A REFINEMENT OF THE GRÜSS INEQUALITY AND APPLICATIONS

P. CERONE AND S.S. DRAGOMIR

Abstract

A sharp refinement of the Grüss inequality in the general setting of measurable spaces and abstract Lebesgue integrals is proven. Some consequential particular inequalities are mentioned.

1. Introduction

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a $\sigma-\operatorname{algebra} \mathcal{A}$ of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$.

For a μ-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for μ - a.e. $x \in \Omega$, consider the Lebesgue space $L_{w}(\Omega, \mu):=\{f: \Omega \rightarrow \mathbb{R}, f$ is μ-measurable and $\left.\int_{\Omega} w(x)|f(x)| d \mu(x)<\infty\right\}$. Assume $\int_{\Omega} w(x) d \mu(x)>0$.

If $f, g: \Omega \rightarrow \mathbb{R}$ are μ-measurable functions and $f, g, f g \in L_{w}(\Omega, \mu)$, then we may consider the Čebyšev functional

$$
\begin{align*}
& T_{w}(f, g):=\frac{1}{\int_{\Omega} w(x) d \mu(x)} \int_{\Omega} w(x) f(x) g(x) d \mu(x) \tag{1.1}\\
&-\frac{1}{\int_{\Omega} w(x) d \mu(x)} \int_{\Omega} w(x) f(x) d \mu(x) \\
& \times \frac{1}{\int_{\Omega} w(x) d \mu(x)} \int_{\Omega} w(x) g(x) d \mu(x)
\end{align*}
$$

The following result is known in the literature as the Grüss inequality

$$
\begin{equation*}
\left|T_{w}(f, g)\right| \leq \frac{1}{4}(\Gamma-\gamma)(\Delta-\delta) \tag{1.2}
\end{equation*}
$$

provided

$$
\begin{equation*}
-\infty<\gamma \leq f(x) \leq \Gamma<\infty, \quad-\infty<\delta \leq g(x) \leq \Delta<\infty \tag{1.3}
\end{equation*}
$$

for μ - a.e. $x \in \Omega$.
The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller constant.

Note that if $\Omega=\{1, \ldots, n\}$ and μ is the discrete measure on Ω, then we obtain the discrete Grüss inequality

$$
\begin{equation*}
\left|\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i} y_{i}-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i} \cdot \frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} y_{i}\right| \leq \frac{1}{4}(\Gamma-\gamma)(\Delta-\delta) \tag{1.4}
\end{equation*}
$$

[^0]provided $\gamma \leq x_{i} \leq \Gamma, \delta \leq y_{i} \leq \Delta$ for each $i \in\{1, \ldots, n\}$ and $w_{i} \geq 0$ with $W_{n}:=\sum_{i=1}^{n} w_{i}>0$.

The following result was proved in Cheng and Sun [4].
Theorem 1. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two integrable functions such that $\delta \leq g(x) \leq$ Δ for some constants δ, Δ for all $x \in[a, b]$, then

$$
\begin{array}{r}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x\right| \tag{1.5}\\
\leq \frac{\Delta-\delta}{2} \int_{a}^{b}\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(y) d y\right| d x
\end{array}
$$

They used the result (1.5) to obtain perturbed trapezoidal rules.
In the current paper we obtain bounds for $\left|T_{w}(f, g)\right|$ under the general setting expressed in (1.1). A bound which is shown to be sharp is obtained in Section 2. The sharpness of (1.5) was not demonstrated in [4]. Sharp results were obtained for a perturbed interior point rule (Ostrowski-Grüss) inequalities in Cheng [3]. Some particular instances of the results in Section 2 are investigated in Sections 4 and 5, recapturing earlier work. Results are presented in Section 3, for Lebesgue measurable functions and for a discrete weighted Čebyšev functional involving n-tuples.

2. An Integral Inequality

With the assumptions as presented in the Introduction and if $f \in L_{w}(\Omega, \mu)$ then we may define

$$
\begin{align*}
D_{w}(f) & := \tag{2.1}\\
& D_{w, 1}(f) \\
& :=\frac{1}{\int_{\Omega} w(x) d \mu(x)} \int_{\Omega} w(x) \\
& \quad \times\left|f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y)\right| d \mu(x) .
\end{align*}
$$

The following fundamental result holds.
Theorem 2. Let $w, f, g: \Omega \rightarrow \mathbb{R}$ be μ-measurable functions with $w \geq 0 \mu-$ a.e. on Ω and $\int_{\Omega} w(y) d \mu(y)>0$. If $f, g, f g \in L_{w}(\Omega, \mu)$ and there exists the constants δ, Δ such that

$$
\begin{equation*}
-\infty<\delta \leq g(x) \leq \Delta<\infty \text { for } \mu-\text { a.e. } x \in \Omega \tag{2.2}
\end{equation*}
$$

then we have the inequality

$$
\begin{equation*}
\left|T_{w}(f, g)\right| \leq \frac{1}{2}(\Delta-\delta) D_{w}(f) \tag{2.3}
\end{equation*}
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.
Proof. Obviously, we have

$$
\begin{align*}
T_{w}(f, g)= & \frac{1}{\int_{\Omega} w(x) d \mu(x)} \int_{\Omega} w(x) \tag{2.4}\\
& \times\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) g(x) d \mu(x)
\end{align*}
$$

Consider the measurable subsets Ω_{+}and Ω_{-}, of Ω, defined by

$$
\Omega_{+}:=\left\{x \in \Omega \left\lvert\, f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y) \geq 0\right.\right\}
$$

and

$$
\Omega_{-}:=\left\{x \in \Omega \left\lvert\, f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y)<0\right.\right\}
$$

Obviously, $\Omega=\Omega_{+} \cup \Omega_{-}, \Omega_{+} \cap \Omega_{-}=\emptyset$ and if we define

$$
\begin{aligned}
I_{+}(f, g, w):= & \frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega_{+}} w(x) \\
& \quad \times\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y)\right) g(x) d \mu(x)
\end{aligned}
$$

and

$$
\begin{aligned}
I_{-}(f, g, w):= & \frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega_{-}} w(x) \\
& \quad \times\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y)\right) g(x) d \mu(x)
\end{aligned}
$$

then we have

$$
\begin{equation*}
T_{w}(f, g)=I_{+}(f, g, w)+I_{-}(f, g, w) \tag{2.5}
\end{equation*}
$$

Since $-\infty<\delta \leq g(x) \leq \Delta<\infty$ for μ - a.e. $x \in \Omega$ and $w(x) \geq 0$ for μ - a.e. $x \in \Omega$, we may write:

$$
\begin{align*}
& I_{+}(f, g, w) \leq \frac{\Delta}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega_{+}} w(x) \tag{2.6}\\
& \quad \times\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x)
\end{align*}
$$

and

$$
\begin{align*}
& I_{-}(f, g, w) \leq \frac{\delta}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega_{-}} w(x) \tag{2.7}\\
& \\
& \quad \times\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x)
\end{align*}
$$

Since

$$
\begin{aligned}
0= & \int_{\Omega} w(x)\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x) \\
= & \int_{\Omega_{+}} w(x)\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x) \\
& +\int_{\Omega_{-}} w(x)\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x)
\end{aligned}
$$

we get

$$
\begin{aligned}
\int_{\Omega_{-}} w(x) & \left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x) \\
& =-\int_{\Omega_{+}} w(x)\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x)
\end{aligned}
$$

and thus, from (2.7), we deduce

$$
\begin{align*}
& I_{-}(f, g, w) \leq \frac{-\delta}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega_{+}} w(x) \tag{2.8}\\
& \quad \times\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y)\right) d \mu(x)
\end{align*}
$$

Consequently, by adding (2.6) with (2.8), we deduce

$$
\begin{align*}
& T_{w}(f, g) \leq \frac{\Delta-\delta}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega_{+}} w(x) \tag{2.9}\\
& \quad \times\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y)\right) d \mu(x)
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& \int_{\Omega} w(x)\left|f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right| d \mu(x) \\
= & \int_{\Omega_{+}} w(x)\left|f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right| d \mu(x) \\
& +\int_{\Omega_{-}} w(x)\left|f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right| d \mu(x) \\
= & \int_{\Omega_{+}} w(x)\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x) \\
& -\int_{\Omega_{-}} w(x)\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x) \\
= & 2 \int_{\Omega_{+}} w(x)\left(f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right) d \mu(x),
\end{aligned}
$$

and thus, by (2.9) we deduce

$$
\begin{align*}
T_{w}(f, g) \leq \frac{1}{2}(\Delta- & \delta) \frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(x) \tag{2.10}\\
& \times\left|f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right| d \mu(x)
\end{align*}
$$

Now, if we write the inequality (2.10) for $-f$ instead of f and taking into account that $T_{w}(-f, g)=-T_{w}(f, g)$, we deduce

$$
\begin{align*}
-T(f, g) \leq & \frac{1}{2}(\Delta-\delta) \frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(x) \\
& \times\left|f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} f(y) w(y) d \mu(y)\right| d \mu(x) \tag{2.11}
\end{align*}
$$

giving the desired inequality (2.3).
To prove the sharpness of the constant $\frac{1}{2}$, assume that (2.3) holds for $\Omega=[a, b]$ and $w \equiv 1$, with a constant $C>0$. That is,

$$
\begin{equation*}
|T(f, g)| \leq C(\Delta-\delta) \frac{1}{b-a} \int_{a}^{b}\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(y) d y\right| d x \tag{2.12}
\end{equation*}
$$

where

$$
T(f, g)=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} g(x) d x
$$

and the integral \int_{a}^{b} is the usual Lebesgue integral on $[a, b]$.
Choose in (2.12) $g=f$ and $f:[a, b] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
-1 & \text { if } x \in\left[a, \frac{a+b}{2}\right] \\
1 & \text { if } x \in\left(\frac{a+b}{2}, b\right]
\end{array}\right.
$$

then, obviously,

$$
\begin{aligned}
T(f, f) & =\frac{1}{b-a} \int_{a}^{b} f^{2}(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)^{2}=1 \\
D(f) & =\frac{1}{b-a} \int_{a}^{b}\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(y) d y\right| d x=1 \\
\delta & =-1, \quad \Delta=1
\end{aligned}
$$

and by (2.12) we get $2 C \geq 1$ giving $C \geq \frac{1}{2}$.
For $f \in L_{p, w}(\Omega, \mathcal{A}, \mu):=\left\{f: \Omega \rightarrow \mathbb{R}, \int_{\Omega} w(x)|f(x)|^{p} d \mu(x)<\infty\right\}, p \geq 1$ we may also define

$$
\begin{align*}
D_{w, p}(f):= & {\left[\frac{1}{\int_{\Omega} w(x) d \mu(x)} \int_{\Omega} w(x)\right.} \tag{2.13}\\
& \left.\times\left|f(x)-\frac{1}{\int_{\Omega} w(y) d \mu(y)} \int_{\Omega} w(y) f(y) d \mu(y)\right|^{p} d \mu(x)\right]^{\frac{1}{p}} \\
= & \frac{\left\|f-\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f d \mu\right\|_{\Omega, p}}{\left[\int_{\Omega} w(x) d \mu(x)\right]^{\frac{1}{p}}}
\end{align*}
$$

where $\|\cdot\|_{\Omega, p}$ is the usual p-norm on $L_{p, w}(\Omega, \mathcal{A}, \mu)$, namely,

$$
\|h\|_{\Omega, p}:=\left(\int_{\Omega} w|h|^{p} d \mu\right)^{\frac{1}{p}}, \quad p \geq 1
$$

Using Hölder's inequality we get

$$
\begin{equation*}
D_{w, 1}(f) \leq D_{w, p}(f) \text { for } p \geq 1, f \in L_{p, w}(\Omega, \mathcal{A}, \mu) \tag{2.14}
\end{equation*}
$$

and, in particular for $p=2$

$$
\begin{equation*}
D_{w, 1}(f) \leq D_{w, 2}(f)=\left[\frac{\int_{\Omega} w f^{2} d \mu}{\int_{\Omega} w d \mu}-\left(\frac{\int_{\Omega} w f d \mu}{\int_{\Omega} w d \mu}\right)^{2}\right]^{\frac{1}{2}} \tag{2.15}
\end{equation*}
$$

if $f \in L_{2, w}(\Omega, \mathcal{A}, \mu)$.
For $f \in L_{\infty}(\Omega, \mathcal{A}, \mu):=\left\{f: \Omega \rightarrow \mathbb{R},\|f\|_{\Omega, \infty}:=\right.$ ess $\left.\sup _{\alpha \in \Omega}|f(x)|<\infty\right\}$ we also have

$$
\begin{equation*}
D_{w, p}(f) \leq D_{w, \infty}(f):=\left\|f-\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f d \mu\right\|_{\Omega, \infty} \tag{2.16}
\end{equation*}
$$

The following corollary may be useful in practice.
Corollary 1. With the assumptions of Theorem 2, we have

$$
\begin{align*}
& \left|T_{w}(f, g)\right| \tag{2.17}\\
& \leq \frac{1}{2}(\Delta-\delta) D_{w}(f) \\
& \leq \frac{1}{2}(\Delta-\delta) D_{w, p}(f) \quad \text { if } f \in L_{p}(\Omega, \mathcal{A}, \mu), 1<p<\infty ; \\
& \leq \frac{1}{2}(\Delta-\delta)\left\|f-\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f d \mu\right\|_{\Omega, \infty} \quad \text { if } f \in L_{\infty}(\Omega, \mathcal{A}, \mu) .
\end{align*}
$$

Remark 1. The inequalities in (2.17) are in order of increasing coarseness. If we assume that $-\infty<\gamma \leq f(x) \leq \Gamma<\infty$ for μ - a.e. $x \in \Omega$, then by the Grüss inequality for $g=f$ we have for $p=2$

$$
\begin{equation*}
\left[\frac{\int_{\Omega} w f^{2} d \mu}{\int_{\Omega} w d \mu}-\left(\frac{\int_{\Omega} w f d \mu}{\int_{\Omega} w d \mu}\right)^{2}\right]^{\frac{1}{2}} \leq \frac{1}{2}(\Gamma-\gamma) \tag{2.18}
\end{equation*}
$$

By (2.17), we deduce the following sequence of inequalities

$$
\begin{align*}
\left|T_{w}(f, g)\right| & \leq \frac{1}{2}(\Delta-\delta) \frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w\left|f-\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f d \mu\right| d \mu \tag{2.19}\\
& \leq \frac{1}{2}(\Delta-\delta)\left[\frac{\int_{\Omega} w f^{2} d \mu}{\int_{\Omega} w d \mu}-\left(\frac{\int_{\Omega} w f d \mu}{\int_{\Omega} w d \mu}\right)^{2}\right]^{\frac{1}{2}} \\
& \leq \frac{1}{4}(\Delta-\delta)(\Gamma-\gamma)
\end{align*}
$$

for $f, g: \Omega \rightarrow \mathbb{R}, \mu$ - measurable functions and so that $-\infty<\gamma \leq f(x)<\Gamma<\infty$, $-\infty<\delta \leq g(x) \leq \Delta<\infty$ for μ - a.e. $x \in \Omega$. Thus, the inequality (2.19) is a refinement of Grüss' inequality (1.2).

It is well known that if $f \in L_{2, w}(\Omega, \mathcal{A}, \mu)$, then the following Schwartz's type inequality holds:

$$
\begin{equation*}
\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f^{2} d \mu \geq\left(\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f d \mu\right)^{2} . \tag{2.20}
\end{equation*}
$$

Using the above results, we may point out the following counterpart result.
Proposition 1. Assume that the μ-measurable function $f: \Omega \rightarrow \mathbb{R}$ satisfies the assumption:

$$
\begin{equation*}
-\infty<\gamma \leq f(x) \leq \Gamma<\infty \text { for a.e. } x \in \Omega \tag{2.21}
\end{equation*}
$$

Then one has the inequality

$$
\begin{align*}
0 & \leq \frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f^{2} d \mu-\left(\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f d \mu\right)^{2} \tag{2.22}\\
& \leq \frac{1}{2}(\Gamma-\gamma) \frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w\left|f-\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w f d \mu\right| d \mu \\
& \left(\leq \frac{1}{4}(\Gamma-\gamma)^{2}\right)
\end{align*}
$$

The constant $\frac{1}{2}$ is sharp.
The proof follows by the inequality (2.3) for $g=f$.
The following proposition also holds.
Proposition 2. Assume that the measurable functions $f, g: \Omega \rightarrow \mathbb{R}$ satisfy (1.3) (the condition in Grüss' inequality). Then

$$
\begin{align*}
\left|T_{w}(f, g)\right| & \leq \frac{1}{2}[(\Gamma-\gamma)(\Delta-\delta)]^{\frac{1}{2}}\left[D_{w}(f) D_{w}(g)\right]^{\frac{1}{2}} \tag{2.23}\\
& \leq \frac{1}{4}(\Delta-\delta)(\Gamma-\gamma)
\end{align*}
$$

The constant $\frac{1}{2}$ in the first inequality and $\frac{1}{4}$ in the second inequality are sharp.
Proof. By (2.19) we have

$$
\left|T_{w}(f, g)\right| \leq \frac{1}{2}(\Delta-\delta) D_{w}(f)
$$

and

$$
\left|T_{w}(f, g)\right| \leq \frac{1}{2}(\Gamma-\gamma) D_{w}(g)
$$

from which, by multiplication, gives the first part of (2.23).
The second part and the sharpness of the constants are obvious.

3. Some Particular Inequalities

The following particular inequalities are of interest.

1. Let $w, f, g:[a, b] \rightarrow \mathbb{R}$ be Lebesgue measurable functions with $w \geq 0$ a.e. on $[a, b]$ and $\int_{a}^{b} w(y) d y>0$. If $f, g, f g \in L_{w}[a, b]$, where

$$
L_{w}[a, b]:=\left\{f:[a, b] \rightarrow \mathbb{R}\left|\int_{a}^{b} w(x)\right| f(x) \mid d x<\infty\right\}
$$

and

$$
\begin{equation*}
-\infty<\delta \leq g(x) \leq \Delta<\infty \text { for a.e. } x \in[a, b] \tag{3.1}
\end{equation*}
$$

then we have the inequalities

$$
\begin{align*}
& \left\lvert\, \frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} w(x) f(x) g(x) d x\right. \tag{3.2}\\
& \\
& \left.\quad-\frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} w(x) f(x) d x \cdot \frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} w(x) g(x) d x \right\rvert\,
\end{align*}
$$

$$
\begin{aligned}
\leq & \frac{1}{2}(\Delta-\delta) \frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} w(x)\left|f(x)-\frac{1}{\int_{a}^{b} w(y) d y} \int_{a}^{b} w(y) f(y) d y\right| d x \\
\leq & \frac{1}{2}(\Delta-\delta)\left[\frac{\int_{a}^{b} w(x)\left|f(x)-\frac{1}{\int_{a}^{b} w(y) d y} \int_{a}^{b} w(y) f(y) d y\right|^{p} d x}{\int_{a}^{b} w(x) d x}\right]^{\frac{1}{p}} \\
& \text { if } f \in L_{p, w}[a, b], \quad 1<p<\infty \\
\leq & \frac{1}{2}(\Delta-\delta) e s s \sup _{x \in[a, b]}\left|f(x)-\frac{1}{\int_{a}^{b} w(y) d y} \int_{a}^{b} w(y) f(y) d y\right| \text { if } f \in L_{\infty}[a, b]
\end{aligned}
$$

The constant $\frac{1}{2}$ is sharp in the first inequality in (3.2).
The following counterpart of Schwartz's inequality holds

$$
\begin{align*}
0 & \leq \frac{1}{\int_{a}^{b} w(y) d y} \int_{a}^{b} w(x) f^{2}(x) d x-\left(\frac{1}{\int_{a}^{b} w(y) d y} \int_{a}^{b} w(x) f(x) d x\right)^{2} \tag{3.3}\\
& \leq \frac{1}{2}(\Delta-\gamma) \frac{1}{\int_{a}^{b} w(y) d y} \int_{a}^{b} w(x)\left|f(x)-\frac{1}{\int_{a}^{b} w(y) d y} \int_{a}^{b} w(y) f(y) d y\right| d x \\
& \left(\leq \frac{1}{4}(\Gamma-\gamma)^{2}\right)
\end{align*}
$$

provided $-\infty<\gamma \leq f(x) \leq \Gamma<\infty$ for a.e. $x \in[a, b]$. The constant $\frac{1}{2}$ is sharp.
If $w(x)=1, x \in[a, b]$, then we recapture the result in [4] as depicted here by (1.5).
2. Let $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right), \overline{\mathbf{b}}=\left(b_{1}, \ldots, b_{n}\right), \overline{\mathbf{p}}=\left(p_{1}, \ldots, p_{n}\right)$ be n-tuples of real numbers with $p_{i} \geq 0(i \in\{1, \ldots, n\})$ and $\sum_{i=1}^{n} p_{i}=1$. If

$$
\begin{equation*}
b \leq b_{i} \leq B, \quad i \in\{1, \ldots, n\} \tag{3.4}
\end{equation*}
$$

then one has the inequality

$$
\begin{aligned}
& \left|\sum_{i=1}^{n} p_{i} a_{i} b_{i}-\sum_{i=1}^{n} p_{i} a_{i} \cdot \sum_{i=1}^{n} p_{i} b_{i}\right| \\
& \leq \frac{1}{2}(B-b) \sum_{i=1}^{n} p_{i}\left|a_{i}-\sum_{j=1}^{n} p_{j} a_{j}\right| \\
& \leq \frac{1}{2}(B-b)\left[\sum_{i=1}^{n} p_{i}\left|a_{i}-\sum_{j=1}^{n} p_{j} a_{j}\right|^{p}\right]^{\frac{1}{p}} \text { if } 1<p<\infty \\
& \leq \frac{1}{2}(B-b) \max _{i=\overline{1, n}}\left|a_{i}-\sum_{j=1}^{n} p_{j} a_{j}\right| .
\end{aligned}
$$

The constant $\frac{1}{2}$ is sharp in the first inequality.

If $p_{i}=1, i \in\{1, \ldots n\}$, the following unweighted inequality may be stated

$$
\begin{aligned}
0 & \leq \frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i}-\frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} b_{i} \\
& \leq \frac{1}{2}(B-b) \frac{1}{n} \sum_{i=1}^{n}\left|a_{i}-\frac{1}{n} \sum_{j=1}^{n} a_{j}\right| \\
& \leq \frac{1}{2}(B-b)\left(\frac{1}{n} \sum_{i=1}^{n}\left|a_{i}-\frac{1}{n} \sum_{j=1}^{n} a_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& \leq \frac{1}{2}(B-b) \max \\
i=\frac{1, n}{n} & \left.a_{i}-\frac{1}{n} \sum_{j=1}^{n} a_{j} \right\rvert\,
\end{aligned}
$$

The following counterpart of Schwartz's inequality also holds

$$
\begin{align*}
0 & \leq \sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2} \leq \frac{1}{2}(A-a) \sum_{i=1}^{n} p_{i}\left|a_{i}-\sum_{j=1}^{n} p_{j} a_{j}\right| \tag{3.7}\\
& \left(\leq \frac{1}{4}(A-a)^{2}\right)
\end{align*}
$$

provided $a \leq a_{i} \leq A$ for each $i \in\{1, \ldots, n\}$ and $\sum_{i=1}^{n} p_{i}=1$.. The constant $\frac{1}{2}$ is sharp.

4. Applications for Ostrowski's Inequality

If $\varphi:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous function on $[a, b]$ such that $\varphi^{\prime} \in$ $L_{\infty}[a, b]$, then the following inequality is known in the literature as Ostrowski's inequality

$$
\begin{align*}
& \left\lvert\, \varphi(x)-\frac{1}{b-a} \int_{a}^{b} \varphi(t)\right. d t \mid \tag{4.1}\\
& \leq\left[\frac{1}{4}+\left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2}\right]\left\|\varphi^{\prime}\right\|_{\infty}(b-a), \quad x \in[a, b]
\end{align*}
$$

where $\left\|\varphi^{\prime}\right\|_{\infty}:=$ ess $\sup _{\alpha \in[a, b]}\left|\varphi^{\prime}(x)\right|$. The constant $\frac{1}{4}$ is best possible.
A simple proof of this fact, as mentioned in [1], may be accomplished by the use of the Montgomery identity

$$
\begin{equation*}
\varphi(x)=\frac{1}{b-a} \int_{a}^{b} \varphi(t) d t+\frac{1}{b-a} \int_{a}^{b} K(x, t) \varphi^{\prime}(t) d t \tag{4.2}
\end{equation*}
$$

where the kernel $K:[a, b]^{2} \rightarrow \mathbb{R}$ is defined by

$$
K(x, t):= \begin{cases}t-a & \text { if } a \leq t \leq x \tag{4.3}\\ t-b & \text { if } a \leq x<t \leq b\end{cases}
$$

We will now use the unweighted version of the inequality (3.2), namely, (1.5) (obtained by Cheng and Sun [4]) to procure the next result concerning a perturbed version of Ostrowski's inequality (4.1).

The following result also obtained by Cheng [3] is recaptured in a simpler manner. A weighted version of this result was obtained by Roumeliotis [5].
Theorem 3. Assume that $\varphi:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous function on $[a, b]$ such that $\varphi^{\prime}:[a, b] \rightarrow \mathbb{R}$ satisfies the condition

$$
\begin{equation*}
-\infty<\gamma \leq \varphi^{\prime}(x) \leq \Gamma<\infty \text { for a.e. } x \in[a, b] \tag{4.4}
\end{equation*}
$$

Then we have the inequality

$$
\begin{equation*}
\left|\varphi(x)-\frac{1}{b-a} \int_{a}^{b} \varphi(t) d t-\left(x-\frac{a+b}{2}\right)[\varphi ; a, b]\right| \leq \frac{1}{8}(b-a)(\Gamma-\gamma) \tag{4.5}
\end{equation*}
$$

for any $x \in[a, b]$, where $[\varphi ; a, b]=\frac{\varphi(b)-\varphi(a)}{b-a}$ is the divided difference. The constant $\frac{1}{8}$ is best possible.
Proof. We apply inequality (3.1) for the choices $w(t)=1, f(t)=K(x, t)$ defined by (4.3), $g(t)=\varphi^{\prime}(t), t \in[a, b]$ to get

$$
\begin{align*}
\left\lvert\, \frac{1}{b-a} \int_{a}^{b} K(x, t)\right. & \left.\varphi^{\prime}(t) d t-\frac{1}{b-a} \int_{a}^{b} K(x, t) d t \cdot \frac{1}{b-a} \int_{a}^{b} \varphi^{\prime}(t) d t \right\rvert\, \tag{4.6}\\
& \leq \frac{1}{2}(\Gamma-\gamma) \cdot \frac{1}{b-a} \int_{a}^{b}\left|K(x, t)-\frac{1}{b-a} \int_{a}^{b} K(x, s) d s\right| d t
\end{align*}
$$

We obviously have,

$$
\frac{1}{b-a} \int_{a}^{b} K(x, t) d t=x-\frac{a+b}{2}
$$

and

$$
\frac{1}{b-a} \int_{a}^{b} \varphi^{\prime}(t) d t=\frac{\varphi(b)-\varphi(a)}{b-a}
$$

Also

$$
\begin{aligned}
I(x) & :=\frac{1}{b-a} \int_{a}^{b}\left|K(x, t)-\left(x-\frac{a+b}{2}\right)\right| d t \\
& =\frac{1}{b-a}\left[\int_{a}^{x}\left|t-a-x+\frac{a+b}{2}\right| d t+\int_{x}^{b}\left|t-b-x+\frac{a+b}{2}\right| d t\right] \\
& =\frac{1}{b-a}\left[\int_{a}^{x}\left|t-x+\frac{b-a}{2}\right| d t+\int_{x}^{b}\left|t-x-\frac{b-a}{2}\right| d t\right]
\end{aligned}
$$

Straight forward substitution of $u=t-x+\frac{b-a}{2}$ and $v=t-x-\frac{b-a}{2}$ gives

$$
\begin{aligned}
I(x) & =\frac{1}{b-a}\left[\int_{\frac{a+b}{2}-x}^{\frac{b-a}{2}}|u| d u+\int_{-\frac{b-a}{2}}^{\frac{a+b}{2}-x}|v| d v\right] \\
& =\frac{1}{b-a} \int_{-\frac{b-a}{2}}^{\frac{b-a}{2}}|u| d u=\frac{2}{b-a} \int_{0}^{\frac{b-a}{2}} u d u=\frac{b-a}{4} .
\end{aligned}
$$

Substitution of the above into (4.6) produces (4.5). The sharpness of the constant was proved in [3].

5. Application for the Generalised Trapezoid Inequality

If $\varphi:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous function on $[a, b]$ so that $\varphi^{\prime} \in$ $L_{\infty}[a, b]$, then the following inequality is known as the generalised trapezoid inequality

$$
\begin{align*}
\mid(x-a) \varphi(a)+(b-x) \varphi(b)-\int_{a}^{b} & \varphi(t) d t \mid \tag{5.1}\\
& \leq\left[\frac{1}{4}(b-a)^{2}+\left(x-\frac{a+b}{2}\right)^{2}\right]\left\|\varphi^{\prime}\right\|_{\infty}
\end{align*}
$$

for any $x \in[a, b]$. The constant $\frac{1}{4}$ is best possible.
A simple proof of this fact is accomplished by using the identity [2]

$$
\begin{equation*}
\int_{a}^{b} \varphi(t) d t=(x-a) \varphi(a)+(b-x) \varphi(b)+\int_{a}^{b}(x-t) \varphi^{\prime}(t) d t \tag{5.2}
\end{equation*}
$$

Utilising the inequality (3.1) we may point out the following perturbed version of (5.1).

Theorem 4. Assume that $\varphi:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous function on $[a, b]$ so that $\varphi^{\prime}:[a, b] \rightarrow \mathbb{R}$ satisfies the condition (4.4). Then we have the inequality

$$
\begin{align*}
& \left\lvert\, \frac{1}{b-a} \int_{a}^{b} \varphi(t) d t\right. \tag{5.3}\\
& \left.\quad-\left[\left(\frac{x-a}{b-a}\right) \varphi(a)+\left(\frac{b-x}{b-a}\right) \varphi(b)\right]-\left(x-\frac{a+b}{2}\right)[\varphi ; a, b] \right\rvert\, \\
& \leq \frac{1}{8}(b-a)(\Gamma-\gamma)
\end{align*}
$$

for any $x \in[a, b]$, where $[\varphi ; a, b]$ is the divided difference. The constant $\frac{1}{8}$ is sharp.
Proof. We apply inequality (3.2) for the choices $f(t)=(x-t), g(t)=\varphi^{\prime}(t)$, $w(t)=1, t \in[a, b]$, to get

$$
\begin{align*}
\left\lvert\, \frac{1}{b-a} \int_{a}^{b}(x-t)\right. & \left.\varphi^{\prime}(t) d t-\frac{1}{b-a} \int_{a}^{b}(x-t) d t \cdot \frac{1}{b-a} \int_{a}^{b} \varphi^{\prime}(t) d t \right\rvert\, \tag{5.4}\\
& \leq \frac{1}{2}(\Gamma-\gamma) \frac{1}{b-a} \int_{a}^{b}\left|(x-t)-\frac{1}{b-a} \int_{a}^{b}(x-s) d s\right| d t
\end{align*}
$$

Since

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b}(x-t) d t & =\left(x-\frac{a+b}{2}\right) \\
\frac{1}{b-a} \int_{a}^{b} \varphi^{\prime}(t) d t & =\frac{\varphi(b)-\varphi(a)}{b-a}=[\varphi ; a, b]
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b}\left|(x-t)-\frac{1}{b-a} \int_{a}^{b}(x-s) d s\right| d t & =\frac{1}{b-a} \int_{a}^{b}\left|x-t-x+\frac{a+b}{2}\right| d t \\
& =\frac{1}{b-a} \int_{a}^{b}\left|t-\frac{a+b}{2}\right| d t \\
& =\frac{b-a}{4}
\end{aligned}
$$

from (5.4) we deduce the desired inequality (5.3).
The sharpness of the constant may be shown on choosing $t=\frac{a+b}{2}$ and $\varphi(t)=$ $\left|t-\frac{a+b}{2}\right|, t \in[a, b]$. We omit the details.

References

[1] P. CERONE and S.S. DRAGOMIR, Midpoint-type rules from an inequalities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, N.Y., (2000), 135-200.
[2] P. CERONE and S.S. DRAGOMIR, Trapezoid-type rules from an inequalities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, N.Y., (2000), 65-134.
[3] X.L. CHENG, Improvement of some Ostrowski-Grüss type inequalities, Computers Math. Applic., 42 (2001), 109-114.
[4] X.L. CHENG and J. SUN, A note on the perturbed trapezoid inequality, J. Ineq. Pure. \&s Appl. Math., 3(2) (2002), Article 29. [ONLINE] http://jipam.vu.edu.au/v3n2/046_01.html
[5] J. ROUMELIOTIS, Improved weighted Ostrowski-Grüss type inequalities, RGMIA Research Report Collection, 5(1) (2002), Article 13. [ONLINE] http://rgmia.vu.edu.au/v5n1.html

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, MCMC 8001, Victoria, Australia

E-mail address: pc@matilda.vu.edu.au
$U R L$: http://rgmia.vu.edu.au/cerone
E-mail address: sever@matilda.vu.edu.au
$U R L:$ http://rgmia.vu.edu.au/SSDragomirWeb.html

[^0]: Date: April 10, 2002.
 1991 Mathematics Subject Classification. Primary 26D15, 26D20; Secondary 26D10.
 Key words and phrases. Grüss inequality, Measurable functions, Lebesgue integral, Perturbed Rules.

