MONOTONICITY AND INEQUALITIES FOR RATIO OF THE GENRALIZED LOGARITHMIC MEANS

FENG QI AND CHAO-PING CHEN

Abstract

Let $c>b>a>0$ be real numbers. Then the function $f(r)=$ $\frac{L_{r}(a, b)}{L_{r}(a, c)}$ is strictly decreasing on $(-\infty, \infty)$, where $L_{r}(a, b)$ denotes the generalized (extended) logarithmic mean of two positive numbers a and b.

1. Introduction

If $-\infty<p<\infty$ and a, b are two positive numbers, the generalized (extended) logarithmic mean $L_{p}(a, b)$ of a and b is defined for $a=b$ by $L_{p}(a, b)=a$ and for $a \neq b$ by

$$
L_{p}(a, b)= \begin{cases}\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{1 / p}, & p \neq-1,0 \tag{1}\\ \frac{b-a}{\ln b-\ln a}, & p=-1 \\ \frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}, & p=0\end{cases}
$$

the case $p=-1$ is called the logarithmic mean of a and b, and will be written $L(a, b)$; while the case $p=0$ is the identric mean of a and b, written $I(a, b)$.

This definition of the generalized logarithmic mean can be found in $[2$, p. 6] and [33, 34].

It is well known that if $r>0$ is a real number, then for all natural numbers n

$$
\begin{equation*}
\frac{n}{n+1}<\left(\frac{1}{n} \sum_{i=1}^{n} i^{r} / \frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}\right)^{1 / r}<\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \tag{2}
\end{equation*}
$$

[^0]This paper was typeset using $\mathcal{A} \mathcal{M} \mathcal{S}$-LATEX.

The first inequality in (2) is called H. Alzer's inequality [1], and the second one in (2) J. S. Martins' inequality [11]. The inequality between two ends of (2) is called Minc-Sathre's inequality [12].

There exists a very rich literature on inequality (2). Alzer's inequality has been generalized and extended, for example, in $[4,5,6,7,10,14,15,16,17,22,24,25$, 30, 31, 32, 35, 36, 37]. So does Martins's inequality in $[3,5,17,21,23,25,26$, 27, 29, 35, 37, 38] and Minc-Sathre's inequality in $[1,5,9,18,19,20,25,27,28]$, respectively.

Recently, F. Qi and B.-N. Guo proved in [15, 23] the following double inequality: Let $b>a>0$ and $\delta>0$, then for any positive real number r,

$$
\begin{equation*}
\frac{b}{b+\delta}<\left(\frac{\frac{1}{b-a} \int_{a}^{b} x^{r} \mathrm{~d} x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} x^{r} \mathrm{~d} x}\right)^{1 / r}<\frac{\left[b^{b} / a^{a}\right]^{1 /(b-a)}}{\left[(b+\delta)^{b+\delta} / a^{a}\right]^{1 /(b+\delta-a)}} \tag{3}
\end{equation*}
$$

The upper and lower bounds in (3) are the best possible, or more accurately say,

$$
\begin{align*}
& \lim _{r \rightarrow \infty}\left(\frac{\frac{1}{b-a} \int_{a}^{b} x^{r} \mathrm{~d} x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} x^{r} \mathrm{~d} x}\right)^{1 / r}=\frac{b}{b+\delta} \tag{4}\\
& \lim _{r \rightarrow 0}\left(\frac{\frac{1}{b-a} \int_{a}^{b} x^{r} \mathrm{~d} x}{\frac{1}{b+\delta-a} \int_{a}^{b+\delta} x^{r} \mathrm{~d} x}\right)^{1 / r}=\frac{\left[b^{b} / a^{a}\right]^{1 /(b-a)}}{\left[(b+\delta)^{b+\delta} / a^{a}\right]^{1 /(b+\delta-a)}} \tag{5}
\end{align*}
$$

Inequality (3) can be taken for an integral form of (2).
It is easy to see that inequality (3) can be written for $r>0$ as

$$
\begin{equation*}
\frac{b}{b+\delta}<\frac{L_{r}(a, b)}{L_{r}(a, b+\delta)}<\frac{I(a, b)}{I(a, b+\delta)} \tag{6}
\end{equation*}
$$

In this short note, we are about to extend the result presented by (3) to (5) which are established in $[15,23]$ by F. Qi and B.-N. Guo, and obtain the following

Theorem 1. Let $c>b>a>0$ be real numbers. Then the function

$$
\begin{equation*}
f(r)=\frac{L_{r}(a, b)}{L_{r}(a, c)} \tag{7}
\end{equation*}
$$

is strictly decreasing with $r \in(-\infty, \infty)$.

The following corollary is straightforward.

Corollary 1. Let $c>b>a>0$ be real numbers.
(1) For any real number $r \in \mathbb{R}$,

$$
\begin{equation*}
\frac{b}{c}<\frac{L_{r}(a, b)}{L_{r}(a, c)}<1 \tag{8}
\end{equation*}
$$

The both bounds in (8) are the best possible.
(2) For any positive real number $r>0$,

$$
\begin{equation*}
\frac{b}{c}<\frac{L_{r}(a, b)}{L_{r}(a, c)}<\frac{I(a, b)}{I(a, c)} \tag{9}
\end{equation*}
$$

The both bounds in (9) are also the best possible.

Remark 1. It is worthwhile pointing out that inequalities (3) and (9) are equivalent each other.

In [29] it was conjectured that the function

$$
\begin{equation*}
\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^{r}}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^{r}}\right)^{1 / r} \tag{10}
\end{equation*}
$$

is decreasing with r. Now it is still keep open. We can regard Theorem 1 as a solution to an integral form of the conjecture above.

2. Proof of Theorem 1

In order to verify Theorem 1, we shall make use of the following elementary lemma which can be found in [8, p. 395].

Lemma 1 ([8, p. 395]). Let the second derivative of $\phi(x)$ be continuous with $x \in(-\infty, \infty)$ and $\phi(0)=0$. Define

$$
g(x)= \begin{cases}\frac{\phi(x)}{x}, & x \neq 0 \tag{11}\\ \phi^{\prime}(0), & x=0\end{cases}
$$

Then $\phi(x)$ is (strictly) convex if and only if $g(x)$ is (strictly) increasing with $x \in$ $(-\infty, \infty)$.

Remark 2. In [13, p. 18] a general conclusion was given: A function f is convex on $[a, b]$ if and only if $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ is nondecreasing on $[a, b]$ for every point $x_{0} \in[a, b]$.

Proof of Theorem 1. Define for $r \in(-\infty, \infty)$

$$
\varphi(r)= \begin{cases}\ln \left(\frac{c-a}{b-a} \cdot \frac{b^{r+1}-a^{r+1}}{c^{r+1}-a^{r+1}}\right), & r \neq-1 \tag{12}\\ \ln \left(\frac{c-a}{b-a} \cdot \frac{\ln b-\ln a}{\ln c-\ln a}\right), & r=-1\end{cases}
$$

Then we have

$$
\ln f(r)= \begin{cases}\frac{\varphi(r)}{r}, & r \neq 0 \tag{13}\\ \varphi^{\prime}(0), & r=0\end{cases}
$$

In order to prove that $\ln f(r)$ is strictly decreasing it suffices to show that φ is strictly concave in $(-\infty, \infty)$. Easy computation reveals that

$$
\begin{equation*}
\varphi(-1-r)=\varphi(r-1)+r \ln \frac{c}{b} \tag{14}
\end{equation*}
$$

which implies that $\varphi^{\prime \prime}(-r-1)=\varphi^{\prime \prime}(r-1)$, and then $\varphi(r)$ has the same concavity on both $(-\infty,-1)$ and $(-1, \infty)$. Hence, it is sufficient to prove that φ is strictly concave on $(-1, \infty)$.

A simple computation yields

$$
\begin{equation*}
\varphi^{\prime \prime}(r)=\frac{(a / c)^{r+1}[\ln (a / c)]^{2}}{\left[1-(a / c)^{r+1}\right]^{2}}-\frac{(a / b)^{r+1}[\ln (a / b)]^{2}}{\left[1-(a / b)^{r+1}\right]^{2}} \tag{15}
\end{equation*}
$$

Define for $0<t<1$

$$
\begin{equation*}
\omega(t)=\frac{t(\ln t)^{2}}{(1-t)^{2}} \tag{16}
\end{equation*}
$$

Differentiation yields

$$
\begin{equation*}
(1-t) t \ln t \frac{\omega^{\prime}(t)}{\omega(t)}=(1+t) \ln t+2(1-t)=-\sum_{n=2}^{\infty} \frac{n-1}{n(n+1)} t^{n+1}<0 \tag{17}
\end{equation*}
$$

which means that $\omega^{\prime}(t)>0$ for $0<t<1$. As a result of applying this conclusion in (15), we obtain $\varphi^{\prime \prime}(r)<0$ for $r>-1$. Thus $\varphi(r)$ is strictly concave in $(-1, \infty)$. The proof is complete.

References

[1] H. Alzer, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl. 179 (1993), 396-402.
[2] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison Wesley Longman Limited, 1998.
[3] T. H. Chan, P. Gao and F. Qi, On a generalization of Martins' inequality, Monatsh. Math. (2003), in press. RGMIA Res. Rep. Coll. 4 (2001), no. 1, Art. 12, 93-101. Available online at http://rgmia.vu.edu.au/v4n1.html.
[4] Ch.-P. Chen and F. Qi, Notes on proofs of Alzer's inequality, Octogon Math. Mag. (2003), accepted.
[5] Ch.-P. Chen, F. Qi, P. Cerone, and S. S. Dragomir, Monotonicity of sequences involving convex and concave functions, Math. Inequal. Appl. 6 (2003), no. 2, in press. RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 1, 3-13. Available online at http://rgmia.vu.edu.au/v5n1. html.
[6] N. Elezović and J. Pečarić, On Alzer's inequality, J. Math. Anal. Appl. 223 (1998), 366-369.
[7] B.-N. Guo and F. Qi, An algebraic inequality, II, RGMIA Res. Rep. Coll. 4 (2001), no. 1, Art. 8, 55-61. Available online at http://rgmia.vu.edu.au/v4n1.html.
[8] J.-Ch. Kuang, Chángyòng Bùděngshì (Applied Inequalities), 2nd ed., Hunan Education Press, Changsha, China, 1993. (Chinese)
[9] J.-Ch. Kuang, Some extensions and refinements of Minc-Sathre inequality, Math. Gaz. 83 (1999), 123-127.
[10] Zh. Liu, New generalization of H. Alzer's inequality, Tamkang J. Math. 34 (2003), accepted.
[11] J. S. Martins, Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math Nachr. 139 (1988), 281-288.
[12] H. Minc and L. Sathre, Some inequalities involving (r ! $)^{1 / r}$, Proc. Edinburgh Math. Soc. 14 (1964/65), 41-46.
[13] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[14] N. Ozeki, On some inequalities, J. College Arts Sci. Chiba Univ. 4 (1965), no. 3, 211-214. (Japanese)
[15] F. Qi, An algebraic inequality, J. Inequal. Pure Appl. Math. 2 (2001), no. 1, Art. 13. Available online at http://jipam.vu.edu.au/v2n1/006_00.html. RGMIA Res. Rep. Coll. 2 (1999), no. 1, Art. 8, 81-83. Available online at http://rgmia.vu.edu.au/v2n1.html.
[16] F. Qi, Generalizations of Alzer's and Kuang's inequality, Tamkang J. Math. 31 (2000), no. 3, 223-227. RGMIA Res. Rep. Coll. 2 (1999), no. 6, Art. 12, 891-895. Available online at http://rgmia.vu.edu.au/v2n6.html.
[17] F. Qi, Generalization of H. Alzer's inequality, J. Math. Anal. Appl. 240 (1999), 294-297.
[18] F. Qi, Inequalities and monotonicity of sequences involving $\sqrt[n]{(n+k)!/ k!}$, RGMIA Res. Rep. Coll. 2 (1999), no. 5, Art. 8, 685-692. Available online at http://rgmia.vu.edu.au/v2n5. html.
[19] F. Qi, Inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with arbitrary difference, Tamkang. J. Math. 34 (2003), no. 3, in press.
[20] F. Qi, Inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with unit difference, Internat. J. Math. Ed. Sci. Tech. 34 (2003), in press.

Australian Math. Soc. Gaz. 30 (2003), no. 2, in press. RGMIA Res. Rep. Coll. 6 (2003), suppl., Art. 2. Available online at http://rgmia.vu.edu.au/v6(E).html.
[21] F. Qi, On a new generalization of Martins' inequality, RGMIA Res. Rep. Coll. 5 (2002), no. 3 , Art. 13, 527-538. Available online at http://rgmia.vu.edu.au/v5n3.html.
[22] F. Qi and L. Debnath, On a new generalization of Alzer's inequality, Internat. J. Math. Math. Sci. 23 (2000), no. 12, 815-818.
[23] F. Qi and B.-N. Guo, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, Taiwanese J. Math. 7 (2003), no. 2, accepted. RGMIA Res. Rep. Coll. 4 (2001), no. 1, Art. 8, 55-61. Available online at http://rgmia.vu.edu.au/v4n1.html.
[24] F. Qi and B.-N. Guo, A lower bound for ratio of power means, Internat. J. Math. Math. Sci. (2003), accepted. RGMIA Res. Rep. Coll. 5 (2002), no. 4, Art. 2. Available online at http://rgmia.vu.edu.au/v5n4.html.
[25] F. Qi and B.-N. Guo, Monotonicity of sequences involving convex function and sequence, RGMIA Res. Rep. Coll. 3 (2000), no. 2, Art. 14, 321-329. Available online at http://rgmia. vu.edu.au/v3n2.html.
[26] F. Qi and B.-N. Guo, Monotonicity of sequences involving geometric means of positive sequences with logarithmical convexity, RGMIA Res. Rep. Coll. 5 (2002), no. 3, Art. 10, 497-507. Available online at http://rgmia.vu.edu.au/v5n3.html.
[27] F. Qi and B.-N. Guo, Some inequalities involving the geometric mean of natural numbers and the ratio of gamma functions, RGMIA Res. Rep. Coll. 4 (2001), no. 1, Art. 6, 41-48. Available online at http://rgmia.vu.edu.au/v4n1.html.
[28] F. Qi and Q.-M. Luo, Generalization of H. Minc and J. Sathre's inequality, Tamkang J. Math. 31 (2000), no. 2, 145-148. RGMIA Res. Rep. Coll. 2 (1999), no. 6, Art. 14, 909-912. Available online at http://rgmia.vu.edu.au/v2n6.html.
[29] J. A. Sampaio Martins, Inequalities of Rado-Popoviciu type, In: Marques de Sá, Eduardo (ed.) et al. Mathematical studies. Homage to Professor Doctor Luís de Albuquerque. Coimbra: Universidade de Coimbra, Faculdade de Ciências e Tecnologia, Departamento de Matemática, (1994), 169-175.
[30] J. Sándor, Comments on an inequality for the sum of powers of positive numbers, RGMIA Res. Rep. Coll. 2 (1999), no. 2, 259-261. Available online at http://rgmia.vu.edu.au/v2n2. html.
[31] J. Sándor, On an inequality of Alzer, J. Math. Anal. Appl. 192 (1995), 1034-1035.
[32] J. Sándor, On an inequality of Bennett, General Mathematics (Sibiu), 3 (1995), no. 3-4, 121-125.
[33] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87-92.
[34] K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly, 87 (1980), 545-548.
[35] N. Towghi and F. Qi, An inequality for the ratios of the arithmetic means of functions with a positive parameter, RGMIA Res. Rep. Coll. 4 (2001), no. 2, Art. 15, 305-309. Available online at http://rgmia.vu.edu.au/v4n2.html.
[36] J. S. Ume, An elementary proof of H. Alzer's inequality, Math. Japon. 44 (1996), no. 3, 521-522.
[37] Z.-K. Xu, On further generalization of an inequality of H. Alzer, J. Zhejiang Norm. Univ. (Nat. Sci.) 25 (2002), no. 3, 217-220. (Chinese)
[38] Z.-K. Xu and D.-P. Xu, A general form of Alzer's inequality, Comput. Math. Appl. 44 (2002), no. 3-4, 365-373.
(F. Qi) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: qifeng@jzit.edu.cn or fengqi618@member.ams.org
$U R L:$ http://rgmia.vu.edu.au/qi.html
(Ch.-P. Chen) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

[^0]: 2000 Mathematics Subject Classification. Primary 26D15.
 Key words and phrases. Monotonicity, inequality, ratio, the generalized (extended) logarithmic mean, identric (exponential) mean.

 The authors were supported in part by NNSF (\#10001016) of China, SF for the Prominent Youth of Henan Province (\#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo Institute of Technology, CHINA.

