p < 2,
1 <t <2, then one has the inequality

g =

n q

<prtit Z | |? Z > (i, 2)|*

i=1 \j=1

(2.6)

iZi

1 1 _ 1 1 _
U}he’r@;-‘r;—:hf‘f'a—l

Proof. Observe, by the monotonicity of power means, we may write that

n i " 2 %
(zhlmﬁ>Pg<ZhnwA> Cl<ps2
n n
(Z Iak|> <Z 1o ) L 1<t<2
n n
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from where we get

Nl

n % ) N n
(Zaw’) (zw) |
k=1 k=1
1 1
n n 2
1 1
(Ziakv) (zw) .
k=1 k=1

Using the fifth inequality in (2.1), we then deduce (2.6). O

=

Remark 1. An interesting particular case is the one forp =q =t =u = 2, giving

n 2 n n
Zaizi SZ|ak|2 Z (26, 2)°
i=1 k=1

i,j=1
Corollary 2. With the assumptions of Lemma 1 and if 1 < p < 2, then

(2.7)

1
q

2 N n n
5 2 UL
(2:8) <ne Y Janf® max | {1zl |
k=1 - j=1

1,1 _
where;—&—a_l.

Proof. Since

-

n % L n 2
(Zak|p> (Daf) |
k=1 k=1

and
n n %
SMERY gl
k=1 k=1
then by the sixth inequality in (2.1) we deduce (2.8). O

In a similar fashion, one may prove the following two corollaries.

Corollary 3. With the assumptions of Lemma 1 and if 1 < m < 2, then

n 2 n n l %
1

E ozl <nm E |ak|2 (E [max (zl,zj)@ ) ,

‘ 1<j<n

i—1 k=1

i=1
1 1 _
where -+ 7 = 1.

(2.9)

Corollary 4. With the assumptions of Lemma 1, we have:

n
E ;2
i=1

The following lemma may be of interest as well.

2 n
2
(2.10) < nkz_l o[ max (2, 25)]

Lemma 2. With the assumptions of Lemma 1, one has the inequalities

2 n
<D laaf”
i=1 7

n

E e7%2)

=1

n

(2.11)

(2, 25)
1
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1<i<n j=

1 N
n 2 P n
i= j=

mas ol® 3 1(20,3)

; joal® max [iluzi,zj)] :

IN

Proof. As in Lemma 1, we know that

n

2 n
SZZ aillaj] (2, 25)] -
i=1 j=1

(2.12)

Using the simple observation that (see also [8, p. 394])

1 2 2 o
‘ai||@j|§§(|@i| + |oy] ), i,j €{1,...,n}

we have

Yo laillayl (i 2)]

i=1 j=1

n

2 2
(\cm + la*) (245 29)|

IN
l\')\r—l

n

INES

2
[ il (2, 2) [+ Y Lol (21, 2))]
4,g=1

i=1
2
Z o™ | (=3, 25)|

i,j=1

N | =

which proves the first inequality in (2.11).
The second part follows by Hoélder’s inequality and we omit the details. (I

Remark 2. The first part in (2.11) is the inequality obtained by Pecarié in [9].

3. SOME PECARIC TYPE INEQUALITIES

We are now able to point out the following result which complements the in-
equality (1.6) due to J.E. Pecari¢ [9] (see also [8, p. 394]).

Theorem 5. Let x,y1,...,yn be vectors of an inner product space (H; (-,-)) and
c1,...,¢n € K. Then one has the inequalities:

(3.1)

ZCi (z,y:)
i=1
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Proof. We note that

SURREN]

i=1

Using Schwarz’s inequality in inner product spaces, we have

Zci (. i) 207%
=1 i=1

Finally, using Lemma 1 with o, = ¢, zi =y; (i =1,...,n),
inequality (3.1). We omit the details.

(3.2) ET

p>1, L4 =1
1
, p>1 %4—%:
t>1, 141 =

)

we deduce the desired
O

The following corollaries may be useful if one needs bounds in terms of ;" | lei
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Corollary 5. With the assumptions in Theorem 5 and if 1 <p < 2,1 <t < 2,
% + % =1, % + % =1, one has the inequality:

NS
2=

(3-3) (2, i)

2 . N n n n
2 1,1 2
<l e 7> el D0 D syl ;
i=1 j=1

i=1

and, in particular, forp=q=t=u= 2,

n 2 n n

2 2 2
(@) <Y lel® | D winv)l
i=1 =1

i,j=1
The proof is similar to the one in Corollary 1.

[N

(3.4)

Corollary 6. With the assumptions in Theorem & and if 1 < p < 2, then
1
q

2 n n
2 1 2
(35) ()| <lelnd 3ol o |32 1m)l"|
-

1,1 _
where;—&—a—l.

The proof is similar to the one in Corollary 2.
The following two inequalities also hold.

Corollary 7. With the above assumptions for X, y;,c¢; and if 1 <m < 2, then

n
Z C; (xa yl
=1

1,1
where -+ 7 = 1.

1

SR Z\ck\ (Z o (yl,y»@l)l,

(3.6)

Corollary 8. With the above assumptz'ons for X, y;, c;, one has

n
Z Cj (I7 yl
=1

Using Lemma 2, we may state the followmg result as well.

(3.7) < |f® nZ\Ck\ max |(ys, y;)| -

,1<j<n

Remark 3. With the assumptions of Theorem 5, one has the inequalities:

n 2 n n

2 2
dociley)| < lall® D lel® D i)l
i=1 i=1 j=1

(3.8)

1
1 q\ ¢
2 n D n n a
< 2
S (§:1|Ci| p) <§:1<§: |(yi,yj)|> ) » P> 1 =1
= = j=1

1r£1a<x |Cz| ’JXE |(yuy])‘

that provide some alternatives to Pecarié’s result (1.6).
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4. SOME INEQUALITIES OF BOMBIERI TYPE

In this section we point out some inequalities of Bombieri type that may be
obtained from (3.1) on choosing ¢; = (x,y;) (i =1,...,n).

If the above choice was made in the first inequality in (3.1), then one would
obtain:

2
n
2
(Zlux,yi)) < el o ) Y 1)
1=

4,j=1
giving, by taking the square root,

2
. i < s Y iy g ’ .
(11) ) < ol s (Gl | D2 1wl | we H

2,j=1

s.
I Ms
I,

If the same choice for ¢; is made in the second inequality in (3.1), then one would
get

S

n 2 n
<Z(w,yi)|2> < [|l=|* max x (@, :) <Zl(w‘,yi)’"> Z ZI Yiry5)l ,

3=

=1 i=1 =1 \j=1

implying

PICEAIE

3
w
N
Sl

1

1 £
27
l
< Jlz|l max |, 2) 2<Z|w ) Z ol | |
1

=1 Jj=1

where L + 1 =1,5> 1.
The other inequalities in (3.1) will produce the following results, respectively
(4.3)

1
n l 2 n
21 wl” <l max (2. 2<§:| 7.y ) s | 31w
= j=

Q=
ol

1 n % n n
< el max [(,y:)|* (ZI(%%)”) S 1w i)l :

=1 =1 j=1
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1 1 __ 1.
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where p > 1, %—l—%zl;

(4.7)

n

ZI(%%)F < |l [Z i)l
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-
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—
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&
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2 l
. ) < Y
49 Dleu)’ <l [Z .30 ] [Z | 10n.35) H ,
where m > 1, T}L % =1; and
2 1
(1.9) o) < el 3 oo, )1
i=1 pIsI=

If in the above inequalities we assume that (y;);<;<,, = (€i);<;<, ,» where (;);,,,
are orthonormal vectors in the inner product space (H, (-, -)), then from (4.1) - (4.9)
we may deduce the following inequalities similar in a sense with Bessel’s inequality:

(4.10) Z;\ z,e)|” < Vi | max {|(z, )]}

s

- 2 1 1
. . < s 2
(4.11) E [(x,e;)]” < n2s ||z 1I£iagxn{ x,e;) } (E |(x,e;) ) ,

i=1
1,1 _ .
where r > 1, & + £ = 1;

1
n n 2
2 1
. 7 < 1 2 (3
@12 3l ed” < ol g {0 }(§_1j| r.e )

n

@13 Yl < valel max {@elt} (Z |<x,ei>|P> ,

i=1 i=1
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where p > 1;

n

@14) Y f@e) < a (Z |<x,ei>|p> (Z <x,ei>|t> .

i=1 i=1

Wherep>1,t>1,%+%:1;

@) Y lae)f < lal (Zmew) (Zux,ei)) P>

=1 =1 =1
n n % 1
2 =
. i < ) &1 ) &g 2 5

@16) i) _\/ﬁ||x|<.1|<xe>> max {|(z,e0)|*}

n n % 1 1

1

@ 3 fe)f <ok o L_lu,ei)r”] come L =k

(4.18) Z [(z,e:)]* < ||| Z T, e;)]

Corollaries 5 — 8 will produce the following results which do not contain the
Fourier coefficients in the right side of the inequality.
Indeed, if one chooses ¢; = (z,y;) in (3.3), then

n 2 n n n
(meﬁ) S CEMI DN DI HA]E I

i=1 i=1 \j=1

giving the following Bombieri type inequality:

n n
141 2
(4.19) Sl )l <ne ez [ |(yi, y5)| ;
=1 3

where1<p§2,1<t§2,%+§:1,%+
If in this inequality we consider p = ¢ =

(4.20) 1@yl < =) Z | (i ;)]
i=1 j=1

For a different proof of this result see also [6].
In a similar way, if ¢; = (x,y;) in (3.6), then

n n l %
(4.21) >l < af? (Z [mx |(yl,yj>|}> 7

Wherem>17%+7:1.
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Finally, if ¢; = (z,;) (i =1,...,n), is taken in (3.7), then
2
(4.22) ;\ 4 < n | (max |y, y;)l -

Remark 4. Let us compare Bombieri’s result

n

n
(4.23) Z| z,y)]> < ||=]|* max Z Yi, Yi)|

1<i<n
=1 -

with our result

(4.24) Do l@y)l* < lel® 4 D 1w )
i=1

N

ij=1
Denote
n
My = max 0> |y, y))]
<i<n | <3
and

> i)l

i,j=1
If we choose the inner product space H = R, (x,y) := xy and n = 2, then for
Y1 =a, y2 = b, a,b > 0, we have

M; = max {a® + ab,ab+ b’} = (a + b) max (a,b),
1
My = (a* + a®b* + a®b* +b*)? = a® + b°.

Assume that a > b. Then My = a® + ab > a® + b?> = My, showing that, in this
case, the bound provided by (4.24) is better than the bound provided by (4.23). If
(Yi)1<i<n are orthonormal vectors, then My =1, My = \/n, showing that in this

case the Bombieri inequality (which becomes Bessel’s inequality) provides a better
bound than (4.24).
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