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BOUNDING THE CEBYSEV FUNCTIONAL FOR THE
RIEMANN-STIELTJES INTEGRAL VIA A BEESACK
INEQUALITY AND APPLICATIONS

P. CERONE AND S.S. DRAGOMIR

ABSTRACT. Lower and upper bounds of the Cebysev functional for the Riemann-
Stieltjes integral are given. Applications for the three point quadrature rules
of functions that are n—time differentiable are also provided.

1. INTRODUCTION

In 1975, P.R. Beesack [1] showed that, if y,v,w are real valued functions de-
fined on a compact interval [a,b], where w is of bounded variation with total

variation \/Z (w), and such that the Riemann-Stieltjes integrals f:y (t)dv (t) and
fb w (t) y (t) dv (t) both exist, then

a
b

b B
) om [ y@de®+ @) it [ / y(t)dv@]
b
< [wywao

b b B
Sm/ y(t)dv(t)—l—\/(w)- sup l/ y(t)dv(t)‘|,

ala<f<b

where m := infycfq 5 {w (t)} .

The second of the inequalities above extends a result of R. Darst and H. Pollard
[5] who dealt with the case y (t) = 1, t € [a,b] and v (¢) continuous on [a, D] .

In [6], S.S. Dragomir has introduced the following Cebysev functional for the
Riemann-Stieltjes integral:

b
(12) T(f.g:w) =m / £ () g () du (1)

1 b 1 b
——u(b)_u(a)/a f(t)du(t)-—u(b)_u(a)/a o (1) du(t),

provided u (b) # u (a) and the involved Riemann-Stieltjes integrals exist.

It has been shown in [6] that, if f, g are continuous, m < f (¢t) < M for each ¢ €
[a,b] and wu is of bounded variation, then the error in approximating the Riemann-
Stieltjes integral of the product in terms of the product of integrals, as described
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in the definition of the Cebysev functional (1.2), satisfies the inequality:

(1.3) [T (f,g;u)

1 1
=2 e )

where the constant % is best possible and ||| is the sup-norm.
Moreover, if f, g are continuous, m < f (t) < M for t € [a,b] and u is monotonic
nondecreasing on [a, b], then:

(1.4) [T (f,9;u)l

1 b
(M‘mwa—mmrl

and the constant % here is also sharp.
Finally, if f, g are Riemann integrable and u is Lipschitzian with the constant
L > 0 then also

1 b
< @ ), )

g(t)— du (t)

DN |

(1.5) |T'(f,g;u)l

1 L b
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The constant 3 is also best possible in (1.5) (see [7] and [8]).

The main aim of the present paper is to provide other bounds for the Cebysev
functional T (f, g; u) by utilising the Beesack inequality (1.1). Applications for three
point quadrature rules of functions that are (n — 1) —differentiable (n > 1) with the
derivative f("=1) absolutely continuous are given as well.

2. THE RESULTS
The following result may be stated.
Theorem 1. Let f,g,u : [a,b] — R be such that f is of bounded variation and

the Riemann-Stieltjes integrals fab f@) g @) du(t), f; f (@) du(t) and f; g (t)du(t)
exist. Then

b

A (% Uu
1) vuwﬁg%JLgmmwjﬁ_’
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g/ £ O () = s
& w(f) —u(a b
<\ () sw Uﬁmmmw—JQ%W/g@mwﬂ,

a<a<pB<b

provided u (b) # u (a) .
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Proof. We observe that the following identity holds true (see also [6])

(2.2) [u(b) = u(a)]T(f,g;u)

b 1 b
- [ 1o [g@)u(b)_u(a)/a g(s)du(sﬂ du ).

Since f is of bounded variation, it follows that f is bounded below and if we denote
by m the infimum of f on [a,b], then on applying the Beesack inequality for the
choices

(2.3) m/ab @

. g 1 ’
+\a/(f)'a<égfﬁ<b{ / [9<t>—u<b)u<a> / g(s)du<s>] du<t>}

< [u(b) —u(a)]T(f,9;u)

Sm/a [g(t)—M/ag(s)du(s)]du(t)

b

B 1 b
+\/(f)-agzli%§b{/a [g(t)—u(b)_u(a)/a Q(S)dU(S)] dU(t)}-

a

and v (t) =u(t), t € [a,b], we can write that:
1 b
00— ey [, 9 <s>] dut)
b

Since
b 1 b
/ [goe) - ) g(s)du<s>] du(t) =0
and
B 1 b
/ [g 0= o [ 9 <s>] du ()

_ [’ Cu(B) —ufe) [

= [awan - tE—ms [ auts),
hence, by (2.3), we deduce the desired result (2.1). O

The following corollary for weighted integrals may be stated:

Corollary 1. Let f,g,w : [a,b] — R be such that f is of bounded variation and
the Riemann integrals f; 1 () g (t)w(t)dt, f; f (@) w(t)dt and fab g (t)w (t)dt eist.
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Then
’ . s [l w(s)ds
(2.4) \a/(f)'agolégfﬁgb l / s = G / g(t)w(t)dt]
/f Wt — —— . bf(t)w(t)dt~/b () w () dt
f;w(s)ds a ag
B Bw S S b
g\a/(f)-a<§1i%<bl/a g(t)w(t)dt‘M'L g<t>w<t>dt],
provided f s)ds # 0.

Remark 1. For the particular case when w(t) = 1, t € [a,b], then we get from
(2.4) the following inequality:

b

(2.5) V- it [ /ﬂg@)dt—ijj /abg@)dt]
/f() dt——/f ) dt - /bg(>d

B B—a b
S\a/(f)-agzli%gbl/ g(t)dt — 5——- /ag(t)dt],

provided f is of bounded variation and the involved Riemann integrals exist.

3. APPLICATIONS FOR THREE POINT QQUADRATURES

Recall that in [4] (see also [9, p. 223]) P. Cerone and S.S. Dragomir estab-
lished the following identity concerning a three point quadrature rule for n—time
differentiable functions f : [a,b] — R:

b n
@ k=1 "
+ 9 [ = @) 75 (@) + (<) - 2)F s )]}
b
—1)”/ Ch (,t) f) () dt

where the Peano kernel is given by:

t—(yz+ (1 -v)a)]"

" if tela,a,
(3.2) Cy (z,t) := '
- e+ (1-7b]" re (o
n! B

and v € [0,1], x € [a,b].

We note that the above representation generalised the interior point quadrature
rule obtained in 1999 by Cerone et al. in [2] for v = 0 and the trapezoid type rule
obtained in 2000 by Cerone et al. in [3] for v = 1.
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The function Cy, (x,-) is of bounded variation for each fixed = € [a,b] and a
simple calculation reveals that

b
33) V({(=D"Cn (z,")

[T dCy, (2, 1) ldC, (x,t)

- /a L ‘dt—i— / = dt
_ [Tzt (-ya)" / e+ (1 —yb—t""
_/a T dt + (n—l) dt

= @ B (L= b= )" B+ (=)

= L =) (- 2)" + (- a))

for any z € [a,}].
Also,

(3.4) / ' (1) dt
b
/ [t—(yz+ (1 —7) )]"dt—l—%/ [t — (yz+ (1 —7)b)]" dt

i (- e @™ o= e+ (1= )

O
b= (a+ 1 =B)" —lr = (a+ (1= Bt

= o {1 @ )
) = (1) (=) - a) )

— oy (- e ]
+(=1)" [v”“ + (=" 7)"“} (x )n+1}

- (nil)' (6 =2+ ()" (@ =) [y 4 (1) (1= )

for any x € [a,}].
We can state the following result:
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Theorem 2. Let f: [a,b] — R be an (n — 1) —differentiable function (n > 1) with
the derivative f"~1) absolutely continuous on [a,b]. Then we have

(3:5) / ftydt =) % {(1 -9 [(b —o) (D) (@ - a)k] FED ()
@ k=1""

+ 9 (@ = @) FE @)+ (<) - o) FE )]}

n (nil)! [f("_l)( l))f(J:(n Y (a)] [(b—x)"ﬂ—i—(—l)" (x_a)n-i-l}

$ (1" (=) B (e vah),

where the remainder E, (f,x,v;a,b) (which is defined implicitly by (3.5))satisfies
the bounds:

(36) B+ =)"b- )"+ (= a)"] _inf _[5u (f; )

a<a<fB<b

< E, (f,z,7v;a,b)
< % W'+ A ="b-2)"+(z—a)"] sup [0 (f;,B)]

a<la<pB<b

and

B7) Su(fief)=f""D(B) = 7 (o) - Bb;a

(n—1) _ p(n-1)

— [/ -1 (@)
where v € [0,1] and = € [a,b].

Proof. Apply the inequality (2.5) for the functions f = (—1)" C,, (z,-) and g = f(™
to get

(38) "+ (0= 2" + @ - a)] _inf (5 (fi6)

a<a<fB<b

< /C (z,t) £ (t) dt—— /C (z,t)dt - /f(”)

< %[v FA=)e— )"+ (@ —a)] swp o (f00)]-

Since, by (3.3)

= CE] {(b — )" (=) (& — a)”+1] [(_1)n A (1 - ,y)n+1} ,

then, on utilising the inequality (3.8), we have
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(39) %W”Jr(l—v)"}[(b—x)"+(w—a)"] inf (5, (/300 6)]

a<a<B<b
/c (z,t) f) (t) dt
1 ) [(b—x)”“+<—1> (v = a)" ] [0y (1=

~ (n41)!
fFrm @) — f7Y ()
e

< B2+ @ -] s [ (i),

a<a<fB<b

Now, due to the fact that, by the representation (3.1) we have

(3.10) /C (z,t) f™) () dt
= / f () dt — Z il {(1 _ ,y)k {(b _ x)k n (_1)1%1 (@ — a)k} FO=1) (x)
@ k=1""
+ 4" [(w —a)* D (@) + (=) (b — 2)F D (b)] }

then, on making use of remainder’s representation E,, (f,x,~;a,b) (which is defined
implicitly by (3.5)), we deduce from (3.9) the desired result (3.6). O

Remark 2. For~ =0, we get from Theorem 2:

(3.11) / F(t)dt = ki S [0+ () @ - a)] 4 (@)
t o +1 1)! {f(n & ( 27 g(n_l) (a)] [(b —a)" e+ ()" (@ - “)nﬂ}
F, (f,z;a,b),

where the remainder satisfies the bounds

(312) %[(b—x>“+<x—a>1a<a<5<b[ (f:0.8)
n(fax;a7b)
sniub—x) F@-a)") sw (5, (f00)

a<la<pB<b

for x € [a,b].
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For ~ = %, we get from Theorem 2 that:
(3.13) j/ f@)dt= 2kk'{[(b—_x)k—F(—J)k—l(x__cok]j(k—D(x)

n [(x— a)kf(k—l) (@) + (=151 (b= ) FE=D) (b )} } . 1+ (-1)"]

27+l (n + 1)!
(n—1) _ r(n—1)
% [f (bz _CJj (a)} {(b )™ (L))" (@ — a)n+1}
GTL (f7x7a"b)7
where the remainder satisfies the inequality:
1 n n .
(314) ooy (0 —2)" + (z—a)T] _inf (0w (f;0, )]
< Gn (f,x;a,b)
S Qn}l | [(b - x)" + (Qj - a)n] Sup [6,” (fa «, 6)} )
n: a<a<f<b
for x € [a,b].
Finally, for v =1, we obtain from Theorem 2 that:
(319) / F@yar =3 5 [ = a) £ (@) + (-1 b - ) £ o)
1) f(n 1)( ) f(n 1 ( ) n+1 n n+1
(n—|—1).[ y— ][(b—x) +(-1)"(z—a) }
Hn (fa .’E; a’ b)
where the remainder Hy, (f,x;a,b) satisfies the bounds:
1 n
(316) —[b-2)" +(z—a)" 1a<a<ﬁ<b[ w (fr00 )]
Hy (f,2;a,0)
< % (b=o)"+(@=a)") sup (6 (fi, )
! a<a<B<h
for x € [a,b].

The following particular case may be useful in applications:
If n=1and f:[a,b] — R is an absolutely continuous function on [a, b] then we
have the representation:

b
(3.17) / f)dt=(1=7)(b—a)f(z)+7[x—a)f(a)+(b—-2z)f ()

L0 - 7@ (50 -2 ) -2 + E(fasand)

and the remainder E (f,x,~;a,b) satisfies the bounds
(3.18) (b—a) a<i2fﬁ<b[6 (fia,8)] < E(f,z,v;a,0) < (b—a) sup [0(f;0,0)]

a<a<f<b
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where

6 (f;0.8) = f(B) = f(a) -

and z € [a, b] while v € [0,1].

One must observe that for n = 1 the bounds for the error are independent of x

and 7. However, this quality is not inherited for the quadrature rules with n > 2.
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