APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL VIA SOME MOMENTS OF THE INTEGRAND

P. CERONE AND S.S. DRAGOMIR

Abstract

Error bounds in approximating the Riemann-Stieltjes integral in terms of some moments of the integrand are given. Applications for p-convex functions and in approximating the Finite Foureir Transform are pointed out as well.

1. Introduction

In order to approximate the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ with the arguably simpler expression

$$
\begin{equation*}
\frac{u(b)-u(a)}{b-a} \cdot \int_{a}^{b} f(t) d t \tag{1.1}
\end{equation*}
$$

where $\int_{a}^{b} f(t) d t$ is the Riemann integral, Dragomir and Fedotov [8] considered in 1998 the following Grüss type error functional:

$$
\begin{equation*}
D(f, u ; a, b):=\int_{a}^{b} f(t) d u(t)-\frac{1}{b-a}[u(b)-u(a)] \int_{a}^{b} f(t) d t \tag{1.2}
\end{equation*}
$$

If the integrand f is Riemann integrable and $-\infty<m \leq f(t) \leq M<\infty$ for any $t \in[a, b]$ while the integrator u is L-Lipschitzian, namely,

$$
\begin{equation*}
|u(t)-u(s)| \leq L|t-s| \quad \text { for each } t, s \in[a, b] \tag{1.3}
\end{equation*}
$$

then the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ exists and the following bound holds:

$$
\begin{equation*}
|D(f, u ; a, b)| \leq \frac{1}{2} L(M-m)(b-a) \tag{1.4}
\end{equation*}
$$

In (1.4) the constant $\frac{1}{2}$ is best possible in the sense that it cannot be replaced by a smaller quantity.

A different bound for the Grüss error functional $D(f, u ; a, b)$ in the case that f is K-Lipschitzian and u is of bounded variation has been obtained by the same authors in 2001, see [9], where they showed that

$$
\begin{equation*}
|D(f, u ; a, b)| \leq \frac{1}{2} K(b-a) \bigvee_{a}^{b}(u) \tag{1.5}
\end{equation*}
$$

Here $\bigvee_{a}^{b}(u)$ denotes the total variation of u on $[a, b]$. The constant $\frac{1}{2}$ is also best possible.

[^0]For other results concerning different bounds for the functional $D(f, u ; a, b)$ under various assumptions on f and u, see the recent papers [3], [4], [6]-[7], [13] and the references therein.

The main aim of the present paper is to provide error bounds in approximating the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ with the following expression containing moments of the function f, namely the expression

$$
\frac{p}{(b-a)^{p}}\left[u(b) \cdot \int_{a}^{b}(t-a)^{p-1} f(t) d t-u(a) \cdot \int_{a}^{b}(b-t)^{p-1} f(t) d t\right]
$$

where $p>0$ and the involved integrals exist.
Some inequalities for monotonic integrands and p-convex integrators as well as where u is an integral of a given weight are provided. An application for approximating the Finite Fourier Transform is also given.

The case $p=1$ reduces to the Grüss error functional and in this way some earlier results are recaptured as well.

2. General Results

The following identity holds.
Lemma 1. Let $f, u:[a, b] \rightarrow \mathbb{R}$ such that the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ and the Riemann integrals $\int_{a}^{b}(t-a)^{p-1} f(t) d t, \int_{a}^{b}(b-t)^{p-1} f(t) d t$ for $p>0$ exist. Then

$$
\begin{align*}
& \int_{a}^{b} f(t) d u(t) \tag{2.1}\\
= & \frac{p}{(b-a)^{p}}\left[u(b) \cdot \int_{a}^{b}(t-a)^{p-1} f(t) d t-u(a) \cdot \int_{a}^{b}(b-t)^{p-1} f(t) d t\right] \\
& \quad+\int_{a}^{b}\left[\frac{(t-a)^{p} u(b)+(b-t)^{p} u(a)}{(b-a)^{p}}-u(t)\right] d f(t) .
\end{align*}
$$

Proof. Integrating by parts of the Riemann-Stieltjes integral, we have

$$
\begin{aligned}
& \int_{a}^{b}\left[\frac{(t-a)^{p} u(b)+(b-t)^{p} u(a)}{(b-a)^{p}}-u(t)\right] d f(t) \\
& =\left.\left[\frac{(t-a)^{p} u(b)+(b-t)^{p} u(a)}{(b-a)^{p}}-u(t)\right] f(t)\right|_{a} ^{b} \\
& \quad-\int_{a}^{b} f(t) d\left[\frac{(t-a)^{p} u(b)+(b-t)^{p} u(a)}{(b-a)^{p}}-u(t)\right] \\
& =[u(b)-u(b)] f(b)-[u(a)-u(a)] f(a) \\
& \quad-\left[\frac{p u(b)}{(b-a)^{p}} \int_{a}^{b}(t-a)^{p-1} f(t) d t\right. \\
& \left.\quad-\frac{p u(a)}{(b-a)^{p}} \int_{a}^{b}(b-t)^{p-1} f(t) d t-\int_{a}^{b} f(t) d u(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{p u(b)}{(b-a)^{p}} \int_{a}^{b}(t-a)^{p-1} f(t) d t+\frac{p u(a)}{(b-a)^{p}} \int_{a}^{b}(b-t)^{p-1} f(t) d t \\
& \quad+\int_{a}^{b} f(t) d u(t)
\end{aligned}
$$

which is equivalent with the desired identity (2.1).

Remark 1. For $p=1$ we get the identity:

$$
\begin{align*}
& \int_{a}^{b} f(t) d u(t)=\frac{u(b)-u(a)}{b-a} \cdot \int_{a}^{b} f(t) d t \tag{2.2}\\
&+\int_{a}^{b}\left[\frac{(t-a) u(b)+(b-t) u(a)}{b-a}-u(t)\right] d f(t)
\end{align*}
$$

that has been obtained in [5], see also [6].
In order to approximate the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ by the quadrature

$$
\begin{equation*}
\frac{p}{(b-a)^{p}}\left[u(b) \cdot \int_{a}^{b}(t-a)^{p-1} f(t) d t-u(a) \cdot \int_{a}^{b}(b-t)^{p-1} f(t) d t\right] \tag{2.3}
\end{equation*}
$$

we consider the error functional:

$$
\begin{align*}
& F(f, u, p ; a, b):=\int_{a}^{b} f(t) d u(t) \tag{2.4}\\
& \quad-\frac{p}{(b-a)^{p}}\left[u(b) \cdot \int_{a}^{b}(t-a)^{p-1} f(t) d t-u(a) \cdot \int_{a}^{b}(b-t)^{p-1} f(t) d t\right]
\end{align*}
$$

The following result may be stated.
Theorem 1. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be as in Lemma 1. For $p>0$, define

$$
\begin{equation*}
\Delta_{p}(u ; t, a, b):=\frac{(t-a)^{p} u(b)+(b-t)^{p} u(a)}{(b-a)^{p}}-u(t) \tag{2.5}
\end{equation*}
$$

where $t \in[a, b]$.
If $F(f, u, p ; a, b)$ is the error functional defined by (2.4), then:

$$
|F(f, u, p ; a, b)| \leq\left\{\begin{array}{c}
\sup _{t \in[a, b]}\left|\Delta_{p}(u ; t, a, b)\right| \bigvee_{a}^{b}(f) \tag{2.6}\\
\text { if } f \text { is of bounded variation; } \\
L \int_{a}^{b}\left|\Delta_{p}(u ; t, a, b)\right| d t \\
\text { if } f \text { is L - Lipschitzian } \\
\int_{a}^{b}\left|\Delta_{p}(u ; t, a, b)\right| d f(t) \\
\text { if } f \text { is monotonic nondecreasing. }
\end{array}\right.
$$

Proof. It is well known that for the Riemann-Stieltjes integral $\int_{a}^{b} w(t) d v(t)$ we have the bounds

$$
\left|\int_{a}^{b} w(t) d v(t)\right| \leq\left\{\begin{array}{c}
\sup _{t \in[a, b]}|w(t)| \bigvee_{a}^{b}(v) \tag{2.7}\\
\text { if } v \text { is of bounded variation; } \\
L \int_{a}^{b}|w(t)| d t \\
\text { if } v \text { is } L \text { - Lipschitzian; } \\
\int_{a}^{b}|w(t)| d v(t) \\
\text { if } v \text { is monotonic nondecreasing. }
\end{array}\right.
$$

Now, on utilising the representation (2.1) and applying (2.7) for $w(t):=\Delta_{p}(u ; t, a, b)$, $t \in[a, b]$ and $v=f$, we deduce the desired result.

Remark 2. For $p=1$, by denoting

$$
\Delta(u ; t, a, b)=\Delta_{1}(u ; t, a, b)=\frac{(t-a) u(b)+(b-t) u(a)}{b-a}-u(t)
$$

and

$$
F(f, u ; a, b)=\int_{a}^{b} f(t) d u(t)-\frac{u(b)-u(a)}{b-a} \cdot \int_{a}^{b} f(t) d t
$$

we get from (2.6)

$$
|F(f, u ; a, b)| \leq\left\{\begin{array}{c}
\sup _{t \in[a, b]}|\Delta(u ; t, a, b)| \bigvee_{a}^{b}(f) \tag{2.8}\\
\quad \text { if } f \text { is of bounded variation } \\
L \int_{a}^{b}|\Delta(u ; t, a, b)| d t \\
\text { if } f \text { is } L-\text { Lipschitzian } \\
\int_{a}^{b}|\Delta(u ; t, a, b)| d f(t) \\
\text { if } f \text { is monotonic nondecreasing. }
\end{array}\right.
$$

The inequality (2.8) has been obtained in [5].
Remark 3. If $u(t)=\int_{a}^{t} w(s) d s, t \in[a, b]$, then from (2.1) we get the representation

$$
\begin{align*}
& \int_{a}^{b} f(t) w(t) d t=\frac{p}{(b-a)^{p}} \int_{a}^{b} w(s) d s \int_{a}^{b}(t-a)^{p-1} f(t) d t \tag{2.9}\\
& \quad+\frac{1}{(b-a)^{p}} \cdot \int_{a}^{b}\left[(t-a)^{p} \int_{a}^{b} w(s) d s-(b-a)^{p} \int_{a}^{t} w(s) d s\right] d f(t)
\end{align*}
$$

for any $p>0$, provided that the involved integrals exist.
For $p=1$, we obtain the identity due to Cerone in [2].

3. Further Bounds for Monotonic Integrands

In this section some bounds for the error functional $F(f, u, p ; a, b)$ where the integrator f is monotonic nondecreasing are given.

Theorem 2. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that f is monotonic nondecreasing, u satisfies the bounds:

$$
\begin{equation*}
-\infty<n \leq u(t) \leq N<\infty \quad \text { for any } t \in[a, b] \tag{3.1}
\end{equation*}
$$

and the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ exists. Then

$$
\begin{align*}
& \frac{n p}{(b-a)^{p}}\left[\int_{a}^{b}(b-t)^{p-1} f(t) d t-\int_{a}^{b}(t-a)^{p-1} f(t) d t\right] \tag{3.2}\\
& \quad-(N-n)[f(b)-f(a)] \\
& \leq F(f, u, p ; a, b) \\
& \leq \frac{N p}{(b-a)^{p}}\left[\int_{a}^{b}(b-t)^{p-1} f(t) d t-\int_{a}^{b}(t-a)^{p-1} f(t) d t\right] \\
& \quad-(N-n)[f(b)-f(a)]
\end{align*}
$$

where $F(f, u, p ; a, b)$ is given by (2.4).
Proof. From (3.1) we obviously have:

$$
\begin{gathered}
n(t-a)^{p} \leq u(b) \leq N(t-a)^{p} \\
n(b-t)^{p} \leq u(a) \leq N(b-t)^{p} \\
-N(b-a)^{p} \leq-u(t)(b-a)^{p} \leq-n(b-a)^{p}
\end{gathered}
$$

for any $t \in[a, b]$. Summing the above three inequalities, we have that

$$
n \cdot \frac{(t-a)^{p}+(b-t)^{p}}{(b-a)^{p}}-N \leq \Delta_{p}(u ; t, a, b) \leq N \cdot \frac{(t-a)^{p}+(b-t)^{p}}{(b-a)^{p}}-n
$$

for any $t \in[a, b]$.
Now, integrating over the monotonic nondecreasing function f we have

$$
\begin{align*}
& \frac{n}{(b-a)^{p}}\left[\int_{a}^{b}(t-a)^{p} d f(t)+\int_{a}^{b}(b-t)^{p} d f(t)\right]-N[f(b)-f(a)] \tag{3.3}\\
& \leq F(f, u, p ; a, b) \\
& \leq \frac{N}{(b-a)^{p}}\left[\int_{a}^{b}(t-a)^{p} d f(t)+\int_{a}^{b}(b-t)^{p} d f(t)\right]-n[f(b)-f(a)]
\end{align*}
$$

Integrating by parts, we also have

$$
\int_{a}^{b}(t-a)^{p} d f(t)=(b-a)^{p} f(b)-p \int_{a}^{b}(t-a)^{p-1} f(t) d t
$$

and

$$
\int_{a}^{b}(b-t)^{p} d f(t)=-(b-a)^{p} f(a)+p \int_{a}^{b}(b-t)^{p-1} f(t) d t
$$

Then

$$
\begin{align*}
& \frac{n}{(b-a)^{p}}\left[\int_{a}^{b}(t-a)^{p} d f(t)+\int_{a}^{b}(b-t)^{p} d f(t)\right]-N[f(b)-f(a)] \tag{3.4}\\
& =\frac{n}{(b-a)^{p}}\left\{(b-a)^{p}[f(b)-f(a)]+p\left[\int_{a}^{b}(b-t)^{p-1} f(t) d t\right.\right. \\
& \left.\left.-\int_{a}^{b}(t-a)^{p-1} f(t) d t\right]\right\}-N[f(b)-f(a)] \\
& =\frac{n p}{(b-a)^{p}}\left[\int_{a}^{b}(b-t)^{p-1} f(t) d t-\int_{a}^{b}(t-a)^{p-1} f(t) d t\right] \\
& -(N-n)[f(b)-f(a)]
\end{align*}
$$

and

$$
\begin{align*}
& \frac{N}{(b-a)^{p}} {\left[\int_{a}^{b}(t-a)^{p} d f(t)+\int_{a}^{b}(b-t)^{p} d f(t)\right]-n[f(b)-f(a)] } \tag{3.5}\\
&=\frac{N}{(b-a)^{p}}\left\{(b-a)^{p}[f(b)-f(a)]+p\left[\int_{a}^{b}(b-t)^{p-1} f(t) d t\right.\right. \\
&-\left.\left.\int_{a}^{b}(t-a)^{p-1} f(t) d t\right]\right\}-n[f(b)-f(a)] \\
&=\frac{N p}{(b-a)^{p}} {\left[\int_{a}^{b}(b-t)^{p-1} f(t) d t-\int_{a}^{b}(t-a)^{p-1} f(t) d t\right] } \\
&+(N-n)[f(b)-f(a)]
\end{align*}
$$

Now, on utilising (3.3) - (3.5) we deduce the desired result (3.2).
Remark 4. In the particular case when $p=1$, the inequality (3.2) reduces to

$$
\begin{equation*}
|F(f, u, p ; a, b)| \leq(N-n)[f(b)-f(a)] \tag{3.6}
\end{equation*}
$$

4. An Inequality for Integrators that are s-Convex in the Second SEnse

Following Hudzik and Maligranda [12] (see also [11, p. 286]) we say that the function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is p-convex in the second sense, where $p>0$ is fixed, if:

$$
\begin{equation*}
g(t u+(1-t) v) \leq t^{p} g(u)+(1-t)^{p} g(v) \tag{4.1}
\end{equation*}
$$

for any $u, v \geq 0$ and $t \in[0,1]$.
For different properties of this class of functions, see [12] and [11, pp. 286 - 293].
The following inequality of Hermite-Hadamard type is due to Dragomir and Fitzpatrick [10]:

Theorem 3. Let g be a p-convex function in the second sense on an interval $I \subset[0, \infty)$ with $p \in(0,1]$ and let $a, b \in I$ with $a<b$. Then:

$$
\begin{equation*}
2^{p-1} g\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} g(t) d t \leq \frac{g(a)+g(b)}{p+1} \tag{4.2}
\end{equation*}
$$

We can state and prove now the following result about the Riemann-Stieltjes integral:

Theorem 4. Let u be p-convex with $p>0, f$ be monotonic nondecreasing on $[a, b]$ and such that the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ and the Riemann integrals $\int_{a}^{b}(t-a)^{p-1} f(t) d t, \int_{a}^{b}(b-t)^{p-1} f(t) d t$ exist. Then

$$
\begin{align*}
& \int_{a}^{b} f(t) d u(t) \tag{4.3}\\
& \quad \geq \frac{p}{(b-a)^{p}}\left[u(b) \int_{a}^{b}(t-a)^{p-1} f(t) d t-u(a) \int_{a}^{b}(b-t)^{p-1} f(t) d t\right]
\end{align*}
$$

Proof. Since u is p-convex, then:

$$
u(t)=u\left(\frac{t-a}{b-a} \cdot b+\frac{b-t}{b-a} \cdot a\right) \leq\left(\frac{t-a}{b-a}\right)^{p} u(b)+\left(\frac{b-t}{b-a}\right)^{p} u(a)
$$

which shows, upon using the notations of (2.5), that

$$
\Delta_{p}(u, t ; a, b) \geq 0 \quad \text { for any } t \in[a, b] .
$$

Since f is monotonic nondecreasing on $[a, b]$, we have then

$$
\int_{a}^{b} \Delta_{p}(u, t ; a, b) d f(t) \geq 0
$$

which, via the representation (2.1), is equivalent with the desired inequality (4.3).

Remark 5. The case $p=1$, i.e., where the function u is convex in the usual sense, produces the following inequality

$$
\begin{equation*}
\int_{a}^{b} f(t) d u(t) \geq \frac{u(b)-u(a)}{b-a} \int_{a}^{b} f(t) d t \tag{4.4}
\end{equation*}
$$

where f is monotonic nondecreasing, which has been obtained in [5], see also [6].

5. Approximating the Finite Fourier Transform

The Fourier Transform is one of the most important mathematical tools in a wide variety of fields in science and engineering [$1, \mathrm{p} . \mathrm{xi}$].

Throughout this section $f:[a, b] \rightarrow \mathbb{R}$ will be a Riemann integrable function defined on the finite interval $[a, b]$ and $\mathcal{F}(g)$ will be its Finite Fourier Transform. That is,

$$
\mathcal{F}(f)(t):=\int_{a}^{b} f(s) e^{-2 \pi i t s} d s
$$

Consider also the exponential mean of two complex numbers z, w defined by

$$
E(z, w):=\left\{\begin{array}{r}
\frac{e^{z}-e^{w}}{z-w} \text { if } z \neq w, \\
\exp (w) \text { if } z=w,
\end{array} \quad z, w \in \mathbb{C} .\right.
$$

Now, for $w(s)=\exp (-2 \pi i t s)$, on applying the identity (2.9), which holds for complex-valued functions as well, we get the following representation of the Finite Fourier Transform

$$
\begin{equation*}
\mathcal{F}(f)(t)=\frac{p}{(b-a)^{p-1}} \cdot E(-2 \pi i t b,-2 \pi i t a) \cdot \int_{a}^{b}(s-a)^{p-1} f(s) d s+\mathcal{R}(f)(t) \tag{5.1}
\end{equation*}
$$

where the remainder $\mathcal{R}(f)$ has the representation

$$
\begin{aligned}
\mathcal{R}(f)(t)= & \frac{1}{(b-a)^{p-1}} \int_{a}^{b}(s-a)\left[(s-a)^{p-1} E(-2 \pi i t b,-2 \pi i t a)\right. \\
& \left.-(b-a)^{p-1} E(-2 \pi i t s,-2 \pi i t a)\right] d f(s)
\end{aligned}
$$

In order to provide a composite rule in approximating the Finite Fourier Transform in terms of moments for the function f, we consider a division $I_{n}: a=x_{0}<x_{1}<$ $\ldots<x_{n-1}<x_{n}=b$ and the quadrature rule

$$
\begin{align*}
A\left(I_{n}, t\right): & =\sum_{i=0}^{n-1} \frac{p}{\left(x_{i+1}-x_{i}\right)^{p-1}} \cdot E\left(-2 \pi i t x_{i+1},-2 \pi i t x_{i}\right) \tag{5.2}\\
& \times \int_{x_{i}}^{x_{i+1}}\left(s-x_{i}\right)^{p-1} f(s) d s
\end{align*}
$$

that has been obtained from (5.1) applied on each subinterval $\left[x_{i}, x_{i+1}\right]$ and the results were summed over i from 0 to $n-1$. It is an open question as to whether or not $A\left(I_{n}, t\right)$ is uniformly convergent to $\mathcal{F}(f)(t)$ on $[a, b]$ and what the order of convergence is ?

The following numerical experiment obtained by implementing the quadrature (5.2) for the function $f(s)=s+1$ and $p=2$ shows the behavior of the absolute error value

$$
\begin{equation*}
E_{n}(t):=\left|\mathcal{F}(f)(t)-A\left(I_{n}, t\right)\right|, t \in[a, b], \tag{5.3}
\end{equation*}
$$

for a division with 10 points (Figure 1) respectively 100 points (Figure 2).

References

[1] P.L. BUTZER and R.J. NESSEL, Fourier Analysis and Approximation Theory, I, Academic Press, New York and London, 1971.
[2] P. CERONE, On an identity for the Chebyshev functional and some ramifications, J. Ineq. Pure Es Appl. Math., 3(1) (2002), Art. 2.
[3] P. CERONE and S.S. DRAGOMIR, New bounds for the three-point rule involving the Riemann-Stieltjes integral, in Advances in Statistics, Combinatorics and Related Areas, Chandra Gulati, Yan-Xia Lin, Satya Mishra and John Rayner (Eds.), World Scientific Publishers, New Jersey - London - Singapore - Hong Kong, 2002, 53-62.
[4] P. CERONE and S.S. DRAGOMIR, Approximation of the Stieltjes integral and applications in numerical integration, Appl. Math., 51(1) (2006), 37-47.
[5] S.S. DRAGOMIR, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math., 26 (2004), 89-122.
[6] S.S. DRAGOMIR, Inequalities for Stieltjes integrals with convex integrators and applications, Applied Math. Lett., 20(1) (2007), 123-130.
[7] S.S. DRAGOMIR, A generalisation of Cerone's identity and applications, Tamsui Oxford J. Math. (Taiwan), (in press).
[8] S.S. DRAGOMIR and I. FEDOTOV, An inequality of Grüss type for the Riemann-Stieltjes integral and applications for special means, Tamkang J. Math., 29(4) (1998), 287-292.

Figure 1. The behaviour of $E_{n}(t)$ from (5.3) for $n=10$.

Figure 2. The behaviour of $E_{n}(t)$ from (5.3) for $n=100$.
[9] S.S. DRAGOMIR and I. FEDOTOV, A Grüss type inequality for mappings of bounded variation and applications for numerical analysis, Nonlinear Funct. Anal. Appl., 6(3) (2001), 425-433.
[10] S.S. DRAGOMIR and S. FITZPATRICK, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696
[11] S.S. DRAGOMIR and C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs/).
[12] H. HUDZIK and M. MALIGRANDA, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111.
[13] Z. LIU, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, Soochow J. Math., 30(4) (2004), pp. 483-489.

School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne City, VIC 8001, Australia.

E-mail address: pietro.cerone@vu.edu.au
$U R L$: http://rgmia.vu.edu.au/cerone
E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.vu.edu.au/dragomir

[^0]: Date: March 2, 2007.
 2000 Mathematics Subject Classification. 26D15, 41A55.
 Key words and phrases. Riemann-Stieltjes integral, $p-$ moments, p-convex functions.

