
REPRESENTATION OF MULTIVARIATE FUNCTIONS VIA THE
POTENTIAL THEORY

FLORICA-CORINA CÎRSTEA AND SEVER SILVESTRU DRAGOMIR

Abstract. In this paper, by the use of Potential Theory, some representation

results for multivariate functions from the Sobolev spaces W 1,p(Ω), in terms of
the double layer potential and the fundamental solution of Laplace’s equation

are pointed out. Applications for multivariate inequalities of Ostrowski type

are also provided.

1. Introduction

The following representation for an absolutely continuous function f : [a, b] → R
in terms of the integral mean is known in the literature as Montgomery identity

f (x) =
1

b− a

∫ b

a

f (t) dt +
1

b− a

∫ b

a

p (t, x) f ′ (t) dt, x ∈ [a, b] ;

where p : [a, b]2 → R, is given by

(1.1) p (t, x) =
{

t− a if a ≤ t ≤ x
t− b if x < t ≤ b

.

In the last decade, many authors (see for example [2] and the references therein)
have extended the above result for different classes of functions defined on a compact
interval, including: functions of bounded variation, monotonic functions, convex
functions, n-time differentiable functions whose derivatives are absolutely continu-
ous or satisfy different convexity properties etc...and pointed out sharp inequalities
for the absolute value of the difference

D(f ;x) := f (x)− 1
b− a

∫ b

a

f (t) dt, x ∈ [a, b] .

The obtained results have been applied in Approximation Theory, Numerical Inte-
gration, Information Theory and other related domains.

We have, see for instance [2, p. 2], the following Ostrowski type inequalities

|D(f ;x)|

≤



[
1
4 +

(
x− a+b

2
b−a

)2
]

(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1
(p+1)1/p

[(
x−a
b−a

)p+1

+
(

b−x
b−a

)p+1
]1/p

(b− a)1/p ‖f ′‖q

if f ′ ∈ Lq [a, b]
q > 1, 1

p + 1
q = 1 ;[

1
2 +

∣∣∣x− a+b
2

b−a

∣∣∣] ‖f ′‖1 ;
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provided f is absolutely continuous and Lr [a, b] (1 ≤ r ≤ ∞) are the usual Lebesgue
spaces. The constants 1

4 , 1
(p+1)1/p and 1

2 are best possible in the sense that they
cannot be replaced by smaller constants.

If the functions f : [a, b] × [c, d] → R has the partial derivatives ∂f(t,s)
∂t , ∂f(t,s)

∂s ,

and ∂2f(t,s)
∂t∂s continuous on [a, b]× [c, d] , then one has the representation [2, p. 307]

f (x, y) =
1

(b− a)(d− c)

∫ b

a

∫ d

c

f (t, s) dtds

+
1

(b− a)(d− c)

∫ b

a

∫ d

c

p (t, x)
∂f (t, s)

∂t
dtds

+
1

(b− a)(d− c)

∫ b

a

∫ d

c

q (s, y)
∂f (t, s)

∂s
dtds

+
1

(b− a)(d− c)

∫ b

a

∫ d

c

p (t, x) q (s, y)
∂2f (t, s)

∂t∂s
dtds,

for each (x, y) ∈ [a, b]× [c, d] , where p is defined by (1.1) and q is the corresponding
kernel for the interval [c, d] .

Another representation for f : [a, b]× [c, d] → R is [2, p. 294]

f (x, y) =
1

b− a

∫ b

a

f (t, y) dt +
1

d− c

∫ d

c

f (x, s) ds

− 1
(b− a)(d− c)

∫ b

a

∫ d

c

f (t, s) dtds

+
1

(b− a)(d− c)

∫ b

a

∫ d

c

p (t, x) q (s, y)
∂2f (t, s)

∂t∂s
dtds,

for each (x, y) ∈ [a, b]× [c, d] , provided ∂2f(t,s)
∂t∂s is continuous in [a, b]× [c, d] .

Different Ostrowski type inequalities for multivariate functions may be stated,
see Chapters 5 & 6 of [2].

In this paper, by the use of Potential Theory, some representation results for mul-
tivariate functions from the Sobolev spaces W 1,p(Ω), where Ω is an open bounded
set with smooth boundary in RN , N ≥ 2, p ∈ (N,∞], in terms of the double layer
potential and the fundamental solution of Laplace’s equation are pointed out. Ap-
plications for multivariate inequalities of Ostrowski type are also provided.

2. Preliminaries

For Ω ⊂ RN , we denote by Ω its closure and by ∂Ω the boundary of Ω.
By a vector field we understand an RN -valued function on a subset of RN . If

Z = (z1, z2, . . . , zN ) is a differentiable vector field on an open set Ω ⊂ RN , the
divergence of Z on Ω is defined by

divZ =
N∑

i=1

∂zi

∂xi
.

Proposition 1 (The Divergence Theorem). Let Ω ⊂ RN be an open bounded set
with C1 boundary and let Z be a vector field of class C1(Ω) ∩ C(Ω). Then,∫

Ω

divZ(y) dy =
∫

∂Ω

〈Z(x), ν(x)〉 dσ(x).
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Here, ν(x) is the unit outward normal to ∂Ω at x and dσ denotes the Euclidian
measure on ∂Ω. We denote by 〈·, ·〉 the canonical inner product on RN × RN .

If u is a differentiable function defined near ∂Ω, we can define the normal deriv-
ative of u on ∂Ω by

∂u

∂ν
= 〈∇u, ν〉, where ∇u = gradu =

(
∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xN

)
.

If Ω is a domain for which the divergence theorem applies, then we have

Proposition 2 (Green’s first identity). Assume that u, v ∈ C2(Ω) ∩ C1(Ω). The
following holds∫

Ω

v(x)∆u(x) dx +
∫

Ω

〈∇u(x),∇v(x)〉 dx =
∫

∂Ω

v(x)
∂u

∂ν
(x) dσ(x).

Let ‖ · ‖Lm(Ω) denote the usual norm on Lm(Ω), i.e.,

‖u‖Lm(Ω) =
(∫

Ω

|u(x)|m dx

)1/m

, if u ∈ Lm(Ω) with 1 ≤ m < ∞

respectively

‖u‖L∞(Ω) = inf{C > 0 : |u(x)| ≤ C a.e. on Ω}, if u ∈ L∞(Ω).

By W 1,m(Ω), 1 ≤ m ≤ ∞, we understand the Sobolev space defined by

W 1,m(Ω) =

u ∈ Lm(Ω)

∣∣∣∣∣∣
∃g1, g2, . . . gN ∈ Lm(Ω) such that∫

Ω

u
∂φ

∂xi
= −

∫
Ω

giφ, ∀φ ∈ C∞c (Ω), ∀i = 1, N

 .

For u ∈ W 1,m(Ω) we define gi = ∂u
∂xi

and we write

∇u = gradu =
(

∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xN

)
.

The Sobolev space W 1,m(Ω) is endowed with the norm

‖u‖W 1,m(Ω) = ‖u‖Lm(Ω) +
N∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lm(Ω)

.

For x ∈ RN and r > 0, set Br(x) = {y ∈ RN : |x−y| < r}, where |x| = 〈x, x〉1/2.
Let E(x) define the fundamental solution of Laplace’s equation ∆E(x) = 0 in

RN (N ≥ 2), i.e.,

E(x) =


1
2π

ln |x|, x 6= 0 (if N = 2)
1

(2−N)ωN |x|N−2
, x 6= 0 (if N ≥ 3)

where ωN stands for the area of the unit sphere in RN . By [4, Proposition 0.7], we
know that the value of ωN is

ωN =
2πN/2

Γ(N/2)
where Γ(s) represents the Gamma function defined for Re s > 0 by

Γ(s) =
∫ ∞

0

e−tts−1 dt.
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Let Ω ⊂ RN be an open, bounded subset with C2 boundary. For a continuous
function h on ∂Ω, the double layer potential with moment h is defined as

(2.1) ¯̄uh(y) =
∫

∂Ω

h(x)
∂E

∂ν
(x− y) dσ(x).

For details about the next results, we refer to [4].

Proposition 3. If h is a continuous function on ∂Ω, then

(a) ¯̄uh(y) is well defined for all y ∈ RN .
(b) ∆¯̄uh(y) = 0 for all y 6∈ ∂Ω.

Lemma 1 (Gauss’ Lemma). Let ¯̄v be the double layer potential with moment h ≡ 1,
i.e.,

¯̄v(y) =
∫

∂Ω

∂E

∂ν
(x− y) dσ(x).

Then, we have

¯̄v(y) =


1 if y ∈ Ω,
1/2 if y ∈ ∂Ω,
0 if y ∈ RN \ Ω.

The next result states the limits of the ¯̄uh(y) (defined by (2.1)) as we approach
∂Ω from the interior or exterior of Ω.

Proposition 4. Let h be continuous on ∂Ω and y0 ∈ ∂Ω. Then,

(2.2) lim
Ω3y→y0

¯̄uh(y) =
1
2
h(y0)+ ¯̄uh(y0) and lim

RN\Ω3y→y0

¯̄uh(y) = −1
2
h(y0)+ ¯̄uh(y0).

Remark 1. If h ∈ C(∂Ω) then ¯̄uh ∈ C(∂Ω) ∩ Lm(Ω), for each 1 ≤ m ≤ ∞.

Indeed, by Propositions 3 and 4, the function φ : Ω → R defined by φ(y) = ¯̄uh(y),
∀y ∈ Ω and φ(y0) = 1

2h(y0) + ¯̄uh(y0), ∀y0 ∈ ∂Ω is continuous on Ω. It follows that
¯̄uh ∈ C(∂Ω) and φ ∈ L∞(Ω). But φ ≡ ¯̄uh on Ω so that ¯̄uh ∈ L∞(Ω). Thus, for
each 1 ≤ m < ∞, we have∫

Ω

|¯̄uh|m dx ≤ ‖¯̄uh‖m
L∞(Ω) meas (Ω) < ∞,

which shows that ¯̄uh ∈ Lm(Ω).

3. Main results

Let Ω ⊂ RN be an open bounded set with smooth boundary and A = (ai)i∈I be
a finite family of points in Ω.

We assume throughout that f ∈ C(Ω) ∩ C1(Ω \A) and, for some α ∈ (0, 1),

(H) lim sup
x→ai

|f(x)− f(ai)|
|x− ai|α

< ∞, ∀i ∈ I.

We adopt the following notations∮
Ω

f dx =
1

meas (Ω)

∫
Ω

f(x) dx and
∮

∂Ω

f dσ(x) =
1

meas (∂Ω)

∫
∂Ω

f(x) dσ(x).
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Theorem 1. Suppose f ∈ W 1,p(Ω) for some p ∈ (N,∞]. Then

(3.1) f(y) = ¯̄uf (y)−
∫

Ω

〈∇E(x− y),∇f(x)〉 dx, ∀y ∈ Ω

resp.,

(3.2)
∫

Ω

f(x) dx =
1
N

∫
∂Ω

f(x)〈x−y, ν〉 dσ(x)− 1
N

∫
Ω

〈∇f(x), x−y〉 dx, ∀y ∈ RN .

Proof. Let y ∈ Ω be fixed. We first recall that, for each γ ∈ (0, N), the mapping
x 7−→ |x− y|−γ ∈ L1(Ω). Indeed, for r > 0 fixed so that Br(y) ⊂⊂ Ω, we have∫

Ω

dx

|x− y|γ
=
∫

Ω\Br(y)

dx

|x− y|γ
+
∫

Br(y)

dx

|x− y|γ

≤ meas (Ω)
rγ

+ lim
ε→0

∫ r

ε

(∫
∂Bρ(y)

dσ(x)
|x− y|γ

)
dρ

=
meas (Ω)

rγ
+ lim

ε→0

∫ r

ε

meas (∂Bρ(y))
ργ

dρ

=
meas (Ω)

rγ
+

ωNrN−γ

N − γ
< ∞.

We now define F : Ω \ {y} → RN as follows

F (x) = (f(x)− f(y))∇E(x− y) =
f(x)− f(y)
ωN |x− y|N

(x− y).

Note that F (x) is not smooth for all x ∈ Ω. We overcome this problem by choosing
ε > 0 small enough such that Bε(y) resp., Bε(ai) (ai ∈ A \ {y}) is contained within
Ω and each two such balls are disjoint. Therefore, F ∈ C1(Dε) ∩ C(Dε) where
Dε = Ω \

(
∪i∈IBε(ai) ∪Bε(y)

)
. Using the Divergence Theorem, we arrive at∫

Dε

div F (x) dx =
∫

∂Ω

(f(x)− f(y))
∂E

∂ν
(x− y) dσ(x)

− 1
ωN εN−1−α

∫
∂Bε(y)

f(x)− f(y)
|x− y|α

dσ(x)

− 1
ωN

∑
i∈I,ai 6=y

∫
∂Bε(ai)

f(x)− f(y)
ε|x− y|N

〈x− y, x− ai〉 dσ(x).

(3.3)

We see that

(3.4) lim
ε→0

1
εN−1−α

∫
∂Bε(y)

f(x)− f(y)
|x− y|α

dσ(x) = 0.

Indeed, in view of (H), for some constant L > 0 and ε > 0 small enough, we have

0 ≤ 1
εN−1−α

∣∣∣∣∣
∫

∂Bε(y)

f(x)− f(y)
|x− y|α

dσ(x)

∣∣∣∣∣
≤ L

εN−1−α

∫
∂Bε(y)

dσ(x) = LωN εα → 0 as ε → 0.

Notice that, for each i ∈ I with ai 6= y, there exists a constant Ci > 0 such that

|f(x)− f(y)| ≤ Ci|x− y|N−1, ∀x ∈ Bε(ai)
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(since y 6∈ Bε(ai)). Hence∣∣∣∣∣
∫

∂Bε(ai)

f(x)− f(y)
ε|x− y|N

〈x− y, x− ai〉 dσ(x)

∣∣∣∣∣ ≤
∫

∂Bε(ai)

|f(x)− f(y)|
|x− y|N−1

dσ(x)

≤ CiωN εN−1 → 0 as ε → 0,

(3.5)

provided i ∈ I such that ai 6= y. By (3.3)–(3.5), it follows that

lim
ε→0

∫
Dε

div F (x) dx =
∫

∂Ω

(f(x)− f(y))
∂E

∂ν
(x− y) dσ(x)

=
∫

∂Ω

f(x)
∂E

∂ν
(x− y) dσ(x)− f(y)

(3.6)

by using Gauss’ Lemma. On the other hand, for each x ∈ Dε,

div F (x) = 〈∇f(x),∇E(x− y)〉+ (f(x)− f(y))∆xE(x− y)

= 〈∇f(x),∇E(x− y)〉

since x 7−→ E(x− y) is harmonic on RN \ {y}. By Hölder’s inequality, we obtain∫
Ω

|〈∇f(x),∇E(x− y)〉| dx ≤
‖∇f‖Lp(Ω)

ωN

(∫
Ω

dx

|x− y|(N−1)p′

) 1
p′

< ∞

which is due to |∇f | ∈ Lp(Ω) and (N − 1)p′ < N . Hence, the mapping x 7−→
〈∇f(x),∇E(x− y)〉 is integrable on Ω. Thus, using (3.6) we deduce that∫

Ω

〈∇f(x),∇E(x− y)〉 dx = lim
ε→0

∫
Dε

〈∇f(x),∇E(x− y)〉 dx

=
∫

∂Ω

f(x)
∂E

∂ν
(x− y) dσ(x)− f(y)

which concludes our first assertion.
Let y ∈ RN be arbitrary. We define G : Ω → RN by G(x) = f(x)(x − y). Let

ε > 0 be small such that Bε(ai) ⊂ Ω, ∀i ∈ I and Bε(ai)∩Bε(aj) = ∅, ∀i, j ∈ I with
i 6= j. Set Uε = Ω \

(
∪i∈IBε(ai)

)
. We have G ∈ C1(Uε)∩C(U ε). By Proposition 1,

we find that ∫
Uε

div G(x) dx =
∫

∂Ω

f(x)〈x− y, ν〉 dσ(x)

−
∑
i∈I

∫
∂Bε(ai)

f(x)
ε

〈x− y, x− ai〉 dσ(x).
(3.7)

For each i ∈ I, we have∣∣∣∣∣
∫

∂Bε(ai)

f(x)
ε

〈x− y, x− ai〉 dσ(x)

∣∣∣∣∣ ≤
∫

∂Bε(ai)

|f(x)|
ε

|〈x− y, x− ai〉| dσ(x)

≤
∫

∂Bε(ai)

|f(x)||x− y| dσ(x)

≤ Ci‖f‖L∞(Ω)meas (∂Bε(ai))

= Ci‖f‖L∞(Ω)ωN εN−1 → 0 as ε → 0

for some constant Ci > 0 that satisfies |x− y| ≤ Ci, ∀x ∈ ∂Bk(ai), ∀k ∈ (0, ε].
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It follows that

(3.8) lim
n→∞

∫
∂Bε(ai)

f(x)
ε

〈x− y, x− ai〉 dσ(x) = 0, ∀i ∈ I.

We see that
div G(x) = 〈∇f(x), x− y〉+ Nf(x), ∀x ∈ Uε.

By f ∈ C(Ω) ∩W 1,p(Ω) and Hölder’s inequality, we deduce f ∈ L1(Ω) and∫
Ω

|〈∇f(x), x− y〉| dx ≤
∫

Ω

|∇f(x)||x− y| dx

≤
(∫

Ω

|∇f(x)|p dx

) 1
p
(∫

Ω

|x− y|p
′
dx

) 1
p′

= ‖∇f‖Lp(Ω)

(∫
Ω

|x− y|p
′
dx

) 1
p′

< ∞.

Therefore,

(3.9) lim
ε→0

∫
Uε

div G(x) dx =
∫

Ω

〈∇f(x), x− y〉+ N

∫
Ω

f(x) dx.

Passing to the limit ε → 0 in (3.7) and using (3.8) resp., (3.9), we conclude that∫
Ω

〈∇f(x), x− y〉+ N

∫
Ω

f(x) dx =
∫

∂Ω

f(x)〈x− y, ν dσ(x)

which proves (3.2). �

To our next aim, we recall the following results.

Lemma 2. Let Ω ⊂ RN be an open set. Let (hn) be a sequence in Lp(Ω), 1 ≤ p ≤
∞, and let h ∈ Lp(Ω) be such that ‖hn − h‖Lp(Ω) → 0.

Then, there exists a subsequence (hnk
) and a function φ ∈ Lp(Ω) such that

(a) hnk
(x) → h(x) a.e. in Ω,

(b) |hnk
(x)| ≤ φ(x) ∀k, a.e. in Ω.

The interested reader may find the proof of Lemma 2 in [1, Theorem IV.9].

Lemma 3. Suppose that Ω is of class C1 and let u ∈ W 1,p(Ω) with 1 ≤ p < ∞.
Then, there exists a sequence (un) in C∞c (RN ) such that un|Ω → u in W 1,p(Ω).

In other words, the restrictions to Ω of functions belonging to C∞c (RN ) form a
subspace which is dense in W 1,p(Ω).

For the proof of Lemma 3 we refer to [1, Corollary IX.8].
We are now ready to give a representation theorem of functions in any Sobolev

space W 1,p(Ω), p ∈ (N,∞). More precisely, we prove

Theorem 2. Let Ω be an open bounded C1 set in RN , N ≥ 2. Then, for any
g ∈ W 1,p(Ω) with p ∈ (N,∞), there exists a sequence (gn) ⊂ C∞c (RN ) so that

g(y) = lim
n→∞

∫
∂Ω

gn(x)
∂E

∂ν
(x− y) dσ(x)

−
∫

Ω

〈∇E(x− y),∇g(x)〉 dx a.e. y ∈ Ω.

(3.10)
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Proof. By Lemma 3, we know that there exists a sequence gn ∈ C∞c (RN ) such that
gn|Ω → g in W 1,p(Ω). Hence,

lim
n→∞

‖gn|Ω − g‖Lp(Ω) = 0 and lim
n→∞

∥∥∥∥∂gn

∂xi
− ∂g

∂xi

∥∥∥∥
Lp(Ω)

= 0, ∀i = 1, N.

Applying Lemma 2 we have that, up to a subsequence (relabelled (gn)),

(3.11) gn|Ω → g a.e. in Ω.

Using Theorem 1, we obtain

(3.12) gn(y) =
∫

∂Ω

gn(x)
∂E

∂ν
(x− y) dσ(x)−

∫
Ω

〈∇E(x− y),∇gn(x)〉 dx, ∀y ∈ Ω.

We now show that

(3.13) lim
n→∞

∫
Ω

〈∇E(x− y),∇gn(x)〉 dx =
∫

Ω

〈∇E(x− y),∇g(x)〉 dx, ∀y ∈ Ω.

Indeed, by Hölder’s inequality, we deduce

0 ≤
∫

Ω

|〈E(x− y),∇gn(x)−∇g(x)〉| dx

=
∫

Ω

∣∣∣∣∣
N∑

i=1

∂E

∂xi
(x− y)

∂(gn − g)
∂xi

∣∣∣∣∣ ≤
N∑

i=1

∫
Ω

∣∣∣∣ ∂E

∂xi
(x− y)

∂(gn − g)
∂xi

∣∣∣∣ dx

≤
N∑

i=1

(∫
Ω

∣∣∣∣ ∂E

∂xi
(x− y)

∣∣∣∣p′ dx

)1/p′

·
(∫

Ω

∣∣∣∣∂(gn − g)
∂xi

∣∣∣∣p dx

)1/p

≤
(∫

Ω

|∇E(x− y)|p
′
dx

)1/p′ N∑
i=1

∥∥∥∥∂(gn − g)
∂xi

∥∥∥∥
Lp(Ω)

≤ 1
ωN

(∫
Ω

dx

|x− y|(N−1)p′

)1/p′

·
N∑

i=1

∥∥∥∥∂(gn − g)
∂xi

∥∥∥∥
Lp(Ω)

→ 0 as n →∞

By (3.11)–(3.13) we conclude the proof. �

4. Special cases

A function u ∈ C2(Ω) is called harmonic in Ω if it satisfies ∆u = 0 in Ω.
The mean value theorem for harmonic functions says that the function value at

the center of the ball BR(a) ⊂ Ω is equal to the integral mean values over both the
surface ∂BR(a) and BR(a) itself. More precisely,

Proposition 5 (Theorem 2.1 in [5]). Let u ∈ C2(Ω) ∩ C(Ω) satisfy ∆u = 0 in Ω.
Then for any ball BR(a) ⊂ Ω, we have

(4.1) u(a) =
∮

∂BR(a)

u(x) dσ(x),

(4.2) u(a) =
∮

BR(a)

u(x) dx.
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The Poisson integral formula, together with an approximation argument, gives
the representation form for harmonic functions u ∈ C2(BR(a))∩C(BR(a)), that is
(see [5], pp. 20)

(4.3) u(y) =
R2 − |y − a|2

RωN

∫
∂BR(a)

u(x)
|x− y|N

dσ(x), ∀y ∈ BR(a).

Moreover, we have

Proposition 6 (Theorem 2.6 in [5]). Let ϕ be a continuous function on ∂B. Then
the function u defined by

(4.4) u(y) =


R2 − |y − a|2

RωN

∫
∂BR(a)

u(x)
|x− y|N

dσ(x), ∀y ∈ BR(a),

ϕ(y), ∀y ∈ ∂BR(a)

belongs to C2(BR(a)) ∩ C(BR(a)) and satisfies ∆u = 0 in BR(a).

It is now natural to ask what are the corresponding representation formulas for
functions satisfying weaker regularity assumptions and not necessarily harmonic.

To this aim, we state some consequences of Theorem 1, whose preliminary as-
sumptions are self-understood. As a common hypothesis for Corollaries 1–7, we
have f ∈ W 1,p(Ω) for some p ∈ (N,∞].

Corollary 1. For any ball BR(a) ⊂ Ω, we have

(4.5) f(y) =
∫

∂BR(a)

f(x)〈x− y, x− a〉
RωN |x− y|N

dσ(x)−
∫

BR(a)

〈∇f(x), x− y〉
ωN |x− y|N

dx,

where y ∈ BR(a) is arbitrary.

Using Proposition 6 and Corollary 1, we arrive at

Corollary 2. For any a ∈ Ω and R > 0 such that BR(a) ⊂ Ω, we find

(4.6)

f(y) =χ(y) +
∫

∂BR(a)

〈y − a, y − x〉
RωN |x− y|N

f(x) dσ(x)

−
∫

BR(a)

〈∇f(x), x− y〉
ωN |x− y|N

dx, ∀y ∈ BR(a)

where χ is the unique classical solution of the Dirichlet problem{
∆u = 0, in BR(a)

u = f, on ∂BR(a).

Corollary 3. The following representation formula holds

(4.7)
f(y) =

∮
Ω

f(x) dx +
∫

∂Ω

(
〈x− y, ν〉

ωN |x− y|N
− 〈x− z, ν〉

N meas (Ω)

)
f(x) dσ(x)

−
∫

Ω

(
〈∇f(x), x− y〉
ωN |x− y|N

− 〈∇f(x), x− z〉
Nmeas (Ω)

)
dx, ∀y ∈ Ω, ∀z ∈ RN .

In particular, for z = y we obtain

(4.8)
f(y) =

∮
Ω

f(x) dx +
∫

∂Ω

(
1

ωN |x− y|N
− 1

Nmeas (Ω)

)
f(x)〈x− y, ν〉 dσ(x)

−
∫

Ω

(
1

ωN |x− y|N
− 1

Nmeas (Ω)

)
〈∇f(x), x− y〉 dx, ∀y ∈ Ω.
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Corollary 4. For each a ∈ Ω and R > 0 such that BR(a) ⊂ Ω, we obtain

f(y) =
∮

BR(a)

f(x) dx−
∮

∂BR(a)

f(x) dσ(x) +
∫

∂BR(a)

f(x)〈x− y, x− a〉
RωN |x− y|N

dσ(x)

− 1
ωN

∫
BR(a)

(
〈∇f(x), x− y〉

|x− y|N
− 〈∇f(x), x− a〉

RN

)
dx, ∀y ∈ BR(a).

The particular case y = a leads to

(4.9) f(a) =
∮

BR(a)

f(x) dx− 1
ωN

∫
BR(a)

(
1

|x− a|N
− 1

RN

)
〈∇f(x), x− a〉 dx.

resp.,

(4.10) f(a) =
∮

∂BR(a)

f(x) dσ(x)− 1
ωN

∫
BR(a)

〈∇f(x), x− a〉
|x− a|N

dx.

Corollary 5. An arbitrary value of f is below compared with the double layer
potential with moment f

(4.11) |f(y)− ¯̄uf (y)| ≤
‖∇f‖Lp(Ω)

ωN

(∫
Ω

dx

|x− y|(N−1)p′

) 1
p′

, ∀y ∈ Ω

where p′ denotes the conjugate coefficient of p (i.e., 1/p + 1/p′ = 1). Moreover,
for y ∈ Ω fixed, the equality in (4.11) is established for the nontrivial function
f(x) = ±|x − y| if p = ∞ resp., f(x) = ±|x − y|β with β = (p − N)/(p − 1) if
p ∈ (N,∞).

Proof. By (3.1) and Hölder’s inequality, we have

|f(y)− ¯̄uf (y)| =
∣∣∣∣∫

Ω

〈∇E(x− y),∇f(x)〉 dx

∣∣∣∣ = ∣∣∣∣∫
Ω

〈x− y,∇f(x)〉
ωN |x− y|N

dx

∣∣∣∣
≤ 1

ωN

∫
Ω

|〈x− y,∇f(x)〉|
|x− y|N

dx ≤ 1
ωN

∫
Ω

|∇f(x)|
|x− y|N−1

dx

≤ 1
ωN

(∫
Ω

|∇f(x)|p dx

)1/p(∫
Ω

dx

|x− y|(N−1)p′

)1/p′

=
‖∇f‖Lp(Ω)

ωN

(∫
Ω

dx

|x− y|(N−1)p′

)1/p′

.

Let y ∈ Ω be fixed. We define f±p,y : Ω → R by

f±p,y(x) =

{ ± |x− y|, if p = ∞

± |x− y|
p−N
p−1 , if p ∈ (N,∞).

Clearly, we have f±p,y ∈ C(Ω). Moreover, f±p,y ∈ C1(Ω \ {y}) and

(4.12) ∇f±p,y(x) =


± x− y

|x− y|
, ∀x ∈ Ω \ {y}, if p = ∞

± p−N

p− 1
x− y

|x− y|
p+N−2

p−1

, ∀x ∈ Ω \ {y}, if p ∈ (N,∞).
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Since C(Ω) ⊂ Lp(Ω), we infer that f±p,y ∈ W 1,p(Ω) and

∥∥∇f±p,y(x)
∥∥

Lp(Ω)
=


1, if p = ∞

p−N

p− 1

(∫
Ω

dx

|x− y|(N−1)p′

)1/p

, if p ∈ (N,∞).

It follows that the right hand side (RHS) of (4.11) for f±p,y is

(4.13) RHS =


1

ωN

(∫
Ω

dx

|x− y|N−1

)
, if p = ∞

p−N

ωN (p− 1)

∫
Ω

dx

|x− y|(N−1)p′
, if p ∈ (N,∞).

By (3.1) and (4.12), we have that the left hand side (LHS) of (4.11) for f±p,y is

(4.14)

LHS =
∣∣∣∣∫

Ω

〈∇E(x− y),∇f±p,y(x)〉 dx

∣∣∣∣ = ∣∣∣∣∫
Ω

〈x− y,∇f±p,y(x)〉
ωN |x− y|N

dx

∣∣∣∣
=


1

ωN

(∫
Ω

dx

|x− y|N−1

)
, if p = ∞

p−N

ωN (p− 1)

∫
Ω

dx

|x− y|(N−1)p′
, if p ∈ (N,∞).

Using (4.13) and (4.14) we obtain equality in (4.11) for f(x) = f±p,y(x). �

Corollary 6. For a ∈ Ω and R > 0 such that B = BR(a) ⊂ BR(a) ⊂ Ω, we have

(4.15)
∣∣∣∣f(a)−

∮
∂B

f(x) dσ(x)
∣∣∣∣ ≤ ω

1
p′−1

N

(
RN−(N−1)p′

N − (N − 1)p′

) 1
p′

‖∇f‖Lp(B) .

Moreover, the constant is sharp and the function f(x) = ±|x − a| if p = ∞ resp.,
f(x) = ±|x− a|(p−N)/(p−1) if p ∈ (N,∞) achieves the equality.

Proof. Note that f ∈ C(B) ∩ C1(B \ Ai) resp., f ∈ W 1,p(B) with p ∈ (N,∞].
Therefore, we can apply Corollary 5 with y = a and Ω = B. More precisely,

(4.16)
∣∣∣∣f(a)−

∫
∂B

f(x)
∂E

∂ν
(x− a) dσ(x)

∣∣∣∣ ≤ ‖∇f‖Lp(B)

ωN

(∫
B

dx

|x− a|(N−1)p′

)1/p′

where the equality holds for f(x) = ±|x−y| if p = ∞ and f(x) = ±|x−y|(p−N)/(p−1)

if p ∈ (N,∞).
Notice that, for each x ∈ ∂B, we have

∂E

∂ν
(x− a) = 〈∇E(x− a), ν(x)〉 = 〈 x− a

ωN |x− a|N
,

x− a

|x− a|
〉

=
1

ωN |x− a|N−1
=

1
ωNRN−1

= meas (∂B).

It follows that

(4.17)
∫

∂B

f(x)
∂E

∂ν
(x− a) dσ(x) =

1
meas (∂B)

∫
∂B

f(x) dσ(x) =
∮

∂B

f(x) dσ(x).
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On the other hand,

(4.18)

∫
B

dx

|x− a|(N−1)p′
=
∫ R

0

(∫
∂Bρ(a)

dσ(x)
|x− a|(N−1)p′

)
dρ

=
∫ R

0

(
1

ρ(N−1)p′

∫
∂Bρ(a)

dσ(x)

)
dρ =

∫ R

0

ωNρN−1

ρ(N−1)p′
dρ

=
ωNRN−(N−1)p′

N − (N − 1)p′
.

Replacing (4.17) and (4.18) in (4.16) we obtain (4.15). �

Corollary 7. The following identities hold

(4.19)

∫
Ω

¯̄uf (y) dy =
1
N

∫
∂Ω

f(x)〈x− z, ν〉 dσ(x)− 1
N

∫
Ω

〈∇f(x), x− z〉 dx

+
∫

Ω

(∫
Ω

〈∇E(x− y),∇f(x)〉 dx

)
dy, ∀z ∈ RN

resp.,

(4.20)
∫

∂Ω

¯̄uf (z) dσ(z) =
1
2

∫
∂Ω

f(z) dσ(z) +
∫

∂Ω

ζ(z) dσ(z),

where we define

ζ(z) = lim
Ω3t→z

∫
Ω

〈∇E(x− t),∇f(x)〉 dx, for each z ∈ ∂Ω.

Remark 2. Note that ζ is well defined because of (2.2) and (3.1).

Proof. By virtue of Remark 1, ¯̄uf ∈ L1(Ω). Obviously, f ∈ L1(Ω) since f ∈ C(Ω)
and Ω is bounded. Therefore, we can integrate (3.1) over Ω to obtain∫

Ω

f(y) dy =
∫

Ω

¯̄uf (y) dy −
∫

Ω

(∫
Ω

〈∇E(x− y),∇f(x)〉 dx

)
dy.

Using now (3.2), we arrive at (4.19).
Let z ∈ ∂Ω be arbitrary. By the continuity of f on Ω and Proposition 3, we find

lim
Ω3y→z

[f(y)− ¯̄uf (y)] =
f(z)

2
− ¯̄uf (z).

Combining this with (3.1), we derive that

(4.21) f(z) = 2¯̄uf (z)− 2ζ(z), ∀z ∈ ∂Ω.

By Remark 1, ¯̄uf (z) ∈ C(∂Ω). Hence integrating (4.21) over ∂Ω we find (4.20). �

Corollary 8 (Gauss’ Lemma extension). Assume f ∈ W 1,p(Ω), for some p ∈
[1,∞]. Then the following representation holds

(4.22) ¯̄uf (y) =


f(y) +

∫
Ω

〈∇E(x− y),∇f(x)〉 dx, ∀y ∈ Ω, if p ∈ (N,∞],

ζ(y) + f(y)/2, ∀y ∈ ∂Ω, if p ∈ (N,∞],∫
Ω

〈∇E(x− y),∇f(x)〉 dx, ∀y ∈ RN \ Ω, ∀p ∈ [1,∞].
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Proof. In view of (3.1) and (4.21), we need only to show that

(4.23) ¯̄uf (y) =
∫

Ω

〈∇E(x− y),∇f(x)〉 dx, ∀y ∈ RN \ Ω, ∀p ∈ [1,∞].

For y ∈ RN \ Ω fixed, we define the vector field Z : Ω → RN by

Z(x) = f(x)∇E(x− y) =
f(x)

ωN |x− y|N
(x− y), ∀x ∈ Ω.

Clearly, Z ∈ C1(Ω \ A) ∩ C(Ω). Let ε > 0 be fixed such that Bε(ai) ⊂ Ω, ∀i ∈ I
and Bε(ai) ∩ Bε(aj) = ∅, ∀i, j ∈ I with i 6= j. We denote Ωε := Ω \

(
∪i∈IBε(ai)

)
.

By applying Proposition 1 for Z : Ωε → RN , we obtain

(4.24)

∫
Ωε

div Z(x) dx =
∫

∂Ω

f(x)
∂E

∂ν
(x− y) dσ(x)

− 1
ωN

∑
i∈I

∫
∂Bε(ai)

f(x)
ε|x− y|N

〈x− y, x− ai〉 dσ(x).

Since y 6∈ Ω, for each i ∈ I, there exists a constant Mi > 0 such that

|x− y| > Mi, ∀x ∈ ∂Bj(ai), ∀j ∈ (0, ε].

Hence, for each i ∈ I, we have

(4.25)

∣∣∣∣∣
∫

∂Bε(ai)

f(x)
ε|x− y|N

〈x− y, x− ai〉 dσ(x)

∣∣∣∣∣ ≤
∫

∂Bε(ai)

|f(x)|
|x− y|N−1

dσ(x)

≤
‖f‖L∞(Ω)

MN1
i

meas (∂Bε(ai)) =
ωN‖f‖L∞(Ω)

MN−1
i

εN−1 → 0 as ε → 0.

By (4.24) and (4.25), it follows that

(4.26) lim
ε→0

∫
Ωε

div Z(x) dx =
∫

∂Ω

f(x)
∂E

∂ν
(x− y) dσ(x).

Since x 7−→ E(x− y) is harmonic on RN \ {y}, we find that

div Z(x) = 〈∇f(x),∇E(x− y)〉+ f(x)∆xE(x− y)

= 〈∇f(x),∇E(x− y)〉, ∀x ∈ Ωε.
(4.27)

We define Ψ(x) = |x − y|1−N , for each x ∈ Ω. Since y 6∈ Ω, we have Ψ ∈ C(Ω) so
that Ψ ∈ Lm(Ω), ∀m ∈ [1,∞]. By Hölder’s inequality, we infer that

(4.28)
∫

Ω

|〈∇f(x),∇E(x− y)〉| dx ≤ 1
ωN

‖∇f‖Lp(Ω)‖Ψ‖Lp′ (Ω) < ∞, ∀p ∈ [1,∞].

From (4.26)–(4.28), we conclude (4.23). �

Proposition 7. If Ω is an open bounded set with C1 boundary and f ∈ C2(Ω) ∩
C1(Ω) such that ∆f ∈ C(Ω), then∫

Ω

〈∇E(x− y),∇f(x)〉 dx =
∫

∂Ω

∂f

∂ν
(x)E(x− y) dσ(x)

−
∫

Ω

∆f(x)E(x− y) dx, ∀y ∈ RN \ ∂Ω.

(4.29)
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Proof. If y ∈ RN \ Ω, then (4.29) follows by Proposition 2 (since x 7−→ E(x − y)
belongs to C2(Ω) ∩ C1(Ω)).

For y ∈ Ω fixed, we choose ε > 0 such that Bε(y) ⊂ Ω. By Proposition 2 (applied
on Ω \Bε(y)), we find

(4.30)

∫
Ω\Bε(y)

∆f(x)E(x− y) dx =
∫

∂Ω

∂f

∂ν
(x)E(x− y) dσ(x)

−
∫

∂Bε(y)

∂f

∂ν
(x)E(x− y) dσ(x)−

∫
Ω\Bε(y)

〈∇f(x),∇E(x− y)〉 dx.

Since x 7−→ ∆f(x)E(x− y) is integrable on Ω, we have

(4.31)
∫

Ω

∆f(x)E(x− y) dx = lim
ε→0

∫
Ω\Bε(y)

∆f(x)E(x− y) dx.

On the other hand, using f ∈ C1(Ω), we deduce (as in the proof of Theorem 1)
that x 7−→ 〈∇f(x),∇E(x− y)〉 is integrable on Ω. It follows that

(4.32)
∫

Ω

〈∇f(x),∇E(x− y)〉 dx = lim
ε→0

∫
Ω\Bε(y)

〈∇f(x),∇E(x− y)〉 dx.

Our next step is to prove that

(4.33) lim
ε→0

∫
∂Bε(y)

∂f

∂ν
(x)E(x− y) dσ(x) = 0.

Indeed, if N = 2, then we have∣∣∣∣∣
∫

∂Bε(y)

∂f

∂ν
(x)E(x− y) dσ(x)

∣∣∣∣∣ ≤
∫

∂Bε(y)

∣∣∣∣∂f

∂ν
(x)
∣∣∣∣ 1
2π

|ln |x− y|| dσ(x)

≤ −Cε log ε → 0 as ε → 0

resp., if N > 2 then∣∣∣∣∣
∫

∂Bε(y)

∂f

∂ν
(x)E(x− y) dσ(x)

∣∣∣∣∣ ≤
∫

∂Bε(y)

∣∣∣∣∂f

∂ν
(x)
∣∣∣∣ 1
ωN (N − 2)|x− y|N−2

dσ(x)

≤ C
meas (∂Bε(y))

εN−2
= CωN ε → 0 as ε → 0

where, in both cases, C denotes a positive constant.
Passing to the limit ε → 0 in (4.30) and using (4.31)–(4.33), we obtain (4.29). �

Remark 3. Under the assumptions of Proposition 7, Corollary 8 leads to the Green–
Riemann representation formula (see [4, §2.4])

f(y) =
∫

∂Ω

f(x)
∂E

∂ν
(x− y) dσ(x)−

∫
∂Ω

∂f

∂ν
(x)E(x− y) dσ(x)

+
∫

Ω

∆f(x)E(x− y) dx, ∀y ∈ Ω

and

0 =
∫

∂Ω

f(x)
∂E

∂ν
(x− y) dσ(x)−

∫
∂Ω

∂f

∂ν
(x)E(x− y) dσ(x)

+
∫

Ω

∆f(x)E(x− y) dx, ∀y ∈ RN \ Ω.
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Moreover, if ∂Ω is smooth enough (at least C2), then

f(y) = 2
∫

∂Ω

f(x)
∂E

∂ν
(x− y) dσ(x)− 2 lim

Ω3t→y

∫
Ω

〈∇E(x− t),∇f(x)〉 dx, ∀y ∈ ∂Ω.
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