
SOME LANDAU TYPE INEQUALITIES FOR FUNCTIONS
WHOSE DERIVATES ARE HÖLDER CONTINUOUS

S.S. DRAGOMIR AND C.I. PREDA

Abstract. Some inequalities of Landau type for functions whose derivates

satisfy Hölder’s condition are pointed out.

1. Introduction

Let I = R+ or I = R. If f : I → R is twice differentiable and f, f
′′ ∈ Lp(I), p ∈

[1,∞], then f ′ ∈ Lp(I). Moreover, there exists a constant Cp(I) > 0 independent
of the function f , so that

(1.1) ‖f ′‖p,I ≤ Cp(I)‖f‖
1
2
p,I · ‖f

′′
‖

1
2
p,I ,

where ‖ · ‖p,I is the p-norm on the interval I, i.e, we recall

‖h‖∞,I := ess sup
t∈I

|h(t)|

and

‖h‖p,I :=
(∫

I

|h(t)|pdt

) 1
p

,

if p ∈ [1,∞).
The investigation of such inequalities was initiated by E. Landau [1] in 1913. He

considered the case p = ∞ and showed that

(1.2) C∞(R+) = 2 and C∞(R) =
√

2,

are the best constants for which (1.1) holds.
In 1932, G.H. Hardy and J.E. Littlewood [2] proved (1.1) for p = 2, with the

best constants
C2(R+) =

√
2 and C2(R) = 1.

In 1935, G.H. Hardy, E. Landau and J.E. Littlewood [3] showed that the best
constant Cp(R+) in (1.1) satisfies the estimate

(1.3) Cp(R+) ≤ 2 for p ∈ [1,∞),

which yields Cp(R) ≤ 2 for p ∈ [1,∞). Actually Cp(R) ≤
√

2 (see [4] by R.R.
Kallman and G.-C. Rota and [5] by Z. Ditzian).

For other results concerning this problem, see Chapter I of [7].
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2. Some Results for f Bounded and f ′ Hölder Continuous

The following lemma is useful in what follows.

Lemma 1. Let C,D > 0 and r, u ∈ (0, 1]. Consider the function gr,u : (0,∞) → R
given by

(2.1) gr,u(λ) =
C

λu + Dλr.

Define λ0 :=
(

uC
rD

) 1
r+u ∈ (0,∞). Then, for λ1 ∈ (0,∞) we have the bound

(2.2) inf
λ∈(0,λ1]

gr,u(λ) =


r+u

u
u

r+u ·r
r

r+u
· C

r
r+u ·D

u
r+u if λ1 ≥ λ0,

C
λu

1
+ Dλr

1 if 0 < λ1 < λ0.

Proof. We observe that

g′r,u(λ) =
rDλr+u − Cu

λu+1 , λ ∈ (0,∞).

The unique solution of the equation g′r,u(λ) = 0, λ ∈ (0,∞) is λ0 =
(

uC
rD

) 1
r+u ∈

(0,∞). The function gr,u is decreasing on (0, λ0) and increasing on (λ0,∞). The
global minimum for gr,u on (0,∞) is

gr,u(λ0) =
C

(uC
rD )

u
r+u

+ D

(
uC

rD

) r
r+u

=
C(rD)

u
r+u

(uC)
u

r+u
+

D(uC)
r

r+u

(rD)
r

r+u

=
CrD + DuC

(uC)
u

r+u (rD)
r

r+u
=

CD(r + u)
u

u
r+u · r

r
r+u · C

u
r+u ·D

r
r+u

=
r + u

u
u

r+u · r
r

r+u
C

r
r+u ·D

u
r+u ,

which proves that equality (2.2)

The following particular cases are useful:

Corollary 1. Let C,D > 0 and r ∈ (0, 1]. Consider the function gr : (0,∞) → R
given by

gr(λ) =
C

λ
+ Dλr.

Define λ0 =
(

C
rD

) 1
r+1 ∈ (0,∞). Then for λ1 ∈ (0,∞) one has

(2.3) inf
λ∈(0,λ1]

gr(λ) =


r+1

r
r

r+1
· C

r
r+1 ·D

1
r+1 if λ1 ≥ λ0,

C
λ1

+ Dλr
1 if 0 < λ1 < λ0.

Corollary 2. Let C,D > 0 and u ∈ (0, 1]. Consider the function gu : (0,∞) → R
given by

gu(λ) =
C

λu + Dλ.
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Define λ̃0 =
(

uC
D

) 1
1+u ∈ (0,∞). Then for λ1 ∈ (0,∞) one has

(2.4) inf
λ∈(0,λ1]

gu(λ) =


1+u

u
u

1+u
· C

1
1+u ·D

u
1+u if λ1 ≥ λ̃0,

C
λu

1
+ Dλ1 if 0 < λ1 < λ̃0.

Remark 1. If r = u = 1 then the following bound holds

(2.5) inf
λ∈(0,λ1]

(
C

λ
+ Dλ

)
=


2
√

CD if λ1 ≥
√

C
D ,

C
λ1

+ Dλ1 if 0 < λ1 <
√

C
D .

The following theorem holds:
Theorem 1. Let I be an interval in R and f : I → R a locally absolutely continuous
function on I. If f ∈ L∞(I) and the derivative f ′ : I → R satisfies the Hölder
condition:

(2.6) |f ′(t)− f ′(s)| ≤ H|t− s|r for any t, s ∈ I,

where H > 0 and r ∈ (0, 1] are given, then f ′ ∈ L∞(I) and one has the inequalities

(2.7) ‖f ′‖I,∞ ≤



2
r

r+1
(
1 + 1

r

) r
r+1 ‖f‖

r
r+1
I,∞H

1
r+1

if m(I) ≥ 2
r+2
r+1

(
‖f‖I,∞

H

) 1
r+1 (

1 + 1
r

) 1
r+1 ,

4‖f‖I,∞
m(I) + H

2r(r+1) [m(I)]r

if 0 ≤ m(I) ≤ 2
r+2
r+1

(
‖f‖I,∞

H

) 1
r+1 (

1 + 1
r

)
.

Proof. We start with the following identity

(2.8) f(t) = f(a) + (t− a)f ′(a) +
∫ t

a

[f ′(s)− f ′(a)]ds

to get

(2.9) |f ′(a)| ≤
∣∣∣∣f(t)− f(a)

t− a

∣∣∣∣ +
1

|t− a|

∣∣∣∣∫ t

a

|f ′(s)− f ′(a)|ds

∣∣∣∣ ,

for any t ∈ I and a.e. a ∈ I, t 6= a.
Since f ′ is of r −H- Hölder type, then

(2.10)
∣∣∣∣∫ t

a

|f ′(s)− f ′(a)ds

∣∣∣∣ ≤ H

∣∣∣∣∫ t

a

|s− a|rds

∣∣∣∣ =
H

r + 1
|t− a|r+1.

So then by (2.9) and (2.10) we deduce

(2.11) |f ′(a)| ≤ |f(t)− f(a)|
|t− a|

+
H

r + 1
|t− a|r,

for any t ∈ I and a.e. a ∈ I, t 6= a.
Since f ∈ L∞(I), then by (2.11) we obviously get that

(2.12) |f ′(a)| ≤ 2‖f‖I,∞

|t− a|
+

H

r + 1
|t− a|r

for any t ∈ I and a.e. a ∈ I, t 6= a.
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Now observe that for any a ∈ I and any s ∈
(
0, m(I)

2

)
there exists a t ∈ I so

that s = |t− a| and then, by (2.12), we deduce

(2.13) |f ′(a)| ≤ 2‖f‖I,∞

s
+

H

r + 1
sr

for a.e. a ∈ I and every s ∈
(
0, m(I)

2

)
. By taking the inequality (2.13) to the

infimum over s on
(
0, m(I)

2

)
, we get that

(2.14) |f ′(a)| ≤ inf
s∈(0,

m(I)
2 )

[
2‖f‖I,∞

s
+

H

r + 1
sr

]
= K

for a.e. a ∈ I.
If we take the essential supremum over a ∈ I in (2.14), we conclude that

(2.15) ‖f ′‖I,∞ ≤ K.

Making use of Corollary 1, we get

K =


r+1

r
r

r+1
(2‖f‖I,∞)

r
r+1

(
H

r+1

) 1
r+1

if m(I)
2 ≥

(
2‖f‖I,∞(r+1)

rH

) 1
r+1

,

2‖f‖I,∞
m(I)

2

+ H
r+1 ·

(
m(I)

2

)r

if 0 < m(I)
2 <

(
2‖f‖I,∞(r+1)

rH

) 1
r+1

.

giving the desired result (2.7).

The following result also holds
Corollary 3. With the assumption in Theorem 1 and if f ′ is L-Lipschitz then

(2.16) ‖f ′‖I,∞ ≤


2
√
‖f‖I,∞ · L if m(I) ≥

√
‖f‖I,∞

L ;

4‖f‖I,∞
m(I) + H

4 m(I) if 0 < m(I) ≤
√

‖f‖I,∞
L .

Remark 2. This result was obtained by Niculescu and Buşe in [6], see Theorem 3.

3. Some Bounds for f and f ′ Hölder Continuous

The following result also holds:
Theorem 2. Let I be an interval in R and f : I → R a locally absolutely continuous
function on I. If f is l −K-Hölder type, i.e. it satisfies the condition

(3.1) |f(t)− f(s)| ≤ K|t− s|l for any t, s,∈
◦
I,

where K > 0 and l ∈ (0, 1) are given, and the derivative f ′ : I → R satisfies the
Hölder condition (2.6), then f ′ ∈ L∞(I) and one has the inequality

(3.2) ‖f ′‖I,∞ ≤



1−l+r

(1−l)
1−l

1−l+r ·r
r

1−l+r ·(r+1)
1−l

r+1−l

K
r

r+1−l ·H
1−l

r+1−l

if m(I) ≥ 2
[

(1−l)K
H

] 1
1−l+r (

1 + 1
r

) 1
1−l+r ;

2(1−l)K
[m(I)]1−l + H

2r(r+1) [m(I)]r

if 0 < m(I) < 2
[

(1−l)K
H

] 1
1−l+r (

1 + 1
r

) 1
1−l+r .
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Proof. We know (see the proof of Theorem 1) that

(3.3) |f ′(a)| ≤ |f(t)− f(a)|
|t− a|

+
H

r + 1
|t− a|r

for any t ∈ I and a.e. a ∈ I with a 6= t.
Using the assumption that (3.1) holds, then, by (3.3) we may write that

(3.4) |f ′(a)| ≤ K

|t− a|1−l
+

H

r + 1
|t− a|r

for any t ∈ I and a.e. a ∈ I with t 6= a.
Using a similar argument to the one in Theorem 1, we may conclude that

‖f ′‖I,∞ ≤ S, where

S = inf
λ∈(0,

m(I)
2 )

[
K

λ1−l
+

H

r + 1
λr

]

=


1−l+r

(1−l)
1−l

1−l+r ·r
r

1−l+r

K
r

r+1−l ·
(

H
r+1

) 1−l
r+1−l

if m(I)
2 ≥

[
(1−l)K

r H
r+1

] 1
1−l+r

K

(
m(I)

2 )1−l
+ H

r+1

(
m(I)

2

)r

if 0 < m(I)
2 ≤

[
(1−l)K

r· H
r+1

] 1
1−l+r

from where we deduce the desired inequality (3.2).

The following corollary is useful.
Corollary 4. Let I be an interval in R and f : I → R a locally absolutely continuous
function on I. If f ′ ∈ Lp(I), p > 1 and the derivative f ′ satisfies the Hölder
condition (2.6), then f ′ ∈ L∞(I) and one has the inequality:

(3.5) ‖f ′‖I,∞ ≤



pr+1

p
pr

pr+1
· 1

r
pr

pr+1 ·(r+1)
1

pr+1
‖f ′‖

pr
pr+1
I,p H

1
pr+1

if m(I) ≥ 2
[
‖f ′‖I,p

pH

] p
pr+1 ·

(
1 + 1

r

) p
pr+1 ;

‖f ′‖I,p·2
1
p

[m(I)]
1
p

+ H
2r(r+1) [m(I)]r

if 0 < m(I) < 2
[
‖f ′‖I,p

pH

] p
pr+1 ·

(
1 + 1

r

) p
pr+1 .

Proof. If f ′ ∈ Lp(I), then we have

|f(b)− f(a)| =

∣∣∣∣∣
∫ b

a

f ′(s)ds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

|f ′(s)|ds

∣∣∣∣∣
≤ |b− a|

1
q

∣∣∣∣∣
∫ b

a

|f ′(s)|pds

∣∣∣∣∣
1
p

≤ |b− a|1−
1
p · ‖f ′‖I,p,

where 1
p + 1

q = 1, p > 1, for a.e. a, b ∈ I.
Using Theorem 2 for l = 1 − 1

p and K = ‖f ′‖I,p we deduce the desired result
(3.5).

Finally we may state the following corollary as well.
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Corollary 5. Let I be an interval in R and f : I → R a locally absolutely continuous
function on I. If f ′ ∈ L1(I) and the derivative f ′ satisfies the Hölder condition
(2.6), then f ′ ∈ L∞(I) and one has the inequality

(3.6) ‖f ′‖I,∞ ≤



(
1 + 1

r

) r
r+1 · ‖f ′‖

r
r+1
I,1 H

1
r+1

if m(I) ≥ 2
(
‖f ′‖I,1

H

) 1
r+1 ·

(
1 + 1

r

) 1
r+1 ;

2‖f ′‖I,1
m(I) + H

2r(r+1) [m(I)]r

if 0 < m(I) < 2
(
‖f ′‖I,1

H

) 1
r+1 (

1 + 1
r

) 1
r+1 .
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