
A REFINEMENT OF THE GRÜSS INEQUALITY AND
APPLICATIONS

P. CERONE AND S.S. DRAGOMIR

Abstract. A sharp refinement of the Grüss inequality in the general setting

of measurable spaces and abstract Lebesgue integrals is proven. Some conse-
quential particular inequalities are mentioned.

1. Introduction

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ – algebra A of
parts of Ω and a countably additive and positive measure µ on A with values in
R ∪ {∞} .

For a µ−measurable function w : Ω → R, with w (x) ≥ 0 for µ – a.e. x ∈ Ω,
consider the Lebesgue space Lw (Ω, µ) := {f : Ω → R, f is µ−measurable and∫
Ω

w (x) |f (x)| dµ (x) < ∞}. Assume
∫
Ω

w (x) dµ (x) > 0.
If f, g : Ω → R are µ−measurable functions and f, g, fg ∈ Lw (Ω, µ) , then we

may consider the Čebyšev functional

(1.1) Tw (f, g) :=
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x) f (x) g (x) dµ (x)

− 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) f (x) dµ (x)

× 1∫
Ω

w (x) dµ (x)

∫
Ω

w (x) g (x) dµ (x) .

The following result is known in the literature as the Grüss inequality

(1.2) |Tw (f, g)| ≤ 1
4

(Γ− γ) (∆− δ) ,

provided

(1.3) −∞ < γ ≤ f (x) ≤ Γ < ∞, −∞ < δ ≤ g (x) ≤ ∆ < ∞
for µ – a.e. x ∈ Ω.

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller

constant.
Note that if Ω = {1, . . . , n} and µ is the discrete measure on Ω, then we obtain

the discrete Grüss inequality

(1.4)

∣∣∣∣∣ 1
Wn

n∑
i=1

wixiyi −
1

Wn

n∑
i=1

wixi ·
1

Wn

n∑
i=1

wiyi

∣∣∣∣∣ ≤ 1
4

(Γ− γ) (∆− δ) ,
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provided γ ≤ xi ≤ Γ, δ ≤ yi ≤ ∆ for each i ∈ {1, . . . , n} and wi ≥ 0 with
Wn :=

∑n
i=1 wi > 0.

The following result was proved in Cheng and Sun [4].
Theorem 1. Let f, g : [a, b] → R be two integrable functions such that δ ≤ g (x) ≤
∆ for some constants δ, ∆ for all x ∈ [a, b] , then

(1.5)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x) dx− 1
(b− a)2

∫ b

a

f (x) dx

∫ b

a

g (x) dx

∣∣∣∣∣
≤ ∆− δ

2

∫ b

a

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (y) dy

∣∣∣∣∣ dx.

They used the result (1.5) to obtain perturbed trapezoidal rules.
In the current paper we obtain bounds for |Tw (f, g)| under the general setting

expressed in (1.1). A bound which is shown to be sharp is obtained in Section 2.
The sharpness of (1.5) was not demonstrated in [4]. Sharp results were obtained for
a perturbed interior point rule (Ostrowski-Grüss) inequalities in Cheng [3]. Some
particular instances of the results in Section 2 are investigated in Sections 4 and 5,
recapturing earlier work. Results are presented in Section 3, for Lebesgue measur-
able functions and for a discrete weighted Čebyšev functional involving n−tuples.

2. An Integral Inequality

With the assumptions as presented in the Introduction and if f ∈ Lw (Ω, µ) then
we may define

Dw (f) := Dw,1 (f)(2.1)

:=
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x)

×
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
∣∣∣∣ dµ (x) .

The following fundamental result holds.
Theorem 2. Let w, f, g : Ω → R be µ−measurable functions with w ≥ 0 µ− a.e.
on Ω and

∫
Ω

w (y) dµ (y) > 0. If f, g, fg ∈ Lw (Ω, µ) and there exists the constants
δ, ∆ such that

(2.2) −∞ < δ ≤ g (x) ≤ ∆ < ∞ for µ− a.e. x ∈ Ω,

then we have the inequality

(2.3) |Tw (f, g)| ≤ 1
2

(∆− δ) Dw (f) .

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.

Proof. Obviously, we have

(2.4) Tw (f, g) =
1∫

Ω
w (x) dµ (x)

∫
Ω

w (x)

×
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y)w (y) dµ (y)
)

g (x) dµ (x) .
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Consider the measurable subsets Ω+ and Ω−, of Ω, defined by

Ω+ :=
{

x ∈ Ω
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y) ≥ 0
}

and

Ω− :=
{

x ∈ Ω
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y) < 0
}

.

Obviously, Ω = Ω+ ∪ Ω−, Ω+ ∩ Ω− = ∅ and if we define

I+ (f, g, w) :=
1∫

Ω
w (y) dµ (y)

∫
Ω+

w (x)

×
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
)

g (x) dµ (x)

and

I− (f, g, w) :=
1∫

Ω
w (y) dµ (y)

∫
Ω−

w (x)

×
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
)

g (x) dµ (x)

then we have

(2.5) Tw (f, g) = I+ (f, g, w) + I− (f, g, w) .

Since −∞ < δ ≤ g (x) ≤ ∆ < ∞ for µ – a.e. x ∈ Ω and w (x) ≥ 0 for µ – a.e.
x ∈ Ω, we may write:

(2.6) I+ (f, g, w) ≤ ∆∫
Ω

w (y) dµ (y)

∫
Ω+

w (x)

×
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
)

dµ (x)

and

(2.7) I− (f, g, w) ≤ δ∫
Ω

w (y) dµ (y)

∫
Ω−

w (x)

×
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
)

dµ (x) .

Since

0 =
∫

Ω

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y)w (y) dµ (y)
)

dµ (x)

=
∫

Ω+

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y)w (y) dµ (y)
)

dµ (x)

+
∫

Ω−

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
)

dµ (x)
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we get∫
Ω−

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y)w (y) dµ (y)
)

dµ (x)

= −
∫

Ω+

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
)

dµ (x)

and thus, from (2.7), we deduce

(2.8) I− (f, g, w) ≤ −δ∫
Ω

w (y) dµ (y)

∫
Ω+

w (x)

×
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
)

dµ (x) .

Consequently, by adding (2.6) with (2.8), we deduce

(2.9) Tw (f, g) ≤ ∆− δ∫
Ω

w (y) dµ (y)

∫
Ω+

w (x)

×
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
)

dµ (x) .

On the other hand,∫
Ω

w (x)
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
∣∣∣∣ dµ (x)

=
∫

Ω+

w (x)
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
∣∣∣∣ dµ (x)

+
∫

Ω−

w (x)
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
∣∣∣∣ dµ (x)

=
∫

Ω+

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y)w (y) dµ (y)
)

dµ (x)

−
∫

Ω−

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y)w (y) dµ (y)
)

dµ (x)

= 2
∫

Ω+

w (x)
(

f (x)− 1∫
Ω

w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
)

dµ (x) ,

and thus, by (2.9) we deduce

(2.10) Tw (f, g) ≤ 1
2

(∆− δ)
1∫

Ω
w (y) dµ (y)

∫
Ω

w (x)

×
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
∣∣∣∣ dµ (x) .

Now, if we write the inequality (2.10) for −f instead of f and taking into account
that Tw (−f, g) = −Tw (f, g) , we deduce

−T (f, g) ≤ 1
2

(∆− δ)
1∫

Ω
w (y) dµ (y)

∫
Ω

w (x)

×
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

f (y) w (y) dµ (y)
∣∣∣∣ dµ (x) ,(2.11)
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giving the desired inequality (2.3).
To prove the sharpness of the constant 1

2 , assume that (2.3) holds for Ω = [a, b]
and w ≡ 1, with a constant C > 0. That is,

(2.12) |T (f, g)| ≤ C (∆− δ)
1

b− a

∫ b

a

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (y) dy

∣∣∣∣∣ dx,

where

T (f, g) =
1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

and the integral
∫ b

a
is the usual Lebesgue integral on [a, b] .

Choose in (2.12) g = f and f : [a, b] → R defined by

f (x) =

 −1 if x ∈
[
a, a+b

2

]
,

1 if x ∈
(

a+b
2 , b

]
,

then, obviously,

T (f, f) =
1

b− a

∫ b

a

f2 (x) dx−

(
1

b− a

∫ b

a

f (x) dx

)2

= 1,

D (f) =
1

b− a

∫ b

a

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (y) dy

∣∣∣∣∣ dx = 1,

δ = −1, ∆ = 1,

and by (2.12) we get 2C ≥ 1 giving C ≥ 1
2 .

For f ∈ Lp,w (Ω,A, µ) :=
{
f : Ω → R,

∫
Ω

w (x) |f (x)|p dµ (x) < ∞
}

, p ≥ 1 we
may also define

Dw,p (f) :=
[

1∫
Ω

w (x) dµ (x)

∫
Ω

w (x)(2.13)

×
∣∣∣∣f (x)− 1∫

Ω
w (y) dµ (y)

∫
Ω

w (y) f (y) dµ (y)
∣∣∣∣p dµ (x)

] 1
p

=

∥∥∥f − 1∫
Ω wdµ

∫
Ω

wfdµ
∥∥∥

Ω,p[∫
Ω

w (x) dµ (x)
] 1

p

where ‖·‖Ω,p is the usual p−norm on Lp,w (Ω,A, µ) , namely,

‖h‖Ω,p :=
(∫

Ω

w |h|p dµ

) 1
p

, p ≥ 1.

Using Hölder’s inequality we get

(2.14) Dw,1 (f) ≤ Dw,p (f) for p ≥ 1, f ∈ Lp,w (Ω,A, µ) ;

and, in particular for p = 2

(2.15) Dw,1 (f) ≤ Dw,2 (f) =

[∫
Ω

wf2dµ∫
Ω

wdµ
−
(∫

Ω
wfdµ∫

Ω
wdµ

)2
] 1

2

,
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if f ∈ L2,w (Ω,A, µ) .

For f ∈ L∞ (Ω,A, µ) :=
{

f : Ω → R, ‖f‖Ω,∞ := ess sup
α∈Ω

|f (x)| < ∞
}

we also

have

(2.16) Dw,p (f) ≤ Dw,∞ (f) :=
∥∥∥∥f − 1∫

Ω
wdµ

∫
Ω

wfdµ

∥∥∥∥
Ω,∞

.

The following corollary may be useful in practice.

Corollary 1. With the assumptions of Theorem 2, we have

|Tw (f, g)|(2.17)

≤ 1
2

(∆− δ) Dw (f)

≤ 1
2

(∆− δ) Dw,p (f) if f ∈ Lp (Ω,A, µ) , 1 < p < ∞;

≤ 1
2

(∆− δ)
∥∥∥∥f − 1∫

Ω
wdµ

∫
Ω

wfdµ

∥∥∥∥
Ω,∞

if f ∈ L∞ (Ω,A, µ) .

Remark 1. The inequalities in (2.17) are in order of increasing coarseness. If we
assume that −∞ < γ ≤ f (x) ≤ Γ < ∞ for µ – a.e. x ∈ Ω, then by the Grüss
inequality for g = f we have for p = 2

(2.18)

[∫
Ω

wf2dµ∫
Ω

wdµ
−
(∫

Ω
wfdµ∫

Ω
wdµ

)2
] 1

2

≤ 1
2

(Γ− γ) .

By (2.17), we deduce the following sequence of inequalities

|Tw (f, g)| ≤ 1
2

(∆− δ)
1∫

Ω
wdµ

∫
Ω

w

∣∣∣∣f − 1∫
Ω

wdµ

∫
Ω

wfdµ

∣∣∣∣ dµ(2.19)

≤ 1
2

(∆− δ)

[∫
Ω

wf2dµ∫
Ω

wdµ
−
(∫

Ω
wfdµ∫

Ω
wdµ

)2
] 1

2

≤ 1
4

(∆− δ) (Γ− γ)

for f, g : Ω → R, µ – measurable functions and so that −∞ < γ ≤ f (x) < Γ < ∞,
−∞ < δ ≤ g (x) ≤ ∆ < ∞ for µ – a.e. x ∈ Ω. Thus, the inequality (2.19) is a
refinement of Grüss’ inequality (1.2).

It is well known that if f ∈ L2,w (Ω,A, µ) , then the following Schwartz’s type
inequality holds:

(2.20)
1∫

Ω
wdµ

∫
Ω

wf2dµ ≥
(

1∫
Ω

wdµ

∫
Ω

wfdµ

)2

.

Using the above results, we may point out the following counterpart result.

Proposition 1. Assume that the µ−measurable function f : Ω → R satisfies the
assumption:

(2.21) −∞ < γ ≤ f (x) ≤ Γ < ∞ for a.e. x ∈ Ω.
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Then one has the inequality

0 ≤ 1∫
Ω

wdµ

∫
Ω

wf2dµ−
(

1∫
Ω

wdµ

∫
Ω

wfdµ

)2

(2.22)

≤ 1
2

(Γ− γ)
1∫

Ω
wdµ

∫
Ω

w

∣∣∣∣f − 1∫
Ω

wdµ

∫
Ω

wfdµ

∣∣∣∣ dµ(
≤ 1

4
(Γ− γ)2

)
.

The constant 1
2 is sharp.

The proof follows by the inequality (2.3) for g = f.
The following proposition also holds.

Proposition 2. Assume that the measurable functions f, g : Ω → R satisfy (1.3)
(the condition in Grüss’ inequality). Then

|Tw (f, g)| ≤ 1
2

[(Γ− γ) (∆− δ)]
1
2 [Dw (f) Dw (g)]

1
2(2.23)

≤ 1
4

(∆− δ) (Γ− γ) .

The constant 1
2 in the first inequality and 1

4 in the second inequality are sharp.

Proof. By (2.19) we have

|Tw (f, g)| ≤ 1
2

(∆− δ) Dw (f)

and

|Tw (f, g)| ≤ 1
2

(Γ− γ)Dw (g)

from which, by multiplication, gives the first part of (2.23).
The second part and the sharpness of the constants are obvious.

3. Some Particular Inequalities

The following particular inequalities are of interest.
1. Let w, f, g : [a, b] → R be Lebesgue measurable functions with w ≥ 0 a.e.

on [a, b] and
∫ b

a
w (y) dy > 0. If f, g, fg ∈ Lw [a, b] , where

Lw [a, b] :=

{
f : [a, b] → R

∣∣∣∣∣
∫ b

a

w (x) |f (x)| dx < ∞

}
and

(3.1) −∞ < δ ≤ g (x) ≤ ∆ < ∞ for a.e. x ∈ [a, b] ,

then we have the inequalities

(3.2)

∣∣∣∣∣ 1∫ b

a
w (x) dx

∫ b

a

w (x) f (x) g (x) dx

− 1∫ b

a
w (x) dx

∫ b

a

w (x) f (x) dx · 1∫ b

a
w (x) dx

∫ b

a

w (x) g (x) dx

∣∣∣∣∣
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≤ 1
2

(∆− δ)
1∫ b

a
w (x) dx

∫ b

a

w (x)

∣∣∣∣∣f (x)− 1∫ b

a
w (y) dy

∫ b

a

w (y) f (y) dy

∣∣∣∣∣ dx

≤ 1
2

(∆− δ)


∫ b

a
w (x)

∣∣∣f (x)− 1∫ b
a

w(y)dy

∫ b

a
w (y) f (y) dy

∣∣∣p dx∫ b

a
w (x) dx


1
p

if f ∈ Lp,w [a, b] , 1 < p < ∞,

≤ 1
2

(∆− δ) ess sup
x∈[a,b]

∣∣∣∣∣f (x)− 1∫ b

a
w (y) dy

∫ b

a

w (y) f (y) dy

∣∣∣∣∣ if f ∈ L∞ [a, b] .

The constant 1
2 is sharp in the first inequality in (3.2).

The following counterpart of Schwartz’s inequality holds

0 ≤ 1∫ b

a
w (y) dy

∫ b

a

w (x) f2 (x) dx−

(
1∫ b

a
w (y) dy

∫ b

a

w (x) f (x) dx

)2

(3.3)

≤ 1
2

(∆− γ)
1∫ b

a
w (y) dy

∫ b

a

w (x)

∣∣∣∣∣f (x)− 1∫ b

a
w (y) dy

∫ b

a

w (y) f (y) dy

∣∣∣∣∣ dx(
≤ 1

4
(Γ− γ)2

)
,

provided −∞ < γ ≤ f (x) ≤ Γ < ∞ for a.e. x ∈ [a, b] . The constant 1
2 is

sharp.

If w (x) = 1, x ∈ [a, b] , then we recapture the result in [4] as depicted here by
(1.5).

2. Let ā = (a1, . . . , an) , b̄ = (b1, . . . , bn) , p̄ = (p1, . . . , pn) be n−tuples of real
numbers with pi ≥ 0 (i ∈ {1, . . . , n}) and

∑n
i=1 pi = 1. If

(3.4) b ≤ bi ≤ B, i ∈ {1, . . . , n} ,

then one has the inequality∣∣∣∣∣
n∑

i=1

piaibi −
n∑

i=1

piai ·
n∑

i=1

pibi

∣∣∣∣∣(3.5)

≤ 1
2

(B − b)
n∑

i=1

pi

∣∣∣∣∣∣ai −
n∑

j=1

pjaj

∣∣∣∣∣∣
≤ 1

2
(B − b)

 n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑

j=1

pjaj

∣∣∣∣∣∣
p

1
p

if 1 < p < ∞

≤ 1
2

(B − b) max
i=1,n

∣∣∣∣∣∣ai −
n∑

j=1

pjaj

∣∣∣∣∣∣ .
The constant 1

2 is sharp in the first inequality.
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If pi = 1, i ∈ {1, . . . n} , the following unweighted inequality may be
stated

0 ≤ 1
n

n∑
i=1

aibi −
1
n

n∑
i=1

ai ·
1
n

n∑
i=1

bi(3.6)

≤ 1
2

(B − b)
1
n

n∑
i=1

∣∣∣∣∣∣ai −
1
n

n∑
j=1

aj

∣∣∣∣∣∣
≤ 1

2
(B − b)

 1
n

n∑
i=1

∣∣∣∣∣∣ai −
1
n

n∑
j=1

aj

∣∣∣∣∣∣
p

1
p

≤ 1
2

(B − b) max
i=1,n

∣∣∣∣∣∣ai −
1
n

n∑
j=1

aj

∣∣∣∣∣∣ .
The following counterpart of Schwartz’s inequality also holds

0 ≤
n∑

i=1

pia
2
i −

(
n∑

i=1

piai

)2

≤ 1
2

(A− a)
n∑

i=1

pi

∣∣∣∣∣∣ai −
n∑

j=1

pjaj

∣∣∣∣∣∣(3.7)

(
≤ 1

4
(A− a)2

)
,

provided a ≤ ai ≤ A for each i ∈ {1, . . . , n} and
∑n

i=1 pi = 1.. The constant
1
2 is sharp.

4. Applications for Ostrowski’s Inequality

If ϕ : [a, b] → R is an absolutely continuous function on [a, b] such that ϕ′ ∈
L∞ [a, b] , then the following inequality is known in the literature as Ostrowski’s
inequality

(4.1)

∣∣∣∣∣ϕ (x)− 1
b− a

∫ b

a

ϕ (t) dt

∣∣∣∣∣
≤

1
4

+

(
x− a+b

2

b− a

)2
 ‖ϕ′‖∞ (b− a) , x ∈ [a, b] ,

where ‖ϕ′‖∞ := ess sup
α∈[a,b]

|ϕ′ (x)| . The constant 1
4 is best possible.

A simple proof of this fact, as mentioned in [1], may be accomplished by the use
of the Montgomery identity

(4.2) ϕ (x) =
1

b− a

∫ b

a

ϕ (t) dt +
1

b− a

∫ b

a

K (x, t) ϕ′ (t) dt,

where the kernel K : [a, b]2 → R is defined by

(4.3) K (x, t) :=

 t− a if a ≤ t ≤ x

t− b if a ≤ x < t ≤ b.
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We will now use the unweighted version of the inequality (3.2), namely, (1.5)
(obtained by Cheng and Sun [4]) to procure the next result concerning a perturbed
version of Ostrowski’s inequality (4.1).

The following result also obtained by Cheng [3] is recaptured in a simpler manner.
A weighted version of this result was obtained by Roumeliotis [5].
Theorem 3. Assume that ϕ : [a, b] → R is an absolutely continuous function on
[a, b] such that ϕ′ : [a, b] → R satisfies the condition

(4.4) −∞ < γ ≤ ϕ′ (x) ≤ Γ < ∞ for a.e. x ∈ [a, b] .

Then we have the inequality

(4.5)

∣∣∣∣∣ϕ (x)− 1
b− a

∫ b

a

ϕ (t) dt−
(

x− a + b

2

)
[ϕ; a, b]

∣∣∣∣∣ ≤ 1
8

(b− a) (Γ− γ)

for any x ∈ [a, b] , where [ϕ; a, b] = ϕ(b)−ϕ(a)
b−a is the divided difference. The constant

1
8 is best possible.

Proof. We apply inequality (3.1) for the choices w (t) = 1, f (t) = K (x, t) defined
by (4.3), g (t) = ϕ′ (t) , t ∈ [a, b] to get

(4.6)

∣∣∣∣∣ 1
b− a

∫ b

a

K (x, t)ϕ′ (t) dt− 1
b− a

∫ b

a

K (x, t) dt · 1
b− a

∫ b

a

ϕ′ (t) dt

∣∣∣∣∣
≤ 1

2
(Γ− γ) · 1

b− a

∫ b

a

∣∣∣∣∣K (x, t)− 1
b− a

∫ b

a

K (x, s) ds

∣∣∣∣∣ dt.

We obviously have,
1

b− a

∫ b

a

K (x, t) dt = x− a + b

2
and

1
b− a

∫ b

a

ϕ′ (t) dt =
ϕ (b)− ϕ (a)

b− a
.

Also

I (x) :=
1

b− a

∫ b

a

∣∣∣∣K (x, t)−
(

x− a + b

2

)∣∣∣∣ dt

=
1

b− a

[∫ x

a

∣∣∣∣t− a− x +
a + b

2

∣∣∣∣ dt +
∫ b

x

∣∣∣∣t− b− x +
a + b

2

∣∣∣∣ dt

]

=
1

b− a

[∫ x

a

∣∣∣∣t− x +
b− a

2

∣∣∣∣ dt +
∫ b

x

∣∣∣∣t− x− b− a

2

∣∣∣∣ dt

]
.

Straight forward substitution of u = t− x + b−a
2 and v = t− x− b−a

2 gives

I (x) =
1

b− a

[∫ b−a
2

a+b
2 −x

|u| du +
∫ a+b

2 −x

− b−a
2

|v| dv

]

=
1

b− a

∫ b−a
2

− b−a
2

|u| du =
2

b− a

∫ b−a
2

0

udu =
b− a

4
.

Substitution of the above into (4.6) produces (4.5). The sharpness of the constant
was proved in [3].
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5. Application for the Generalised Trapezoid Inequality

If ϕ : [a, b] → R is an absolutely continuous function on [a, b] so that ϕ′ ∈
L∞ [a, b] , then the following inequality is known as the generalised trapezoid in-
equality

(5.1)

∣∣∣∣∣(x− a) ϕ (a) + (b− x) ϕ (b)−
∫ b

a

ϕ (t) dt

∣∣∣∣∣
≤

[
1
4

(b− a)2 +
(

x− a + b

2

)2
]
‖ϕ′‖∞

for any x ∈ [a, b] . The constant 1
4 is best possible.

A simple proof of this fact is accomplished by using the identity [2]

(5.2)
∫ b

a

ϕ (t) dt = (x− a)ϕ (a) + (b− x) ϕ (b) +
∫ b

a

(x− t) ϕ′ (t) dt.

Utilising the inequality (3.1) we may point out the following perturbed version of
(5.1).

Theorem 4. Assume that ϕ : [a, b] → R is an absolutely continuous function on
[a, b] so that ϕ′ : [a, b] → R satisfies the condition (4.4). Then we have the inequality

(5.3)

∣∣∣∣∣ 1
b− a

∫ b

a

ϕ (t) dt

−
[(

x− a

b− a

)
ϕ (a) +

(
b− x

b− a

)
ϕ (b)

]
−
(

x− a + b

2

)
[ϕ; a, b]

∣∣∣∣
≤ 1

8
(b− a) (Γ− γ)

for any x ∈ [a, b] , where [ϕ; a, b] is the divided difference. The constant 1
8 is sharp.

Proof. We apply inequality (3.2) for the choices f (t) = (x− t) , g (t) = ϕ′ (t) ,
w (t) = 1, t ∈ [a, b] , to get

(5.4)

∣∣∣∣∣ 1
b− a

∫ b

a

(x− t) ϕ′ (t) dt− 1
b− a

∫ b

a

(x− t) dt · 1
b− a

∫ b

a

ϕ′ (t) dt

∣∣∣∣∣
≤ 1

2
(Γ− γ)

1
b− a

∫ b

a

∣∣∣∣∣(x− t)− 1
b− a

∫ b

a

(x− s) ds

∣∣∣∣∣ dt.

Since

1
b− a

∫ b

a

(x− t) dt =
(

x− a + b

2

)
,

1
b− a

∫ b

a

ϕ′ (t) dt =
ϕ (b)− ϕ (a)

b− a
= [ϕ; a, b]
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and

1
b− a

∫ b

a

∣∣∣∣∣(x− t)− 1
b− a

∫ b

a

(x− s) ds

∣∣∣∣∣ dt =
1

b− a

∫ b

a

∣∣∣∣x− t− x +
a + b

2

∣∣∣∣ dt

=
1

b− a

∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ dt

=
b− a

4
,

from (5.4) we deduce the desired inequality (5.3).
The sharpness of the constant may be shown on choosing t = a+b

2 and ϕ (t) =∣∣t− a+b
2

∣∣ , t ∈ [a, b] . We omit the details.
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