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Abstract. For all natural number n, we have

1√
π(n + 4/π − 1)

≤
(2n− 1)!!

(2n)!!
<

1√
π(n + 1/4)

.

The constants 4
π
− 1 and 1

4
are the best possible. From this, the well-known

Wallis’ inequality is improved.

1. Introduction

Let

Pn =
(2n− 1)!!

(2n)!!
, (1)

then we have

1
2
√

n
<

√
2√

(2n + 1)π
< Pn <

2√
(4n + 1)π

<
1√

3n + 1
<

1√
2n + 1

<
1√
2n

(2)

for n > 1. The inequality (2) is called Wallis’ inequality in [8, p. 103].

The lower and upper bounds of Pn in (2) are always cited and applied by math-

ematicians. The smallest upper bound 2√
(4n+1)π

and the largest lower bound
√

2√
(2n+1)π

in (2), that is, the following inequalities

√
2√

(2n + 1)π
< Pn <

2√
(4n + 1)π

(3)

are obtained by N. D. Kazarinoff. See [7, pp. 47–48 and pp. 65–67].

We can rewrite inequality (3) as

1√
π(n + 1

2 )
< Pn <

1√
π(n + 1

4 )
(4)
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for n ∈ N. See [4, p. 259].

It is well-known that factorials and their ‘continuous’ extension play an eminent

role, for instance, in Combinatorics, Graph Theory, and Special Functions.

In this article, we will refine inequality (4). More precisely, we will ask for two

best possible constants A and B such that the following double inequality

1√
π(n + A)

≤ Pn ≤
1√

π(n + B)
(5)

holds for all natural number n. In other words, the constants A = 4
π −1 and B = 1

4

can not be replaced by smaller and larger numbers in (5) respectively.

2. Lemmas

Lemma 1. For x > 0, we have

2x + 1
x(4x + 1)

<
Γ′

(
x + 1

2

)
Γ

(
x + 1

2

) − Γ′(x)
Γ(x)

, (6)

xb−a Γ(x + a)
Γ(x + b)

= 1 +
(a− b)(a + b− 1)

2x
+ O

(
1
x2

)
, x →∞. (7)

The proof of inequality (6) is given in [2, 3, 9], and the proof of the asymptotic

expansion (7) can be found in [6] and [10, p. 378]. See also [1, p. 257].

Remark 1. Replacing x by x + 1
2 in (6) yields

4x + 4
(2x + 1)(4x + 3)

<
Γ′(x + 1)
Γ(x + 1)

−
Γ′(x + 1

2 )
Γ(x + 1

2 )
. (8)

Lemma 2. For x > 0, we have

Γ(x + 1)
Γ(x + 1

2 )
<

2x + 1√
4x + 3

. (9)

Proof. Define for positive real number x

f(x) = ln(2x + 1)− 1
2

ln(4x + 3)− ln Γ(x + 1) + lnΓ
(
x +

1
2

)
.

Differentiation f(x) gives us

f ′(x) =
2

2x + 1
− 2

4x + 3
−

[
Γ′(x + 1)
Γ(x + 1)

−
Γ′

(
x + 1

2

)
Γ(x + 1

2 )

]
,

utilizing (8), we obtain

f ′(x) >
2

2x + 1
− 2

4x + 3
− 4x + 4

(2x + 1)(4x + 3)
= 0.
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Therefore, f(x) is strictly increasing in (0,+∞), and

f(x) > f(0) =
1
2

ln
π

3
> 0,

which leads to the inequality (9). �

Corollary 1. For all natural number n, we have

Γ(n + 1)
Γ(n + 1

2 )
<

2n + 1√
4n + 3

. (10)

Corollary 2. The sequence

{Qn}∞n=1 ,

{[
Γ(n + 1)
Γ(n + 1

2 )

]2

− n

}∞
n=1

(11)

is strictly decreasing.

Proof. By standard argument, we can rewrite Qn+1 < Qn for any natural number

n as inequality (10). Therefore, the monotonicity follows. �

3. Main results

Now we give the main results of this paper.

Theorem 1. For all natural number n, we have

1√
π
(
n + 4

π − 1
) ≤ (2n− 1)!!

(2n)!!
<

1√
π
(
n + 1

4

) . (12)

The constants 4
π − 1 and 1

4 are the best possible.

Proof. Since

Γ(n + 1) = n!, Γ
(
n +

1
2

)
=

(2n− 1)!!
2n

√
π, 2nn! = (2n)!!,

the double inequality (12) is equivalent to

1
4

< Qn =
[

Γ(n + 1)
Γ(n + 1

2 )

]2

− n ≤ 4
π
− 1. (13)

From the monotonicity of the sequence Qn provided in Corollary 2, it follows

that

lim
n→∞

Qn < Qn ≤ Q1 =
4
π
− 1.

Using the asymptotic formula (7), we conclude from

Qn = n

[
n−

1
2

Γ(n + 1)
Γ(n + 1

2 )
− 1

] [
n−

1
2

Γ(n + 1)
Γ(n + 1

2 )
+ 1

]
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that

lim
n→∞

Qn =
1
4
.

Thus, inequality (13) follows. The proof is complete. �
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