A GENERALISED TRAPEZOID TYPE INEQUALITY FOR CONVEX FUNCTIONS

S.S. DRAGOMIR

Abstract

A generalised trapezoid inequality for convex functions and applications for quadrature rules are given. A refinement and a counterpart result for the Hermite-Hadamard inequalities are obtained and some inequalities for pdf's and $(H H)$-divergence measure are also mentioned.

1. Introduction

The following integral inequality for the generalised trapezoid formula was obtained in [2] (see also [1, p. 68]):
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function of bounded variation. We have the inequality

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-[(x-a) f(a)+(b-x) f(b)]\right| \tag{1.1}\\
\leq & {\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b}(f), }
\end{align*}
$$

holding for all $x \in[a, b]$, where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on the interval $[a, b]$.
The constant $\frac{1}{2}$ is the best possible one.
This result may be improved if one assumes the monotonicity of f as follows (see [1, p. 76])
Theorem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a monotonic nondecreasing function on $[a, b]$. Then we have the inequality:

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-[(x-a) f(a)+(b-x) f(b)]\right| \tag{1.2}\\
\leq & (b-x) f(b)-(x-a) f(a)+\int_{a}^{b} \operatorname{sgn}(x-t) f(t) d t \\
\leq & (x-a)[f(x)-f(a)]+(b-x)[f(b)-f(x)] \\
\leq & {\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right][f(b)-f(a)] }
\end{align*}
$$

Date: June 26, 2001.
1991 Mathematics Subject Classification. Primary 26D14; Secondary 26D99.
Key words and phrases. Generalised Trapezoid Inequality, Hermite-Hadamard Inequality, Probability density functions, Divergence measures.
for all $x \in[a, b]$.
The above inequalities are sharp.
If the mapping is Lipschitzian, then the following result holds as well [3] (see also [1, p. 82]).
Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be an L-Lipschitzian function on $[a, b]$, i.e.., f satisfies the condition:
(L) $\quad|f(s)-f(t)| \leq L|s-t| \quad$ for any $s, t \in[a, b] \quad(L>0$ is given $)$.

Then we have the inequality:

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-[(x-a) f(a)+(b-x) f(b)]\right| \tag{1.3}\\
\leq & {\left[\frac{1}{4}(b-a)^{2}+\left(x-\frac{a+b}{2}\right)^{2}\right] L }
\end{align*}
$$

for any $x \in[a, b]$.
The constant $\frac{1}{4}$ is best in (1.3).
If we would assume absolute continuity for the function f, then the following estimates in terms of the Lebesgue norms of the derivative f^{\prime} hold [1, p. 93].
Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function on $[a, b]$. Then for any $x \in[a, b]$, we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-[(x-a) f(a)+(b-x) f(b)]\right| \tag{1.4}\\
\leq & \left\{\begin{array}{l}
{\left[\frac{1}{4}(b-a)^{2}+\left(x-\frac{a+b}{2}\right)^{2}\right]\left\|f^{\prime}\right\|_{\infty} \quad \text { if } \quad f^{\prime} \in L_{\infty}[a, b]} \\
\frac{1}{(q+1)^{\frac{1}{q}}}\left[(x-a)^{q+1}+(b-x)^{q+1}\right]^{\frac{1}{q}}\left\|f^{\prime}\right\|_{p} \\
{\left[\begin{array}{ll}
& \text { if } \quad f^{\prime} \in L_{p}[a, b]
\end{array}\right.} \\
{\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]\left\|f^{\prime}\right\|_{1},}
\end{array}\right.
\end{align*}
$$

where $\|\cdot\|_{p}(p \in[1, \infty])$ are the Lebesgue norms, i.e.,

$$
\left\|f^{\prime}\right\|_{\infty}=e s s \sup _{s \in[a, b]}\left|f^{\prime}(s)\right|
$$

and

$$
\left\|f^{\prime}\right\|_{p}:=\left(\int_{a}^{b}\left|f^{\prime}(s)\right| d s\right)^{\frac{1}{p}}, p \geq 1
$$

In this paper we point out some similar results for convex functions. Applications for quadrature formulae, for probability density functions and $H H$-Divergences in Information Theory are also considered.

2. The Results

The following theorem providing a lower bound for the difference

$$
(x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t
$$

holds.
Theorem 5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then for any $x \in(a, b)$ we have the inequality

$$
\begin{align*}
& \frac{1}{2}\left[(b-x)^{2} f_{+}^{\prime}(x)-(x-a)^{2} f_{-}^{\prime}(x)\right] \tag{2.1}\\
\leq & (x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t
\end{align*}
$$

The constant $\frac{1}{2}$ in the left hand side of (2.1) is sharp in the sense that it cannot be replaced by a larger constant.

Proof. It is easy to see that for any locally absolutely continuous function f : $(a, b) \rightarrow \mathbb{R}$, we have the identity

$$
\begin{equation*}
(x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t=\int_{a}^{b}(t-x) f^{\prime}(t) d t \tag{2.2}
\end{equation*}
$$

for any $x \in(a, b)$, where f^{\prime} is the derivative of f which exists a.e. on $[a, b]$.
Since f is convex, then it is locally Lipschitzian and thus (2.2) holds. Moreover, for any $x \in(a, b)$, we have the inequalities:

$$
\begin{equation*}
f^{\prime}(t) \leq f_{-}^{\prime}(x) \text { for a.e. } t \in[a, x] \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(t) \geq f_{+}^{\prime}(x) \text { for a.e. } t \in[x, b] . \tag{2.4}
\end{equation*}
$$

If we multiply (2.3) by $x-t \geq 0, t \in[a, x]$ and integrate on $[a, x]$, we get

$$
\begin{equation*}
\int_{a}^{x}(x-t) f^{\prime}(t) d t \leq \frac{1}{2}(x-a)^{2} f_{-}^{\prime}(x) \tag{2.5}
\end{equation*}
$$

and if we multiply (2.4) by $t-x \geq 0, t \in[x, b]$ and integrate on $[x, b]$, we also have

$$
\begin{equation*}
\int_{x}^{b}(t-x) f^{\prime}(t) d t \geq \frac{1}{2}(b-x)^{2} f_{+}^{\prime}(x) \tag{2.6}
\end{equation*}
$$

Finally, if we subtract (2.5) from (2.6) and use the representation (2.2), we deduce the desired inequality (2.1).

Now, assume that (2.1) holds with a constant $C>0$ instead of $\frac{1}{2}$, i.e.,

$$
\begin{align*}
& C\left[(b-x)^{2} f_{+}^{\prime}(x)-(x-a)^{2} f_{-}^{\prime}(x)\right] \tag{2.7}\\
\leq & (x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t
\end{align*}
$$

Consider the convex function $f_{0}(t):=k\left|t-\frac{a+b}{2}\right|, k>0, t \in[a, b]$. Then

$$
\begin{aligned}
f_{0^{+}}^{\prime}\left(\frac{a+b}{2}\right) & =k, \quad f_{0^{-}}^{\prime}\left(\frac{a+b}{2}\right)=-k \\
f_{0}(a) & =\frac{k(b-a)}{2}=f_{0}(b), \quad \int_{a}^{b} f_{0}(t) d t=\frac{1}{4} k(b-a)^{2}
\end{aligned}
$$

If in (2.7) we choose f_{0} as above and $x=\frac{a+b}{2}$, then we get

$$
C\left[\frac{1}{4}(b-a)^{2} k+\frac{1}{4}(b-a)^{2} k\right] \leq \frac{1}{4} k(b-a)^{2}
$$

giving $C \leq \frac{1}{2}$, and the sharpness of the constant is proved.
Now, recall that the following inequality which is well known in the literature as the Hermite-Hadamard inequality for convex functions holds

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2} \tag{H-H}
\end{equation*}
$$

The following corollary gives a sharp lower bound for the difference

$$
\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

Corollary 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right](b-a) \tag{2.8}\\
& \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t
\end{align*}
$$

The constant $\frac{1}{8}$ is sharp.
The proof is obvious by the above theorem. The sharpness of the constant is obtained for $f_{0}(t)=k\left|t-\frac{a+b}{2}\right|, t \in[a, b], k>0$.

When x is a point of differentiability, we may state the following corollary as well.
Corollary 2. Let f be as in Theorem 5. If $x \in(a, b)$ is a point of differentiability for f, then

$$
\begin{equation*}
(b-a)\left(\frac{a+b}{2}-x\right) f^{\prime}(x) \leq(x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t \tag{2.9}
\end{equation*}
$$

Remark 1. If $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is convex on I and if we choose $x \in \stackrel{\circ}{I}$ (오 is the interior of I), $b=x+\frac{h}{2}, a=x-\frac{h}{2}, h>0$ is such that $a, b \in I$, then from (2.1) we may write

$$
\begin{equation*}
0 \leq \frac{1}{8} h^{2}\left[f_{+}^{\prime}(x)-f_{-}^{\prime}(x)\right] \leq \frac{f(a)+f(b)}{2} \cdot h-\int_{x-\frac{h}{2}}^{x+\frac{h}{2}} f(t) d t \tag{2.10}
\end{equation*}
$$

and the constant $\frac{1}{8}$ is sharp in (2.10).
The following result providing an upper bound for the difference

$$
(x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t
$$

also holds.

Theorem 6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function on $[a, b]$. Then for any $x \in[a, b]$, we have the inequality:

$$
\begin{align*}
& (x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t \tag{2.11}\\
\leq & \frac{1}{2}\left[(b-x)^{2} f_{-}^{\prime}(b)-(x-a)^{2} f_{+}^{\prime}(a)\right]
\end{align*}
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller constant.
Proof. If either $f_{+}^{\prime}(a)=-\infty$ or $f_{-}^{\prime}(b)=+\infty$, then the inequality (2.11) evidently holds true.

Assume that $f_{+}^{\prime}(a)$ and $f_{-}^{\prime}(b)$ are finite.
Since f is convex on $[a, b]$, we have

$$
\begin{equation*}
f^{\prime}(t) \geq f_{+}^{\prime}(a) \text { for a.e. } t \in[a, x] \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(t) \leq f_{-}^{\prime}(b) \text { for a.e. } t \in[x, b] \tag{2.13}
\end{equation*}
$$

If we multiply (2.12) by $(x-t) \geq 0, t \in[a, x]$ and integrate on $[a, x]$, then we deduce

$$
\begin{equation*}
\int_{a}^{x}(x-t) f^{\prime}(t) d t \geq \frac{1}{2}(x-a)^{2} f_{+}^{\prime}(a) \tag{2.14}
\end{equation*}
$$

and if we multiply (2.13) by $t-x \geq 0, t \in[x, b]$ and integrate on $[x, b]$, then we also have

$$
\begin{equation*}
\int_{x}^{b}(t-x) f^{\prime}(t) d t \leq \frac{1}{2}(b-x)^{2} f_{-}^{\prime}(b) \tag{2.15}
\end{equation*}
$$

Finally, if we subtract (2.14) from (2.15) and use the representation (2.2), we deduce the desired inequality (2.11).

Now, assume that (2.11) holds with a constant $D>0$ instead of $\frac{1}{2}$, i.e.,

$$
\begin{align*}
& (x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t \tag{2.16}\\
\leq & D\left[(b-x)^{2} f_{-}^{\prime}(b)-(x-a)^{2} f_{+}^{\prime}(a)\right]
\end{align*}
$$

If we consider the convex function $f_{0}:[a, b] \rightarrow \mathbb{R}, f_{0}(t)=k\left|t-\frac{a+b}{2}\right|$, then we have $f_{-}^{\prime}(b)=k, f_{+}^{\prime}(a)=-k$ and by (2.16) we deduce for $x=\frac{a+b}{2}$ that

$$
\frac{1}{4} k(b-a)^{2} \leq D\left[\frac{1}{4} k(b-a)^{2}+\frac{1}{4} k(b-a)^{2}\right]
$$

giving $D \geq \frac{1}{2}$, and the sharpness of the constant is proved.
The following corollary related to the Hermite-Hadamard inequality is interesting as well.
Corollary 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex on $[a, b]$. Then

$$
\begin{equation*}
0 \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{1}{8}\left[f_{-}^{\prime}(b)-f_{+}^{\prime}(a)\right](b-a) \tag{2.17}
\end{equation*}
$$

and the constant $\frac{1}{8}$ is sharp.

Remark 2. Denote $B:=f_{-}^{\prime}(b), A:=f_{+}^{\prime}(a)$ and assume that $B \neq A$, i.e., f is not constant on (a, b). Then

$$
(b-x)^{2} B-(x-a)^{2} A=(B-A)\left[x-\left(\frac{b B-a A}{B-A}\right)\right]^{2}-\frac{A B}{B-A}(b-a)^{2}
$$

and by (2.11) we get

$$
\begin{align*}
& (x-a) f(a)+(b-x) f(b)-\int_{a}^{b} f(t) d t \tag{2.18}\\
\leq & (B-A)\left[x-\left(\frac{b B-a A}{B-A}\right)\right]^{2}-\frac{A B}{(B-A)^{2}}(b-a)^{2}
\end{align*}
$$

for any $x \in[a, b]$.
If $A \geq 0$, then $x_{0}=\frac{b B-a A}{B-A} \in[a, b]$, and by (2.18) for $x=\frac{b B-a A}{B-A}$ we get that

$$
\begin{equation*}
0 \leq \frac{1}{2} \cdot \frac{A B}{B-A}(b-a) \leq \frac{B f(a)-A f(b)}{B-A}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \tag{2.19}
\end{equation*}
$$

which is an interesting inequality in itself as well.

3. The Composite Case

Consider the division $I_{n}: a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$ and denote $h_{i}:=x_{i+1}-x_{i} \quad(i=\overline{0, n-1})$. If $\xi_{i} \in\left[x_{i}, x_{i+1}\right](i=\overline{0, n-1})$ are intermediate points, then we will denote by

$$
\begin{equation*}
G_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right):=\sum_{i=0}^{n-1}\left[\left(\xi_{i}-x_{i}\right) f\left(x_{i}\right)+\left(x_{i+1}-\xi_{i}\right) f\left(x_{i+1}\right)\right] \tag{3.1}
\end{equation*}
$$

the generalised trapezoid rule associated to f, I_{n} and $\boldsymbol{\xi}$.
The following theorem providing upper and lower bounds for the remainder in approximating the integral $\int_{a}^{b} f(t) d t$ of a convex function f in terms of the generalised trapezoid rule holds.
Theorem 7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function and I_{n} and $\boldsymbol{\xi}$ be as above. Then we have:

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=G_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)-S_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right) \tag{3.2}
\end{equation*}
$$

where $G_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)$ is the generalised Trapezoid Rule defined by (3.1) and the remainder $S_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)$ satisfies the estimate:

$$
\begin{align*}
& \frac{1}{2}\left[\sum_{i=0}^{n-1}\left(x_{i+1}-\xi_{i}\right)^{2} f_{+}^{\prime}\left(\xi_{i}\right)-\sum_{i=0}^{n-1}\left(\xi_{i}-x_{i}\right)^{2} f_{-}^{\prime}\left(\xi_{i}\right)\right] \tag{3.3}\\
\leq & S_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right) \\
\leq & \frac{1}{2}\left[\left(b-\xi_{n-1}\right)^{2} f_{-}^{\prime}(b)+\sum_{i=1}^{n-1}\left[\left(x_{i}-\xi_{i-1}\right)^{2} f_{-}^{\prime}\left(x_{i}\right)-\left(\xi_{i}-x_{i}\right)^{2} f_{+}^{\prime}\left(x_{i}\right)\right]\right. \\
& \left.-\left(\xi_{0}-a\right)^{2} f_{+}^{\prime}(a)\right] .
\end{align*}
$$

Proof. If we write the inequalities (2.1) and (2.11) on the interval $\left[x_{i}, x_{i+1}\right]$ and for the intermediate points $\xi_{i} \in\left[x_{i}, x_{i+1}\right]$, then we have

$$
\begin{aligned}
& \frac{1}{2}\left[\left(x_{i+1}-\xi_{i}\right)^{2} f_{+}^{\prime}\left(x_{i}\right)-\left(\xi_{i}-x_{i}\right)^{2} f_{-}^{\prime}\left(\xi_{i}\right)\right] \\
\leq & \left(\xi_{i}-x_{i}\right) f\left(x_{i}\right)+\left(x_{i+1}-\xi_{i}\right) f\left(x_{i+1}\right)-\int_{x_{i}}^{x_{i+1}} f(t) d t \\
\leq & \frac{1}{2}\left[\left(x_{i+1}-\xi_{i}\right)^{2} f_{-}^{\prime}\left(x_{i+1}\right)-\left(\xi_{i}-x_{i}\right)^{2} f_{+}^{\prime}\left(x_{i}\right)\right]
\end{aligned}
$$

Summing the above inequalities over i from 0 to $n-1$, we deduce

$$
\begin{align*}
& \frac{1}{2} \sum_{i=0}^{n-1}\left[\left(x_{i+1}-\xi_{i}\right)^{2} f_{+}^{\prime}\left(\xi_{i}\right)-\left(\xi_{i}-x_{i}\right)^{2} f_{-}^{\prime}\left(\xi_{i}\right)\right] \tag{3.4}\\
\leq & G_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)-\int_{a}^{b} f(t) d t \\
\leq & \frac{1}{2}\left[\sum_{i=0}^{n-1}\left(x_{i+1}-\xi_{i}\right)^{2} f_{-}^{\prime}\left(x_{i+1}\right)-\sum_{i=0}^{n-1}\left(\xi_{i}-x_{i}\right)^{2} f_{+}^{\prime}\left(x_{i}\right)\right] .
\end{align*}
$$

However,

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left(x_{i+1}-\xi_{i}\right)^{2} f_{-}^{\prime}\left(x_{i+1}\right) & =\left(b-\xi_{n-1}\right)^{2} f_{-}^{\prime}(b)+\sum_{i=0}^{n-2}\left[\left(x_{i+1}-\xi_{i}\right)^{2} f_{-}^{\prime}\left(x_{i+1}\right)\right] \\
& =\left(b-\xi_{n-1}\right)^{2} f_{-}^{\prime}(b)+\sum_{i=1}^{n-1}\left(x_{i}-\xi_{i-1}\right)^{2} f_{-}^{\prime}\left(x_{i}\right)
\end{aligned}
$$

and

$$
\sum_{i=0}^{n-1}\left(\xi_{i}-x_{i}\right)^{2} f_{+}^{\prime}\left(x_{i}\right)=\sum_{i=1}^{n-1}\left(\xi_{i}-x_{i}\right)^{2} f_{+}^{\prime}\left(x_{i}\right)+\left(\xi_{0}-a\right)^{2} f_{+}^{\prime}(a)
$$

and then, by (3.4), we deduce the desired estimate (3.3).
The following corollary may be useful in practical applications.
Corollary 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable convex function on $[a, b]$. Then we have the representation (3.2) and $S_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right)$ satisfies the estimate:

$$
\begin{align*}
& \sum_{i=0}^{n-1}\left(\frac{x_{i}+x_{i+1}}{2}-\xi_{i}\right) h_{i} f^{\prime}\left(\xi_{i}\right) \tag{3.5}\\
\leq & S_{n}\left(f ; I_{n}, \boldsymbol{\xi}\right) \\
\leq & \frac{1}{2}\left[\left(b-\xi_{n-1}\right)^{2} f_{-}^{\prime}(b)-\left(\xi_{0}-a\right)^{2} f_{+}^{\prime}(a)\right. \\
& \left.+\sum_{i=1}^{n-1}\left[\left(x_{i}-\frac{\xi_{i}+\xi_{i-1}}{2}\right)\left(\xi_{i}-\xi_{i-1}\right) f^{\prime}\left(x_{i}\right)\right]\right] .
\end{align*}
$$

We may also consider the trapezoid quadrature rule:

$$
\begin{equation*}
T_{n}\left(f ; I_{n}\right):=\sum_{i=0}^{n-1} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} \cdot h_{i} \tag{3.6}
\end{equation*}
$$

Using the above results, we may state the following corollary.

Corollary 5. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is a convex function on $[a, b]$ and I_{n} is a division as above. Then we have the representation

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=T_{n}\left(f ; I_{n}\right)-Q_{n}\left(f ; I_{n}\right) \tag{3.7}
\end{equation*}
$$

where $T_{n}\left(f ; I_{n}\right)$ is the mid-point quadrature formula given in (3.6) and the remainder $Q_{n}\left(f ; I_{n}\right)$ satisfies the estimates

$$
\begin{align*}
0 & \leq \frac{1}{8} \sum_{i=0}^{n-1}\left[f_{+}^{\prime}\left(\frac{x_{i}+x_{i+1}}{2}\right)-f_{-}^{\prime}\left(\frac{x_{i}+x_{i+1}}{2}\right)\right] h_{i}^{2} \tag{3.8}\\
& \leq Q_{n}\left(f ; I_{n}\right) \leq \frac{1}{8} \sum_{i=0}^{n-1}\left[f_{+}^{\prime}\left(x_{i+1}\right)-f_{-}^{\prime}\left(x_{i}\right)\right] h_{i}^{2}
\end{align*}
$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

4. Applications for P.D.F.s

Let X be a random variable with the probability density function $f:[a, b] \subset$ $\mathbb{R} \rightarrow[0, \infty)$ and with cumulative distribution function $F(x)=\operatorname{Pr}(X \leq x)$.

The following theorem holds.
Theorem 8. If $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}_{+}$is monotonically increasing on $[a, b]$, then we have the inequality:

$$
\begin{align*}
& \frac{1}{2}\left[(b-x)^{2} f_{+}(x)-(x-a)^{2} f_{-}(x)\right]+x \tag{4.1}\\
\leq & E(X) \\
\leq & \frac{1}{2}\left[(b-x)^{2} f_{+}(b)-(x-a)^{2} f_{-}(a)\right]+x
\end{align*}
$$

for any $x \in(a, b)$, where $f_{ \pm}(\alpha)$ represent respectively the right and left limits of f in α and $E(X)$ is the expectation of X.
The constant $\frac{1}{2}$ is sharp in both inequalities.
The second inequality also holds for $x=a$ or $x=b$.
Proof. Follows by Theorem 5 and 6 applied for the convex cdf function $F(x)=$ $\int_{a}^{x} f(t) d t, x \in[a, b]$ and taking into account that

$$
\int_{a}^{b} F(x) d x=b-E(X)
$$

Finally, we may state the following corollary in estimating the expectation of X.
Corollary 6. With the above assumptions, we have

$$
\begin{align*}
& \frac{1}{8}\left[f_{+}\left(\frac{a+b}{2}\right)-f_{-}\left(\frac{a+b}{2}\right)\right](b-a)^{2}+\frac{a+b}{2} \tag{4.2}\\
\leq & E(X) \leq \frac{1}{8}\left[f_{+}(b)-f_{-}(a)\right](b-a)^{2}+\frac{a+b}{2} .
\end{align*}
$$

5. Applications for $H H$-Divergence

Assume that a set χ and the σ-finite measure μ are given. Consider the set of all probability densities on μ to be

$$
\begin{equation*}
\Omega:=\left\{p \mid p: \Omega \rightarrow \mathbb{R}, p(x) \geq 0, \int_{\chi} p(x) d \mu(x)=1\right\} \tag{5.1}
\end{equation*}
$$

Csiszár's f-divergence is defined as follows [4]

$$
\begin{equation*}
D_{f}(p, q):=\int_{\chi} p(x) f\left[\frac{q(x)}{p(x)}\right] d \mu(x), p, q \in \Omega \tag{5.2}
\end{equation*}
$$

where f is convex on $(0, \infty)$. It is assumed that $f(u)$ is zero and strictly convex at $u=1$. By appropriately defining this convex function, various divergences are derived.

In [5], Shioya and Da-te introduced the generalised Lin-Wong f-divergence $D_{f}\left(p, \frac{1}{2} p+\frac{1}{2} q\right)$ and the Hermite-Hadamard (HH) divergence

$$
\begin{equation*}
D_{H H}^{f}(p, q):=\int_{\chi} \frac{p^{2}(x)}{q(x)-p(x)}\left(\int_{1}^{\frac{q(x)}{p(x)}} f(t) d t\right) d \mu(x), p, q \in \Omega \tag{5.3}
\end{equation*}
$$

and, by the use of the Hermite-Hadamard inequality for convex functions, proved the following basic inequality

$$
\begin{equation*}
D_{f}\left(p, \frac{1}{2} p+\frac{1}{2} q\right) \leq D_{H H}^{f}(p, q) \leq \frac{1}{2} D_{f}(p, q) \tag{5.4}
\end{equation*}
$$

provided that f is convex and normalised, i.e., $f(1)=0$.
The following result in estimating the difference

$$
\frac{1}{2} D_{f}(p, q)-D_{H H}^{f}(p, q)
$$

holds.
Theorem 9. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a normalised convex function and $p, q \in \Omega$. Then we have the inequality:

$$
\begin{align*}
0 & \leq \frac{1}{8}\left[D_{f_{+}^{\prime} \cdot\left|\frac{+1}{2}\right|}(p, q)-D_{f_{-}^{\prime} \cdot\left|\frac{+1}{2}\right|}(p, q)\right] \tag{5.5}\\
& \leq \frac{1}{2} D_{f}(p, q)-D_{H H}^{f}(p, q) \\
& \leq \frac{1}{8} D_{f_{-}^{\prime} \cdot(\cdot-1)}(p, q)
\end{align*}
$$

Proof. Using the double inequality

$$
\begin{aligned}
0 & \leq \frac{1}{8}\left[f_{+}^{\prime}\left(\frac{a+b}{2}\right)-f_{-}^{\prime}\left(\frac{a+b}{2}\right)\right]|b-a| \\
& \leq \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \\
& \leq \frac{1}{8}\left[f_{-}(b)-f_{+}^{\prime}(a)\right](b-a)
\end{aligned}
$$

for the choices $a=1, b=\frac{q(x)}{p(x)}, x \in \chi$, multiplying with $p(x) \geq 0$ and integrating over x on χ we get

$$
\begin{aligned}
0 & \leq \frac{1}{8} \int_{\chi}\left[f_{+}^{\prime}\left(\frac{p(x)+q(x)}{2 p(x)}\right)-f_{-}^{\prime}\left(\frac{p(x)+q(x)}{2 p(x)}\right)\right]|q(x)-p(x)| d \mu(x) \\
& \leq \frac{1}{2} D_{f}(p, q)-D_{H H}^{f}(p, q) \\
& \leq \frac{1}{8} \int_{\chi}\left[f_{-}^{\prime}\left(\frac{q(x)}{p(x)}\right)-f_{+}^{\prime}(1)\right](q(x)-p(x)) d \mu(x)
\end{aligned}
$$

which is clearly equivalent to (5.5).
Corollary 7. With the above assumptions and if f is differentiable on $(0, \infty)$, then

$$
\begin{equation*}
0 \leq \frac{1}{2} D_{f}(p, q)-D_{H H}^{f}(p, q) \leq \frac{1}{8} D_{f^{\prime} \cdot(\cdot-1)}(p, q) \tag{5.6}
\end{equation*}
$$

References

[1] P. CERONE and S.S. DRAGOMIR, Trapezoidal-type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, G.A. Anastassiou (Ed), Chapman \& Hall/CRC Press, New York, 2000, 65-134.
[2] P. CERONE, S.S. DRAGOMIR and C.E.M. PEARCE, A generalised trapezoid inequality for functions of bounded variation, Turkish J. of Math., 24(2) (2000), 147-163.
[3] S.S. DRAGOMIR, On the trapezoid quadrature formula for Lipschitzian mappings and applications, Tamkang J. of Math., $\mathbf{3 0}$ (2) (1999), 133-138.
[4] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
[5] H. SHIOYA and T. DA-TE, A generalisation of Lin divergence and the derivation of a new information divergence, Elec. and Comm. in Japan, 78(7), (1995), 37-40.

School of Communications and Informatics, Victoria University of Technology, PO
Box 14428 , Melbourne City MC, 8001, Victoria, Australia.
E-mail address: sever@matilda.vu.edu.au
$U R L$: http://rgmia.vu.edu.au/SSDragomirWeb.html

