A REFINEMENT OF THE GRUSS INEQUALITY AND
APPLICATIONS

P. CERONE AND S.S. DRAGOMIR

ABSTRACT. A sharp refinement of the Griiss inequality in the general setting
of measurable spaces and abstract Lebesgue integrals is proven. Some conse-
quential particular inequalities are mentioned.

1. INTRODUCTION

Let (2, A, 1) be a measurable space consisting of a set 2, a o — algebra A of
parts of  and a countably additive and positive measure p on A with values in
RU {co}.

For a p—measurable function w : Q@ — R, with w(z) > 0 for 4 — a.e. = € Q,
consider the Lebesgue space L., (,u) := {f : @ — R, f is u—measurable and
Jow (@) |f ()| dp(x) < oo}. Assume [, w () dp (z) > 0.

If f,g:Q — R are pu—measurable functions and f,g, fg € L, (Q, 1), then we
may consider the Cebysev functional

(L1 Tw(f.9) = T w () f (z) g (x)du (z)

1
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1
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The following result is known in the literature as the Griiss inequality

(12) T (F.9)l < 7 (T =) (A=),
provided
(1.3) —c0<y< f(x)<T <00, —0<d<g(x) <A<

for u —a.e. z € Q.

The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.

Note that if Q@ = {1,...,n} and p is the discrete measure on 2, then we obtain
the discrete Griiss inequality

(1.4) LG: iiii<}(p ) (A — §)
. W, 2 W;T;Yq W, £ W; Ty W, £ WiYi| > 4 Y )
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2 P. CERONE AND S.S. DRAGOMIR

provided v < x; < T, 6 < y; < A for each i € {1,...,n} and w; > 0 with
W, = Z?:l w; > 0.
The following result was proved in Cheng and Sun [4].

Theorem 1. Let f,g: [a,b] — R be two integrable functions such that § < g (z) <
A for some constants 5, A for all x € [a,b], then

b_la/abf(x)g(x)dx—(bla)g/abf(x)d;v/abg(x)dx

A—§ [P
< =
- 2

(1.5)

b
f@) -5 [ fw e

a

They used the result (1.5) to obtain perturbed trapezoidal rules.

In the current paper we obtain bounds for |T, (f, g)| under the general setting
expressed in (1.1). A bound which is shown to be sharp is obtained in Section 2.
The sharpness of (1.5) was not demonstrated in [4]. Sharp results were obtained for
a perturbed interior point rule (Ostrowski-Griiss) inequalities in Cheng [3]. Some
particular instances of the results in Section 2 are investigated in Sections 4 and 5,
recapturing earlier work. Results are presented in Section 3, for Lebesgue measur-
able functions and for a discrete weighted Cebysev functional involving n—tuples.

2. AN INTEGRAL INEQUALITY

With the assumptions as presented in the Introduction and if f € L,, (2, 1) then
we may define

(2.1) Dy (f) := Dy (f)
1
= T e@de (@) /Q“’ (=)
f () !

 Jow®) du(y)
The following fundamental result holds.

X

/Q w(y) f (4) dys ()| dps ()

Theorem 2. Let w, f,g : Q@ — R be u—measurable functions with w > 0 u— a.e.
on Q and [,w (y)du(y) > 0. If f,g, fg € Ly (1) and there exists the constants
6, A such that

(2.2) —0<i<g(x) <A<oo for p—ae x€L,

then we have the inequality

(2.3) T (f,9)] <

The constant % s sharp in the sense that it cannot be replaced by a smaller quantity.

(A =0) Dy (f).

N =

Proof. Obviously, we have

o) L0 = o f, e

x (f (@) F () w(y) du <y>) g (@) du (x).

1
- fg w(y)du(y) Jo
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Consider the measurable subsets €2 and Q2_, of €2, defined by

1

Q= {:Z:GQ f(x)_fgw(y)du(y)/gw(y)f(y)d#(y) ZO}

and

Q- = {weQ’f(fE)—W/Qw(y)f(y)du(y) <0}-

Obviously, @ = Q, UQ_, Q. NQ_ = 0 and if we define

1
Iy (f,9,w) := M/ w ()

Yy
1
X (f (z) — wi(y)du(y)/Qw(y)f(y) dp (y)) g (z)du ()
then we have

(25) Tw(fvg):I+(fagaw)+jf(fvng)
Since —o0o < § < g(x) < A < oo for p—ae z € Qand w(z) > 0 for u — ae.

€ 2, we may write:

A
(26) Ii(f.g,w) < wi(y)d,u(y)/guw(x)

1
(10~ i L 0w a0 o

and
@0 L (hew <] (y‘idm/ w(2)
X(f(x du(y)/nf(y) > ()
Since
0 = /me(f(x)—ﬁzw(;)d [ $ 0w W i) o
- /Q+w(:r)<f(x)—fﬂw [ 10w ) duta)
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we get

[ v@ (10 - g L 0w 0 6) o)
:_/mw(x) (f(:v)—jw(y)w/gf(y)w(y)du(y))du(w)

and thus, from (2.7), we deduce

-0
(2.8) I-(f,g,w) < fgw(y)du(y)/mrw(x)
1

(10 - g L0 W) i)
Consequently, by adding (2.6) with (2.8), we deduce

A -0
(29) Tu,(f,9) < MW@/S2+W($)
1

(10 - g L0 W dw) ).
On the other hand,

[ v

1
PO = Ty ! 0w )| e)

1
f(z)— jwcm(y)/ﬂf(y)w(y)dﬂ(y)‘du(x)

»

/mw(x)(f( o /f ) ()
—/Qw(:c)(f( ;)du /f ) ) di (0

_ 2/Q+w(x) (f(@ RTIormo) dﬂ /f ) p(z),

and thus, by (2.9) we deduce

(2.10) Tw(f,g)gi(A d) fﬂl/w(x

P = s [ w ) dn )| dna).

Now, if we write the inequality (2. 10) for f instead of f and taking into account
that T, (= f,9) = —Tw (f,g), we deduce

fsz 3/1 /w(x)
e yl)du [ r o) )| e,

X

-T(f.9) < *(A 9)

(2.11) x
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giving the desired inequality (2.3).

To prove the sharpness of the constant 3, assume that (2.3) holds for Q = [a, ]
and w = 1, with a constant C' > 0. That i 1s
1 b
- dy|d
f@) == [ 1@y

1 b
b_a/ g (x)dz

b
Q) TGalsc@-a, [

ra= s [ s

and the integral fa is the usual Lebesgue integral on [a, b] .
Choose in (2.12) g = f and f : [a,b] — R defined by

{ -1 if xe[a,%‘b},

1 if ze (4],

where

z)dx -

fla) =

then, obviously,

T(f /fz d;y—(b_la/bf(x)dac>2=1,

1
D = )d
(f)=y—2 ’ /f y|d
0=-1, A=1,
and by (2.12) we get 2021giving02%.|
For f € Lyw (A p) = {f: Q=R [jw ()" du(x) < oo}, p > 1 we

may also define

f (@) - W/Qw(y)f(y)du(y)
|7 - i fawsau,,

[foyw (z) dpt ()]

where ||HQP is the usual p—norm on Ly, (2, A, 1) , namely,

» »

i (o)

=

Il i= ([ wlaldn)". =1

Using Holder’s inequality we get
(2.14) Dy (f) € Duwp (f) forp>1, f€ Ly (Q A p1);

and, in particular for p = 2

1

Jowfdu (fg wfdu)gl : |

Jo wp Jo wp

(215) Dw,l (f) S Dw,2 (f) = [
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if f S L2,'w (Q,A, ,LL) .
For f € Lo (R, A, 1) := {f:Q—>R, I fllq o0 = esssup | f (z)] <oo} we also
’ acf)

have

(2.16) lmmquwau>~HfﬁiﬁﬂAfﬁw

0,00
The following corollary may be useful in practice.

Corollary 1. With the assumptions of Theorem 2, we have

217 [T (o)
<3 (A=8)Du(f)
< S (A=0)Duy(f) i F L (QAp), 1<p<oo
1 1 .
§2(A—5)Hf—fguwlu/ﬂwfdﬂ o if f € Loo (2, A, 11).

Remark 1. The inequalities in (2.17) are in order of increasing coarseness. If we
assume that —oco < v < f(z) < T < oo for p — a.e. © € 8, then by the Griss
inequality for g = f we have for p =2

o [y e
Q Q

By (2.17), we deduce the following sequence of inequalities

219) (ol < 5@ =0 o [y - [ dn
1 Jowfdu [owfdu\” 2
<pe-o | - ()
< A8 -7

for f,9:Q — R, p — measurable functions and so that —oco <y < f(z) <T < oo,
—00 < d<gz) <A <oo forp —ae x € Q. Thus, the inequality (2.19) is a
refinement of Griss’ inequality (1.2).

It is well known that if f € Lo, (9, A, ), then the following Schwartz’s type
inequality holds:

1 1 ?
(2.20) wid,u/waQduz (fﬂwd,u/gwfdu> )

Using the above results, we may point out the following counterpart result.

Proposition 1. Assume that the p—measurable function f : Q — R satisfies the
assumption:

(2.21) —0o<y< f(x) <T' <o for a.e €.
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Then one has the inequality

(2.22) < T o [ wftan (fgzludp / wfdu>2

1

1 1
I'—~) /w‘f—/wfd,u‘d,u
2( widu Jowdp Jo

<§ 4(1“7)2) :

The constant % is sharp.

The proof follows by the inequality (2.3) for g = f.
The following proposition also holds.

Proposition 2. Assume that the measurable functions f,g : Q — R satisfy (1.3)
(the condition in Griiss’ inequality). Then

(2.23) Tw (f,9)] < 5 1T =) (A = 0)]

< A8,

N
N|=

[Dw (f) Duw (9)]

The constant % in the first inequality and i in the second inequality are sharp.

Proof. By (2.19) we have

(A —=06)Duw (f)

N

Tw (fag)| é

and
Tw (f,9) < 5 (F 7) D (9)
from which, by multiplication, gives the first part of (2.23).
The second part and the sharpness of the constants are obvious. i
3. SOME PARTICULAR INEQUALITIES

The following particular inequalities are of interest.
1. Let w, f,g: [a b} — R be Lebesgue measurable functions with w > 0 a.e.
on [a, b] andf y)dy > 0.1If f,g, fg € Ly [a,b], where

b
/w<x>|f<x>|dx<oo}

(3.1) —x0<i<g(x) <A< forae z€]la,b],

Ly [a,b] = {f:[a,b] —-R

and

then we have the inequalities

1 b
82 | / w(z) f (x) g (x) da
1 b 1 b
—f;w(x)dx/a w (@) f () d f:w(x)d:c/a w (@) g (z) de
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1 1 b 1 b
< Q(A—5)W/a w () f(x)_f;w(y)dy/a w (y) f (y) dy| dx

L, [ w @ |f @) = gt o @) )y da ]
= 5( _6) b

[ w(z)dx

if feLywlab, 1<p<oo,

1 1 b

— (A —9)ess su r)— ———— w dy| if Lo la,b].
< G —gess s |f@ f;w@)dy/a () F (W) dy| i€ f € Lo o]

The constant 3 is sharp in the first inequality in (3.2).
The following counterpart of Schwartz’s inequality holds

b b 2
(3.3) 0< fbwl(y)dy/a w(z) % (z) de — (W/a w(m)f(x)dx)
1 1

b b
f;w(y)dy/a w(x)‘f(w)_mw!/l w (y) f (y) dy| dz

provided —oo < v < f(z) < T < o for a.e. z € [a,b]. The constant 3 is
sharp.

If w(z) =1, x € [a,b], then we recapture the result in [4] as depicted here by
(1.5).

2. Leta = (a1,...,an), l_):(bl,..., n)s D= (P1,...,Pn) be n—tuples of real
numbers with p; >0( e{l,...,n})and Y i p;=1.1f
(3.4) b<b;<B, ie{l,...,n},

then one has the inequality

(35) szaz i szaz sz i

1 n n
Si(B—b)Zpi ai — Y pja;
i=1 j=1
1 .
§§(B—b) Zpi ai—z_:pjaj if l<p<oo
1
< = (B —b)max |a; — Zp]a] .

2
i=1,n i=1

The constant % is sharp in the first inequality.
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If p, = 1, ¢ € {1,...n}, the following unweighted inequality may be
stated

I 1O I

/\
3\'—‘
HM:
Ms

b@

|/\
tU
0“
S|
||M
|
S|
M=
k’@

§2(B b)mﬁ al—fZa] .

The following counterpart of Schwartz’s inequality also holds

n

n 2 n n
(3.7) 0< Zpiaf - (Zpim) < % (A—a) Zpi a; — ijaj
i=1 ' i=1 j=1

(sa-ar).

provided a < a; < Aforeachi € {1,...,n} and Z?:l p; = 1.. The constant
% is sharp.

4. APPLICATIONS FOR OSTROWSKI’S INEQUALITY

If ¢ : [a,b] — R is an absolutely continuous function on [a,b] such that ¢’ €

Lo [a,b], then the following inequality is known in the literature as Ostrowski’s
inequality

(4.1)

b
o) - [

where [|¢|| :=ess sup |¢(z)|. The constant 1 is best possible.
a€la,b]

A simple proof of this fact, as mentioned in [1], may be accomplished by the use
of the Montgomery identity

1 b
where the kernel K : [a,b]” — R is defined by

t—a if a<t<zx
(4.3) K (z,t) :=

t—b if a<z<t<b.
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We will now use the unweighted version of the inequality (3.2), namely, (1.5)
(obtained by Cheng and Sun [4]) to procure the next result concerning a perturbed
version of Ostrowski’s inequality (4.1).

The following result also obtained by Cheng [3] is recaptured in a simpler manner.
A weighted version of this result was obtained by Roumeliotis [5].

Theorem 3. Assume that ¢ : [a,b] — R is an absolutely continuous function on
[a,b] such that ¢’ : [a,b] — R satisfies the condition
(4.4) —00<y< ¢ (r)<T << for ae z€lab].

Then we have the inequality

o -5 [ ewar— (- ) (e <

for any x € [a,b], where [p;a,b] = % is the divided difference. The constant

% 18 best possible.

Proof. We apply inequality (3.1) for the choices w (t) =1, f (t) = K (z,t) defined
by (4.3), g(t) = ¢’ (t), t € [a,b] to get

s /th dtf—/thdt ’(t)dt

1
/K:csds
b—a

=3

(45) S b=a) (T =)

(4.6)

K

1
F -
=7y ’

1 b a+b
= —
b—a/a K (z,t)dt = x 5

bia/zﬂﬂﬁzw@—wmx

K (x,t) — (:p—a;b)‘dt

b
t—a—x—i—% dt+/

We obviously have,

and

Also

Iz) ::bia/ab
B bia [/:
- bia V;

Straight forward substitution of u =t — x + b; andv=t—x— b_T“ gives

1 ba atb_,
I(z) = — l/";’)—m |u|du+/_b;a UId’U‘|

b a+b

t—b—x+

K

b

b—
t—az+a‘dt+/
2 T

b—a
t—ax— ——|dt|.
. \]

Substitution of the above into (4.6) produces (4.5). The sharpness of the constant
was proved in [3]. I
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5. APPLICATION FOR THE GENERALISED TRAPEZOID INEQUALITY

If ¢ : [a,b] — R is an absolutely continuous function on [a,b] so that ¢’ €
Lo [a,b], then the following inequality is known as the generalised trapezoid in-
equality

(5.1)

10| o

for any x € [a,b]. The constant % is best possible.
A simple proof of this fact is accomplished by using the identity [2]

b

b
(5.2) /cp(t)dt:(xfa)cp(a)+(bfx)go(b)+/ (x —t) ¢ (t)dt.

a

Utilising the inequality (3.1) we may point out the following perturbed version of
(5.1).

Theorem 4. Assume that ¢ : [a,b] — R is an absolutely continuous function on
[a, b] so that ¢’ : [a,b] — R satisfies the condition (4.4). Then we have the inequality

(5.3)

G20 e@ (325 o] - (- 25 ) et
1
<

Sb-a@-1)

. : - : 1
for any x € [a,b], where [p;a,b] is the divided difference. The constant 5 is sharp.

Proof. We apply inequality (3.2) for the choices f(t) = (z—1t), g(t) = ¢ (),
w(t)=1,t¢€ab], to get

Since
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1P 1P TP
1 b
:b_a/ t—a+b‘dt
_b—a
= 4,

from (5.4) we deduce the desired inequality (5.3).

|t -

(1]

2]

(3]
(4]

(5]

The sharpness of the constant may be shown on choosing t = “T“’ and ¢ (t) =
atb| 't € [a,b]. We omit the details. I
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