
BOUNDING THE µCEBY�EV FUNCTIONAL FOR THE
RIEMANN-STIELTJES INTEGRAL VIA A BEESACK

INEQUALITY AND APPLICATIONS

P. CERONE AND S.S. DRAGOMIR

Abstract. Lower and upper bounds of the µCeby�ev functional for the Riemann-
Stieltjes integral are given. Applications for the three point quadrature rules
of functions that are n�time di¤erentiable are also provided.

1. Introduction

In 1975, P.R. Beesack [1] showed that, if y; v; w are real valued functions de-
�ned on a compact interval [a; b] ; where w is of bounded variation with total
variation

Wb
a (w) ; and such that the Riemann-Stieltjes integrals

R b
a
y (t) dv (t) andR b

a
w (t) y (t) dv (t) both exist, then

m

Z b

a

y (t) dv (t) +

b_
a

(w) � inf
a��<��b

"Z �

�

y (t) dv (t)

#
(1.1)

�
Z b

a

w (t) y (t) dv (t)

� m
Z b

a

y (t) dv (t) +
b_
a

(w) � sup
a��<��b

"Z �

�

y (t) dv (t)

#
;

where m := inft2[a;b] fw (t)g :
The second of the inequalities above extends a result of R. Darst and H. Pollard

[5] who dealt with the case y (t) = 1; t 2 [a; b] and v (t) continuous on [a; b] :
In [6], S.S. Dragomir has introduced the following µCeby�ev functional for the

Riemann-Stieltjes integral :

(1.2) T (f; g;u) :=
1

u (b)� u (a)

Z b

a

f (t) g (t) du (t)

� 1

u (b)� u (a)

Z b

a

f (t) du (t) � 1

u (b)� u (a)

Z b

a

g (t) du (t) ;

provided u (b) 6= u (a) and the involved Riemann-Stieltjes integrals exist.
It has been shown in [6] that, if f; g are continuous, m � f (t) �M for each t 2

[a; b] and u is of bounded variation, then the error in approximating the Riemann-
Stieltjes integral of the product in terms of the product of integrals, as described
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in the de�nition of the µCeby�ev functional (1.2), satis�es the inequality:

(1.3) jT (f; g;u)j

� 1

2
(M �m) � 1

ju (b)� u (a)j






g � 1

u (b)� u (a)

Z b

a

g (s) du (s)







1

b_
a

(u) ;

where the constant 12 is best possible and k�k1 is the sup-norm.
Moreover, if f; g are continuous, m � f (t) �M for t 2 [a; b] and u is monotonic

nondecreasing on [a; b] ; then:

(1.4) jT (f; g;u)j

� 1

2
(M �m) 1

ju (b)� u (a)j �
Z b

a

�����g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

����� du (t)
and the constant 12 here is also sharp.
Finally, if f; g are Riemann integrable and u is Lipschitzian with the constant

L > 0 then also

(1.5) jT (f; g;u)j

� 1

2
(M �m) L

ju (b)� u (a)j �
Z b

a

�����g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

����� dt:
The constant 12 is also best possible in (1.5) (see [7] and [8]).
The main aim of the present paper is to provide other bounds for the µCeby�ev

functional T (f; g;u) by utilising the Beesack inequality (1.1). Applications for three
point quadrature rules of functions that are (n� 1)�di¤erentiable (n � 1) with the
derivative f (n�1) absolutely continuous are given as well.

2. The Results

The following result may be stated.

Theorem 1. Let f; g; u : [a; b] ! R be such that f is of bounded variation and
the Riemann-Stieltjes integrals

R b
a
f (t) g (t) du (t) ;

R b
a
f (t) du (t) and

R b
a
g (t) du (t)

exist. Then

b_
a

(f) � inf
a��<��b

"Z �

�

g (t) du (t)� u (�)� u (�)
u (b)� u (a) �

Z b

a

g (s) du (s)

#
(2.1)

�
Z b

a

f (t) g (t) du (t)� 1

u (b)� u (a) �
Z b

a

f (t) du (t) �
Z b

a

g (t) du (t)

�
b_
a

(f) � sup
a��<��b

"Z �

�

g (t) du (t)� u (�)� u (�)
u (b)� u (a) �

Z b

a

g (s) du (s)

#
;

provided u (b) 6= u (a) :
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Proof. We observe that the following identity holds true (see also [6])

(2.2) [u (b)� u (a)]T (f; g;u)

=

Z b

a

f (t)

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t) :

Since f is of bounded variation, it follows that f is bounded below and if we denote
by m the in�mum of f on [a; b] ; then on applying the Beesack inequality for the
choices

w (t) = f (t) ; y (t) = g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

and v (t) = u (t) ; t 2 [a; b] ; we can write that:

m

Z b

a

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)(2.3)

+

b_
a

(f) � inf
a��<��b

(Z �

�

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

)
� [u (b)� u (a)]T (f; g;u)

� m
Z b

a

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

+

b_
a

(f) � sup
a��<��b

(Z �

�

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

)
:

Since Z b

a

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t) = 0

and

Z �

�

"
g (t)� 1

u (b)� u (a)

Z b

a

g (s) du (s)

#
du (t)

=

Z �

�

g (t) du (t)� u (�)� u (�)
u (b)� u (a) �

Z b

a

g (s) du (s) ;

hence, by (2.3), we deduce the desired result (2.1). �

The following corollary for weighted integrals may be stated:

Corollary 1. Let f; g; w : [a; b] ! R be such that f is of bounded variation and
the Riemann integrals

R b
a
f (t) g (t)w (t) dt;

R b
a
f (t)w (t) dt and

R b
a
g (t)w (t) dt exist.
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Then
b_
a

(f) � inf
a��<��b

"Z �

�

g (t)w (t) dt�
R �
�
w (s) dsR b

a
w (s) ds

�
Z b

a

g (t)w (t) dt

#
(2.4)

�
Z b

a

f (t) g (t)w (t) dt� 1R b
a
w (s) ds

�
Z b

a

f (t)w (t) dt �
Z b

a

g (t)w (t) dt

�
b_
a

(f) � sup
a��<��b

"Z �

�

g (t)w (t) dt�
R �
�
w (s) dsR b

a
w (s) ds

�
Z b

a

g (t)w (t) dt

#
;

provided
R b
a
w (s) ds 6= 0:

Remark 1. For the particular case when w (t) = 1; t 2 [a; b] ; then we get from
(2.4) the following inequality:

b_
a

(f) � inf
a��<��b

"Z �

�

g (t) dt� � � �
b� a �

Z b

a

g (t) dt

#
(2.5)

�
Z b

a

f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt �
Z b

a

g (t) dt

�
b_
a

(f) � sup
a��<��b

"Z �

�

g (t) dt� � � �
b� a �

Z b

a

g (t) dt

#
;

provided f is of bounded variation and the involved Riemann integrals exist.

3. Applications for Three Point Quadratures

Recall that in [4] (see also [9, p. 223]) P. Cerone and S.S. Dragomir estab-
lished the following identity concerning a three point quadrature rule for n�time
di¤erentiable functions f : [a; b]! R:

(3.1)
Z b

a

f (t) dt =
nX
k=1

1

k!

n
(1� 
)k

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+ 
k
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
+ (�1)n

Z b

a

Cn (x; t) f
(n) (t) dt;

where the Peano kernel is given by:

(3.2) Cn (x; t) :=

8>>><>>>:
[t� (
x+ (1� 
) a)]n

n!
if t 2 [a; x] ;

[t� (
x+ (1� 
) b)]n

n!
if t 2 (x; b];

and 
 2 [0; 1] ; x 2 [a; b] :
We note that the above representation generalised the interior point quadrature

rule obtained in 1999 by Cerone et al. in [2] for 
 = 0 and the trapezoid type rule
obtained in 2000 by Cerone et al. in [3] for 
 = 1:
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The function Cn (x; �) is of bounded variation for each �xed x 2 [a; b] and a
simple calculation reveals that

(3.3)
b_
a

((�1)nCn (x; �))

=

Z x

a

����dCn (x; t)dt

���� dt+ Z b

x

����dCn (x; t)dt

���� dt
=

Z x

a

jt� (
x+ (1� 
) a)jn�1

(n� 1)! dt+

Z b

x

j
x+ (1� 
) b� tjn�1

(n� 1)! dt

=
1

n!
(x� a)n [
n + (1� 
)n] + 1

n!
(b� x)n [
n + (1� 
)n]

=
1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n]

for any x 2 [a; b] :
Also,

Z b

a

Cn (x; t) dt(3.4)

=
1

n!

Z x

a

[t� (
x+ (1� 
) a)]n dt+ 1

n!

Z b

x

[t� (
x+ (1� 
) b)]n dt

=
1

(n+ 1)!

n
[x� (
x+ (1� 
) a)]n+1 � [a� (
x+ (1� 
) a)]n+1

+ [b� (
x+ (1� 
) b)]n+1 � [x� (
x+ (1� 
) b)]n+1
o

=
1

(n+ 1)!

n
(1� 
)n+1 (x� a)n+1 � (�1)n+1 
n+1 (x� a)n+1

+ 
n+1 (b� x)n+1 � (�1)n+1 (1� 
)n+1 (b� x)n+1
o

=
1

(n+ 1)!

n
(b� x)n+1

h

n+1 + (�1)n (1� 
)n+1

i
+ (�1)n

h

n+1 + (�1)n (1� 
)n+1

i
(x� a)n+1

o
=

1

(n+ 1)!

h
(b� x)n+1 + (�1)n (x� a)n+1

i h

n+1 + (�1)n (1� 
)n+1

i

for any x 2 [a; b] :
We can state the following result:
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Theorem 2. Let f : [a; b]! R be an (n� 1)�di¤erentiable function (n � 1) with
the derivative f (n�1) absolutely continuous on [a; b] : Then we have

(3.5)
Z b

a

f (t) dt =
nX
k=1

1

k!

n
(1� 
)k

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+ 
k
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
+

1

(n+ 1)!

�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
�
h
(�1)n 
n+1 + (1� 
)n+1

i
+ En (f; x; 
; a; b) ;

where the remainder En (f; x; 
; a; b) (which is de�ned implicitly by (3.5))satis�es
the bounds:

(3.6)
1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� En (f; x; 
; a; b)

� 1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)]

and

(3.7) �n (f ;�; �) = f
(n�1) (�)� f (n�1) (�)� � � �

b� a

h
f (n�1) (b)� f (n�1) (a)

i
;

where 
 2 [0; 1] and x 2 [a; b] :

Proof. Apply the inequality (2.5) for the functions f = (�1)n Cn (x; �) and g = f (n)
to get

1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)](3.8)

� (�1)n
Z b

a

Cn (x; t) f
(n) (t) dt� 1

b� a (�1)
n
Z b

a

Cn (x; t) dt �
Z b

a

f (n) (t) dt

� 1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)] :

Since, by (3.3)

b_
a

((�1)n Cn (x; �)) =
1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n]

and by (3.4)

(�1)n
Z b

a

Cn (x; t) dt

=
1

(n+ 1)!

h
(b� x)n+1 + (�1)n (x� a)n+1

i h
(�1)n 
n+1 + (1� 
)n+1

i
;

then, on utilising the inequality (3.8), we have
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(3.9)
1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� (�1)n
Z b

a

Cn (x; t) f
(n) (t) dt

� 1

(n+ 1)!

h
(b� x)n+1 + (�1)n (x� a)n+1

i h
(�1)n 
n+1 + (1� 
)n+1

i
�
�
f (n�1) (b)� f (n�1) (a)

b� a

�
� 1

n!
[
n + (1� 
)n] [(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)] :

Now, due to the fact that, by the representation (3.1) we have

(3.10) (�1)n
Z b

a

Cn (x; t) f
(n) (t) dt

=

Z b

a

f (t) dt�
nX
k=1

1

k!

n
(1� 
)k

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+ 
k
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
then, on making use of remainder�s representation En (f; x; 
; a; b) (which is de�ned
implicitly by (3.5)), we deduce from (3.9) the desired result (3.6). �

Remark 2. For 
 = 0; we get from Theorem 2:

(3.11)
Z b

a

f (t) dt =
nX
k=1

1

k!

h
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+
1

(n+ 1)!

�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
+ Fn (f; x; a; b) ;

where the remainder satis�es the bounds

(3.12)
1

n!
[(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� Fn (f; x; a; b)

� 1

n!
[(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)]

for x 2 [a; b] :
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For 
 = 1
2 ; we get from Theorem 2 that:

(3.13)
Z b

a

f (t) dt =
nX
k=1

1

2kk!

nh
(b� x)k + (�1)k�1 (x� a)k

i
f (k�1) (x)

+
h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

io
+
[1 + (�1)n]
2n+1 (n+ 1)!

�
�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
+Gn (f; x; a; b) ;

where the remainder satis�es the inequality:

(3.14)
1

2n�1n!
[(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� Gn (f; x; a; b)

� 1

2n�1n!
[(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)] ;

for x 2 [a; b] :
Finally, for 
 = 1; we obtain from Theorem 2 that:

(3.15)
Z b

a

f (t) dt =
nX
k=1

1

k!

h
(x� a)k f (k�1) (a) + (�1)k�1 (b� x)k f (k�1) (b)

i
+

(�1)n

(n+ 1)!

�
f (n�1) (b)� f (n�1) (a)

b� a

� h
(b� x)n+1 + (�1)n (x� a)n+1

i
+Hn (f; x; a; b)

where the remainder Hn (f; x; a; b) satis�es the bounds:

(3.16)
1

n!
[(b� x)n + (x� a)n] inf

a��<��b
[�n (f ;�; �)]

� Hn (f; x; a; b)

� 1

n!
[(b� x)n + (x� a)n] sup

a��<��b
[�n (f ;�; �)]

for x 2 [a; b] :

The following particular case may be useful in applications:
If n = 1 and f : [a; b]! R is an absolutely continuous function on [a; b] then we

have the representation:

(3.17)
Z b

a

f (t) dt = (1� 
) (b� a) f (x) + 
 [(x� a) f (a) + (b� x) f (b)]

+ [f (b)� f (a)]
�
a+ b

2
� x

�
(1� 2
) + E (f; x; 
; a; b)

and the remainder E (f; x; 
; a; b) satis�es the bounds

(3.18) (b� a) inf
a��<��b

[� (f ;�; �)] � E (f; x; 
; a; b) � (b� a) sup
a��<��b

[� (f ;�; �)]
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where

� (f ;�; �) := f (�)� f (�)� � � �
b� a [f (b)� f (a)] ;

and x 2 [a; b] while 
 2 [0; 1] :
One must observe that for n = 1 the bounds for the error are independent of x

and 
. However, this quality is not inherited for the quadrature rules with n � 2:
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