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Abstract. In this article, using the properties of power mean, new generalizations
of the strengthened Hardy Inequalities are proved.

1. Introduction

It is well known that the following Hardy’s Inequality (see [4, Theorem 326]):

if p > 1 and an ≥ 0, then

(1.1)
∑

(a1 + a2 + ... + an

n

)p
<

( p
p− 1

)p ∑

ap
n,

unless all the a are zero. The constant is the best possible.

This theorem was discovered in the course of attempts to simplify the proofs then
known of Hilbert’s double series theorems (see [4, Theorem 315]). Hilbert’s double
series theorem was completed by the above inequality. This inequality was first
proved by Hardy [3], except that Hardy was unable to fit the constant in inequality
(1.1). If in inequality (1.1) we write an for ap

n, we obtain

(1.2)
∑

(a1/p
1 + a1/p

2 + · · ·+ a1/p
n

n

)p
<

( p
p− 1

)p ∑

an.

If we make p →∞, and use the elementary mean values

lim
p→0

(
n

∑

i=1

1
n

ap
i

)1/p
=

(
n

∏

i=1

ai

)1/n
,
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we obtain
∞
∑

n=1

(a1a2 · · · an)1/n < e
∞
∑

n=1

an,

and this suggests the more complete theorem which follow;

(1.3)
∞
∑

n=1

(a1a2 · · · an)1/n < e
∞
∑

n=1

an,

unless (an) is null. The constant is the best possible.
The inequality given in (1.3) which later went by the name of Carleman’s in-

equality, led to a great many papers dealing with alternative proofs, various gen-
eralizations, and numerous variants and applications in analysis. It is natural to
attempt to prove the complete inequality by means of following

(1.4)
(

n
∏

i=1

ai

)1/n
<

n
∑

i=1

1
n

ai,

unless all the ai are equal. But a direct application of inequality (1.4) to the left-
hand side of the inequality (1.2) is insufficient. To remedy this, we apply inequality
(1.4) not to a1, a2, ..., an but to c1a1, c2a2, ..., cnan, and choose the c so that when
∑

an is near the boundary of convergence, these numbers shall be ‘roughly equal’.
This requires that cn shall be roughly of the order of n.

By Hardy (see, [4, Theorem 349]), the Carleman’s inequality was generalized as
follows:

If an ≥ 0, λn > 0, Λn =
∑n

m=1 λm(n ∈ N) and 0 <
∑∞

n=1 λnan < ∞, then

(1.5)
∞
∑

n=1

λn(aλ1
1 aλ2

2 · · · aλn
n )1/Λn < e

∞
∑

n=1

λnan.

Recently, Z. Xie and Y. Zhong [7] gave an improvement of the inequality (1.5) as
follows: If an ≥ 0, 0 < λn+1 ≤ λn, Λn =

∑n
m=1 λm(n ∈ N) and 0 <

∑∞
n=1 λnan <

∞, then

(1.6)
∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn < e

∞
∑

n=1

(

1− 6λn

12Λn + 11λn

)

λnan.
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Most recently, Z. Yang [11] obtained the strengthened Carleman’s inequality as
follows: If an ≥ 0, n = 1, 2, ..., and 0 <

∑∞
n=1 an < ∞. Then

∞
∑

n=1

(a1a2 · · · an)1/n

< e
∞
∑

n=1

(

1− 1
2(1 + n)

− 1
24(1 + n)2

− 1
48(1 + n)3

)

an.(1.7)

It is immediate from the proof of inequality (1.6) and the inequality (1.7) that
we can deduce the following new strengthened Hardy’s inequality:

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

< e
∞
∑

n=1

(

1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3

)

λnan.

(1.8)

But we know that the inequality (1.8) is a better improvement of the inequality
(1.6), as a result of following

(

1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3

)

<
(

1− 6λn

12Λn + 11λn

)

for Λn/λn ≥ 1.

The purpose of this paper is to prove new extension of the strengthened Hardy’s
inequality in the spirit of the strict monotonicity of the power mean of n distinct
positive numbers.

For any positive values a1, a2, . . . , an and positive weights α1, α2 . . . , αn,
∑n

i=1 αi

= 1, and any real p 6= 0, we defined the power mean, or the mean of order p of the
value a with weights α by

Mp(a; α) = Mp(a1, a2, . . . , an;α1, α2 . . . , αn) =
(

n
∑

i=1

αia
p
i

)1/p
.
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An easy application of L’Hospital’s rule shows that

lim
p→0

Mp(a; α) =
n

∏

i=1

aαi
i ,

the geometric mean. Accordingly, we define M0(a; α) =
∏n

i=1 aαi
i . It is well known

that Mp(a; α) is a nondecreasing function of p for −∞ ≤ p ≤ ∞, and is strictly
increasing unless all the ai are equal (cf. [1]).

2. Strengthened Hardy’s Inequalities

The main results of this paper are presented as follows:

Lemma 2.1 [7]. Let x ≥ 1, then we have the following inequality:

(2.1)
12x + 11
12x + 5

(

1 +
1
x

)x
< e <

14x + 12
14x + 5

(

1 +
1
x

)x
.

We can deduce the following improvement results of the inequality (1.6):

Theorem 2.2. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm(Λn ≥ 1), an ≥ 0(n ∈ N),
0 < p ≤ 1 and 0 <

∑∞
n=1 λnan < ∞. Then

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

<
ep

p

∞
∑

n=1

(

1− 6λn

12Λn + 11λn

)p
λn(an)pΛp−1

n

(
n

∑

k=1

λk(ckak)p
)(1−p)/p

.

(2.2)

where cλn
k = (Λn+1)Λn/(Λn)Λn−1 .

Proof. By the power mean inequality, we have

αq1
1 αq2

2 · · ·αqn
n ≤

(
n

∑

m=1

qm(αm)p
)1/p

,

for αm ≥ 0, p ≥ 0 and qm > 0(m = 1, 2, . . . , n) with
∑n

m=1 qm = 1. Setting
cm > 0, αm = cmam and qm = λm/Λn, we obtain

(c1a1)λ1/Λn(c2a2)λ2/Λn · · · (cnan)λn/Λn ≤
( 1

Λn

n
∑

m=1

λm(cmam)p
)1/p

.
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Using the above inequality, we have
∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

=
∞
∑

n=1

λn+1
(c1a1)λ1/Λn(c2a2)λ2/Λn · · · (cnan)λn/Λn

(cλ1
1 cλ2

2 · · · cλn
n )1/Λn

(2,3)

≤
∞
∑

n=1

[ λn+1

(cλ1
1 cλ2

2 · · · cλn
n )1/Λn

]( 1
Λn

n
∑

m=1

λm(cmam)p
)1/p

.

By using the following inequality (see [2], [6]),
( n

∑

m=1

zm

)t

≤ t
n

∑

m=1

zm

( m
∑

k=1

zk

)t−1

,

where t ≥ 1 is constant and zm ≥ 0(m = 1, 2, · · · ), it is easy to observe that

( 1
Λn

n
∑

m=1

λm(cmam)p
)1/p

≤ 1
Λn

(
n

∑

m=1

λm(cmam)p
)1/p

(2.4)

≤ 1
pΛn

n
∑

m=1

λm(cmam)p
(

m
∑

k=1

λk(ckak)p
)(1−p)/p

for Λn ≥ 1 and 0 < p ≤ 1. Then, by (2.3) and (2.4), we obtain

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

≤ 1
p

n
∑

m=1

λm(cmam)p
∞
∑

n=m

( λn+1

Λn(cλ1
1 cλ2

2 · · · cλn
n )1/Λn

)(
m

∑

k=1

λk(ckak)p
)(1−p)/p

Choosing cλ1
1 cλ2

2 · · · cλn
n = (Λn+1)Λn (n ∈ N) and setting Λ0 = 0, from λn+1 ≤

λn, it follows that

cn =
[ (Λn+1)Λn

(Λn)Λn−1

]1/λn

=
(

1 +
λn+1

Λn

)Λn/λn

· Λn

≤
(

1 +
λn

Λn

)Λn/λn

· Λn.
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This implies that

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

≤ 1
p

n
∑

m=1

λm(cmam)p
∞
∑

n=m

λn+1

ΛnΛn+1

(
m

∑

k=1

λk(ckak)p
)(1−p)/p

=
1
p

n
∑

m=1

λm(cmam)p
∞
∑

n=m

( 1
Λn

− 1
Λn+1

)(
m

∑

k=1

λk(ckak)p
)(1−p)/p

=
1
p

n
∑

m=1

λm(cmam)p 1
Λm

(
m

∑

k=1

λk(ckak)p
)(1−p)/p

≤ 1
p

∞
∑

m=1

(

1 +
1

Λm/λm

)pΛm/λm

λm(am)pΛp−1
m

(
m

∑

k=1

λk(ckak)p
)(1−p)/p

.

Hence, by the above inequality and Lemma 2.1, we have

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

<
ep

p

∞
∑

n=1

(

1− 6λn

12Λn + 11λn

)p
λn(an)pΛp−1

n

(
n

∑

k=1

λk(ckak)p
)(1−p)/p

.

Thus Theorem 2.2 is proved.

Setting p ≡ 1 in Theorem 2.2, then, form inequality (2.2) we have the inequality
(1.6). Also assuming that λn = 1 in the Theorem, we have an extension of the
strengthened Carleman’s inequality as following:

Corollary 2.3. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞. Then

∞
∑

n=1

(a1a2 · · · an)1/n

<
ep

p

∞
∑

n=1

(

1− 6
12n + 11

)p
(an)pnp−1

(
n

∑

k=1

(ckak)p
)(1−p)/p

.

where ck = (1 + 1/k)k · k.

Similarly to Theorem 2.2, we can consider a generalization version of the in-
equality (1.8) as following theorem:
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Theorem 2.4. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm, an ≥ 0(n ∈ N), 0 < p ≤ 1
and 0 <

∑∞
n=1 λnan < ∞. Then
∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

<
e
p

∞
∑

n=1

(

1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3

)p
(2.5)

× λn(an)pΛp−1
n

(
n

∑

k=1

λk(ckak)p
)(1−p)/p

.

The proof is almost the same as in proving Theorem 2.2. We here only need to
note that

(

1 +
1
x

)x
< e

(

1− 1
2(1 + x)

− 1
2(1 + x)2

− 1
2(1 + x)3

)

for x > 0, which proved in [11, Lemma 1].

Corollary 2.5. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞. Then
∞
∑

n=1

(a1a2 · · · an)1/n

<
ep

p

∞
∑

n=1

(

1− 1
2(1 + n)

− 1
24(1 + n)2

− 1
48(1 + n)3

)p

× (an)pnp−1
(

n
∑

k=1

(ckak)p
)(1−p)/p

.

where ck = (1 + 1/k)k · k.

Lemma 2.6. If a1, a2, . . . , an > 0 and α1, α2 . . . , αn > 0 with
∑n

i=1 αi = 1, then
we have the following inequality:

(
n

∏

i=1

aαi
i

)k
≤

(
n

∑

i=1

αi(ai)p
)k/p

for 0 < k, p with the equality holding if and only if all ai are same.

Note that Lemma 2.6 is easily deduced form the fact that Mp(a;α) is a continuous
strictly increasing function of p.

Now, we are ready to introduce the following new general strengthened Hardy’s
inequality.
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Theorem 2.7. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm(Λn ≥ 1), an ≥ 0(n ∈ N) and
0 <

∑∞
n=1 λn(an)t < ∞ for 0 < p ≤ t < ∞. Then

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn <

tep/t

p

∞
∑

n=1

(

1− 6λn

12Λn + 11λn

)p/t

× λn(an)pΛ(p−t)/t
n

(
n

∑

k=1

λkckak

)(t−p)/p
.(2.6)

Proof. The proof is almost the same as in Theorem 2.2. By Lemma 2.6, we have

(αq1
1 αq2

2 · · ·αqn
n )t ≤

(
n

∑

m=1

qm(αm)p
)t/p

, p, t ≥ 0,

where αm ≥ 0 and qm > 0(m = 1, 2, . . . , n) with
∑n

m=1 qm = 1. Setting cm >
0, αm = cmam and qm = λm/Λn, we obtain

(

(c1a1)λ1/Λn(c2a2)λ2/Λn · · · (cnan)λn/Λn
)t ≤

( 1
Λn

n
∑

m=1

λm(cmam)p
)t/p

.

Using the above inequality, we have

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn

≤
∞
∑

n=1

[ λn+1

(cλ1
1 cλ2

2 · · · cλn
n )t/Λn

] 1
Λn

( n
∑

m=1

λm(cmam)p
)t/p

(2.7)

for Λn ≥ 1 and t ≥ p. By using the following inequality (see [2], [6]),

( n
∑

m=1

zm

)t

≤ t
n

∑

m=1

zm

( m
∑

k=1

zk

)t−1

,

where t ≥ 1 is constant and zm ≥ 0(m = 1, 2, · · · ), it is easy to observe that

(2.8)
( n

∑

m=1

λm(cmam)p
)t/p

≤ t
p

n
∑

m=1

λm(cmam)p
( m

∑

k=1

λk(ckak)p
)(t−p)/p

.
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for Λn ≥ 1 and t ≥ p. Then, by (2.7) and (2.8), we obtain

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn ≤

∞
∑

n=1

[ λn+1

(cλ1
1 cλ2

2 · · · cλn
n )t/Λn

] 1
Λn

t
p

×
n

∑

m=1

λm(cmam)p
( m

∑

k=1

λk(ckak)p
)(t−p)/p

.(2.9)

Choosing cλ1
1 cλ2

2 · · · cλn
n = (Λn+1)Λn/t (n ∈ N) and setting Λ0 = 0, from λn+1 ≤

λn, we have

cn =
[ (Λn+1)Λn

(Λn)Λn−1

]1/tλn

=
(

1 +
λn+1

Λn

)Λn/tλn

· Λ1/t
n

≤
(

1 +
λn

Λn

)Λn/tλn

· Λ1/t
n .

This implies that

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn

≤ t
p

∞
∑

m=1

[

(

1 +
1

Λm/λm

)Λm/λm
]p/t

λm(am)pΛ(p−t)/t
( m

∑

k=1

λk(ckak)p
)(t−p)/p

.

Hence, by the above inequality and Lemma 2.1, we have

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn <

tep/t

p

∞
∑

m=1

(

1− 6λm

12Λm + 11λm

)p/t

× λm(am)pΛ(p−t)/t
m

(
m

∑

k=1

λk(ckak)p
)(t−p)/p

.

Thus the inequality (2.6) is proved.

Remark. Setting t ≡ 1 in Theorem 2.7, then from (2.6), we obtain the inequality
(2.2) in Theorem 2.2. Hence the inequality (2.6) is a new generalization of Hardy’s
inequality.

Moreover, we can consider a generalization version of the inequality (2.5) as
following theorem:
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Theorem 2.8. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm(Λn ≥ 1), an ≥ 0(n ∈ N) and
0 <

∑∞
n=1 λn(an)t < ∞ for 0 < p ≤ t < ∞. Then

∞
∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn

<
tep/t

p

∞
∑

n=1

(

1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3

)p/t

× λn(an)pΛ(p−t)/t
n

(
n

∑

k=1

λkckak

)(t−p)/p
.

Proof. The proof is similar to the proof of theorem 2.7.

Also assuming that λn = 1 in the Theorem 2.7 and Theorem 2.8, we have further
extension of the strengthened Carleman’s inequality as following:

Corollary 2.9. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞. Then

∞
∑

n=1

(a1a2 · · · an)t/n

<
tep/t

p

∞
∑

n=1

(

1− 6
12n + 11

)p/t
(an)pn(p−t)/t

(
n

∑

k=1

(ckak)p
)(t−p)/p

.

where ck = (1 + 1/k)k · k.

Corollary 2.10. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞. Then

∞
∑

n=1

(a1a2 · · · an)t/n

<
tep/t

p

∞
∑

n=1

(

1− 1
2(1 + n)

− 1
24(1 + n)2

− 1
48(1 + n)3

)p/t

× (an)pn(p−t)/t
(

n
∑

k=1

(ckak)p
)(t−p)/p

.

where ck = (1 + 1/k)k · k.
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