

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL VIA SOME MOMENTS OF THE INTEGRAND

P. CERONE AND S.S. DRAGOMIR

ABSTRACT. Error bounds in approximating the Riemann-Stieltjes integral in terms of some moments of the integrand are given. Applications for p—convex functions and in approximating the Finite Foureir Transform are pointed out as well.

1. Introduction

In order to approximate the Riemann-Stieltjes integral $\int_{a}^{b}f\left(t\right)du\left(t\right)$ with the arguably simpler expression

(1.1)
$$\frac{u\left(b\right) - u\left(a\right)}{b - a} \cdot \int_{a}^{b} f\left(t\right) dt,$$

where $\int_a^b f(t) dt$ is the Riemann integral, Dragomir and Fedotov [8] considered in 1998 the following *Grüss type error functional:*

(1.2)
$$D(f, u; a, b) := \int_{a}^{b} f(t) du(t) - \frac{1}{b-a} [u(b) - u(a)] \int_{a}^{b} f(t) dt.$$

If the integrand f is Riemann integrable and $-\infty < m \le f(t) \le M < \infty$ for any $t \in [a, b]$ while the integrator u is L-Lipschitzian, namely,

$$(1.3) |u(t) - u(s)| \le L|t - s| \text{for each } t, s \in [a, b],$$

then the Riemann-Stieltjes integral $\int_{a}^{b} f(t) du(t)$ exists and the following bound holds:

$$|D(f, u; a, b)| \le \frac{1}{2} L(M - m)(b - a).$$

In (1.4) the constant $\frac{1}{2}$ is best possible in the sense that it cannot be replaced by a smaller quantity.

A different bound for the Grüss error functional D(f, u; a, b) in the case that f is K-Lipschitzian and u is of bounded variation has been obtained by the same authors in 2001, see [9], where they showed that

(1.5)
$$|D(f, u; a, b)| \le \frac{1}{2} K(b - a) \bigvee_{a}^{b} (u).$$

Here $\bigvee_a^b(u)$ denotes the total variation of u on [a,b]. The constant $\frac{1}{2}$ is also best possible.

Date: March 2, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 26D15, 41A55.

 $Key\ words\ and\ phrases.$ Riemann-Stieltjes integral, p-moments, p-convex functions.

For other results concerning different bounds for the functional D(f, u; a, b) under various assumptions on f and u, see the recent papers [3], [4], [6] – [7], [13] and the references therein.

The main aim of the present paper is to provide error bounds in approximating the Riemann-Stieltjes integral $\int_a^b f(t) du(t)$ with the following expression containing moments of the function f, namely the expression

$$\frac{p}{(b-a)^{p}} \left[u(b) \cdot \int_{a}^{b} (t-a)^{p-1} f(t) dt - u(a) \cdot \int_{a}^{b} (b-t)^{p-1} f(t) dt \right],$$

where p > 0 and the involved integrals exist.

Some inequalities for monotonic integrands and p—convex integrators as well as where u is an integral of a given weight are provided. An application for approximating the Finite Fourier Transform is also given.

The case p = 1 reduces to the Grüss error functional and in this way some earlier results are recaptured as well.

2. General Results

The following identity holds.

Lemma 1. Let $f, u : [a, b] \to \mathbb{R}$ such that the Riemann-Stieltjes integral $\int_a^b f(t) du(t)$ and the Riemann integrals $\int_a^b (t-a)^{p-1} f(t) dt$, $\int_a^b (b-t)^{p-1} f(t) dt$ for p > 0 exist. Then

$$(2.1) \int_{a}^{b} f(t) du(t)$$

$$= \frac{p}{(b-a)^{p}} \left[u(b) \cdot \int_{a}^{b} (t-a)^{p-1} f(t) dt - u(a) \cdot \int_{a}^{b} (b-t)^{p-1} f(t) dt \right]$$

$$+ \int_{a}^{b} \left[\frac{(t-a)^{p} u(b) + (b-t)^{p} u(a)}{(b-a)^{p}} - u(t) \right] df(t).$$

Proof. Integrating by parts of the Riemann-Stieltjes integral, we have

$$\int_{a}^{b} \left[\frac{(t-a)^{p} u(b) + (b-t)^{p} u(a)}{(b-a)^{p}} - u(t) \right] df(t)$$

$$= \left[\frac{(t-a)^{p} u(b) + (b-t)^{p} u(a)}{(b-a)^{p}} - u(t) \right] f(t) \Big|_{a}^{b}$$

$$- \int_{a}^{b} f(t) d \left[\frac{(t-a)^{p} u(b) + (b-t)^{p} u(a)}{(b-a)^{p}} - u(t) \right]$$

$$= \left[u(b) - u(b) \right] f(b) - \left[u(a) - u(a) \right] f(a)$$

$$- \left[\frac{pu(b)}{(b-a)^{p}} \int_{a}^{b} (t-a)^{p-1} f(t) dt - \int_{a}^{b} f(t) du(t) \right]$$

$$= -\frac{pu(b)}{(b-a)^p} \int_a^b (t-a)^{p-1} f(t) dt + \frac{pu(a)}{(b-a)^p} \int_a^b (b-t)^{p-1} f(t) dt + \int_a^b f(t) du(t),$$

which is equivalent with the desired identity (2.1).

Remark 1. For p = 1 we get the identity:

(2.2)
$$\int_{a}^{b} f(t) du(t) = \frac{u(b) - u(a)}{b - a} \cdot \int_{a}^{b} f(t) dt + \int_{a}^{b} \left[\frac{(t - a) u(b) + (b - t) u(a)}{b - a} - u(t) \right] df(t)$$

that has been obtained in [5], see also [6].

In order to approximate the Riemann-Stieltjes integral $\int_{a}^{b}f\left(t\right)du\left(t\right)$ by the quadrature

(2.3)
$$\frac{p}{(b-a)^p} \left[u(b) \cdot \int_a^b (t-a)^{p-1} f(t) dt - u(a) \cdot \int_a^b (b-t)^{p-1} f(t) dt \right],$$

we consider the error functional:

$$(2.4) \quad F(f, u, p; a, b) := \int_{a}^{b} f(t) du(t) - \frac{p}{(b-a)^{p}} \left[u(b) \cdot \int_{a}^{b} (t-a)^{p-1} f(t) dt - u(a) \cdot \int_{a}^{b} (b-t)^{p-1} f(t) dt \right].$$

The following result may be stated.

Theorem 1. Let $f, u : [a, b] \to \mathbb{R}$ be as in Lemma 1. For p > 0, define

(2.5)
$$\Delta_{p}(u;t,a,b) := \frac{(t-a)^{p} u(b) + (b-t)^{p} u(a)}{(b-a)^{p}} - u(t),$$

where $t \in [a, b]$.

If F(f, u, p; a, b) is the error functional defined by (2.4), then:

$$(2.6) |F(f, u, p; a, b)| \leq \begin{cases} \sup_{t \in [a,b]} |\Delta_{p}(u; t, a, b)| \bigvee_{a}^{b}(f) \\ \text{if } f \text{ is of bounded variation;} \end{cases}$$

$$L \int_{a}^{b} |\Delta_{p}(u; t, a, b)| dt \\ \text{if } f \text{ is } L - Lipschitzian;}$$

$$\int_{a}^{b} |\Delta_{p}(u; t, a, b)| df(t) \\ \text{if } f \text{ is monotonic nondecreasing.}$$

Proof. It is well known that for the Riemann-Stieltjes integral $\int_{a}^{b}w\left(t\right)dv\left(t\right)$ we have the bounds

$$\left| \int_{a}^{b} w\left(t\right) dv\left(t\right) \right| \leq \begin{cases} \sup_{t \in [a,b]} |w\left(t\right)| \bigvee_{a}^{b}\left(v\right) \\ & \text{if } v \text{ is of bounded variation;} \end{cases}$$

$$\left| \int_{a}^{b} |w\left(t\right)| dt \\ & \text{if } v \text{ is } L - \text{Lipschitzian;} \right|$$

$$\int_{a}^{b} |w\left(t\right)| dv\left(t\right) \\ & \text{if } v \text{ is monotonic nondecreasing.} \end{cases}$$

Now, on utilising the representation (2.1) and applying (2.7) for $w\left(t\right):=\Delta_{p}\left(u;t,a,b\right)$, $t\in\left[a,b\right]$ and v=f, we deduce the desired result.

Remark 2. For p = 1, by denoting

$$\Delta(u; t, a, b) = \Delta_1(u; t, a, b) = \frac{(t - a) u(b) + (b - t) u(a)}{b - a} - u(t)$$

and

$$F\left(f, u; a, b\right) = \int_{a}^{b} f\left(t\right) du\left(t\right) - \frac{u\left(b\right) - u\left(a\right)}{b - a} \cdot \int_{a}^{b} f\left(t\right) dt,$$

we get from (2.6)

$$(2.8) \qquad |F\left(f,u;a,b\right)| \leq \begin{cases} \sup_{t \in [a,b]} |\Delta\left(u;t,a,b\right)| \bigvee_{a}^{b}\left(f\right) \\ & \text{if } f \text{ is of bounded variation;} \end{cases}$$

$$\left\{ \begin{array}{l} L \int_{a}^{b} |\Delta\left(u;t,a,b\right)| \, dt \\ & \text{if } f \text{ is } L - Lipschitzian;} \\ \int_{a}^{b} |\Delta\left(u;t,a,b\right)| \, df\left(t\right) \\ & \text{if } f \text{ is monotonic nondecreasing.} \end{cases}$$

The inequality (2.8) has been obtained in [5].

Remark 3. If $u(t) = \int_a^t w(s) ds$, $t \in [a, b]$, then from (2.1) we get the representation

(2.9)
$$\int_{a}^{b} f(t) w(t) dt = \frac{p}{(b-a)^{p}} \int_{a}^{b} w(s) ds \int_{a}^{b} (t-a)^{p-1} f(t) dt + \frac{1}{(b-a)^{p}} \cdot \int_{a}^{b} \left[(t-a)^{p} \int_{a}^{b} w(s) ds - (b-a)^{p} \int_{a}^{t} w(s) ds \right] df(t)$$

for any p > 0, provided that the involved integrals exist. For p = 1, we obtain the identity due to Cerone in [2].

3. Further Bounds for Monotonic Integrands

In this section some bounds for the error functional F(f, u, p; a, b) where the integrator f is monotonic nondecreasing are given.

Theorem 2. Let $f, u : [a, b] \to \mathbb{R}$ be such that f is monotonic nondecreasing, u satisfies the bounds:

$$(3.1) -\infty < n \le u(t) \le N < \infty for any t \in [a, b]$$

and the Riemann-Stieltjes integral $\int_a^b f(t) du(t)$ exists. Then

$$(3.2) \frac{np}{(b-a)^p} \left[\int_a^b (b-t)^{p-1} f(t) dt - \int_a^b (t-a)^{p-1} f(t) dt \right] \\ - (N-n) [f(b) - f(a)] \\ \leq F(f, u, p; a, b) \\ \leq \frac{Np}{(b-a)^p} \left[\int_a^b (b-t)^{p-1} f(t) dt - \int_a^b (t-a)^{p-1} f(t) dt \right] \\ - (N-n) [f(b) - f(a)],$$

where F(f, u, p; a, b) is given by (2.4).

Proof. From (3.1) we obviously have:

$$n(t-a)^{p} \le u(b) \le N(t-a)^{p},$$

 $n(b-t)^{p} \le u(a) \le N(b-t)^{p},$
 $-N(b-a)^{p} \le -u(t)(b-a)^{p} \le -n(b-a)^{p}$

for any $t \in [a, b]$. Summing the above three inequalities, we have that

$$n \cdot \frac{(t-a)^p + (b-t)^p}{(b-a)^p} - N \le \Delta_p(u; t, a, b) \le N \cdot \frac{(t-a)^p + (b-t)^p}{(b-a)^p} - n$$

for any $t \in [a, b]$.

Now, integrating over the monotonic nondecreasing function f we have

$$(3.3) \qquad \frac{n}{(b-a)^p} \left[\int_a^b (t-a)^p \, df(t) + \int_a^b (b-t)^p \, df(t) \right] - N \left[f(b) - f(a) \right]$$

$$\leq F(f, u, p; a, b)$$

$$\leq \frac{N}{(b-a)^p} \left[\int_a^b (t-a)^p \, df(t) + \int_a^b (b-t)^p \, df(t) \right] - n \left[f(b) - f(a) \right].$$

Integrating by parts, we also have

$$\int_{a}^{b} (t-a)^{p} df(t) = (b-a)^{p} f(b) - p \int_{a}^{b} (t-a)^{p-1} f(t) dt$$

and

$$\int_{a}^{b} (b-t)^{p} df(t) = -(b-a)^{p} f(a) + p \int_{a}^{b} (b-t)^{p-1} f(t) dt.$$

Then

$$(3.4) \qquad \frac{n}{(b-a)^p} \left[\int_a^b (t-a)^p df(t) + \int_a^b (b-t)^p df(t) \right] - N[f(b) - f(a)]$$

$$= \frac{n}{(b-a)^p} \left\{ (b-a)^p [f(b) - f(a)] + p \left[\int_a^b (b-t)^{p-1} f(t) dt \right] - \int_a^b (t-a)^{p-1} f(t) dt \right] \right\} - N[f(b) - f(a)]$$

$$= \frac{np}{(b-a)^p} \left[\int_a^b (b-t)^{p-1} f(t) dt - \int_a^b (t-a)^{p-1} f(t) dt \right]$$

$$- (N-n) [f(b) - f(a)]$$

and

$$(3.5) \qquad \frac{N}{(b-a)^p} \left[\int_a^b (t-a)^p df(t) + \int_a^b (b-t)^p df(t) \right] - n \left[f(b) - f(a) \right]$$

$$= \frac{N}{(b-a)^p} \left\{ (b-a)^p \left[f(b) - f(a) \right] + p \left[\int_a^b (b-t)^{p-1} f(t) dt \right] - \int_a^b (t-a)^{p-1} f(t) dt \right] \right\} - n \left[f(b) - f(a) \right]$$

$$= \frac{Np}{(b-a)^p} \left[\int_a^b (b-t)^{p-1} f(t) dt - \int_a^b (t-a)^{p-1} f(t) dt \right]$$

$$+ (N-n) \left[f(b) - f(a) \right].$$

Now, on utilising (3.3) - (3.5) we deduce the desired result (3.2).

Remark 4. In the particular case when p = 1, the inequality (3.2) reduces to (3.6) $|F(f, u, p; a, b)| \le (N - n) [f(b) - f(a)].$

4. An Inequality for Integrators that are s-Convex in the Second Sense

Following Hudzik and Maligranda [12] (see also [11, p. 286]) we say that the function $g: \mathbb{R}_+ \to \mathbb{R}$ is p-convex in the second sense, where p > 0 is fixed, if:

$$(4.1) q(tu + (1-t)v) < t^p q(u) + (1-t)^p q(v)$$

for any $u, v \ge 0$ and $t \in [0, 1]$.

For different properties of this class of functions, see [12] and [11, pp. 286 – 293]. The following inequality of Hermite-Hadamard type is due to Dragomir and Fitzpatrick [10]:

Theorem 3. Let g be a p-convex function in the second sense on an interval $I \subset [0, \infty)$ with $p \in (0, 1]$ and let $a, b \in I$ with a < b. Then:

$$(4.2) 2^{p-1}g\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} g(t) dt \le \frac{g(a)+g(b)}{p+1}.$$

We can state and prove now the following result about the Riemann-Stieltjes integral:

Theorem 4. Let u be p-convex with p > 0, f be monotonic nondecreasing on [a,b] and such that the Riemann-Stieltjes integral $\int_a^b f(t) du(t)$ and the Riemann integrals $\int_a^b (t-a)^{p-1} f(t) dt$, $\int_a^b (b-t)^{p-1} f(t) dt$ exist. Then

$$(4.3) \quad \int_{a}^{b} f(t) \, du(t)$$

$$\geq \frac{p}{(b-a)^{p}} \left[u(b) \int_{a}^{b} (t-a)^{p-1} f(t) \, dt - u(a) \int_{a}^{b} (b-t)^{p-1} f(t) \, dt \right].$$

Proof. Since u is p-convex, then:

$$u\left(t\right)=u\left(\frac{t-a}{b-a}\cdot b+\frac{b-t}{b-a}\cdot a\right)\leq \left(\frac{t-a}{b-a}\right)^{p}u\left(b\right)+\left(\frac{b-t}{b-a}\right)^{p}u\left(a\right),$$

which shows, upon using the notations of (2.5), that

$$\Delta_p(u, t; a, b) \ge 0$$
 for any $t \in [a, b]$.

Since f is monotonic nondecreasing on [a, b], we have then

$$\int_{a}^{b} \Delta_{p}\left(u, t; a, b\right) df\left(t\right) \ge 0,$$

which, via the representation (2.1), is equivalent with the desired inequality (4.3).

Remark 5. The case p = 1, i.e., where the function u is convex in the usual sense, produces the following inequality

(4.4)
$$\int_{a}^{b} f(t) du(t) \ge \frac{u(b) - u(a)}{b - a} \int_{a}^{b} f(t) dt,$$

where f is monotonic nondecreasing, which has been obtained in [5], see also [6].

5. Approximating the Finite Fourier Transform

The Fourier Transform is one of the most important mathematical tools in a wide variety of fields in science and engineering [1, p. xi].

Throughout this section $f:[a,b]\to\mathbb{R}$ will be a Riemann integrable function defined on the finite interval [a,b] and $\mathcal{F}(g)$ will be its *Finite Fourier Transform*. That is,

$$\mathcal{F}(f)(t) := \int_{a}^{b} f(s) e^{-2\pi i t s} ds.$$

Consider also the exponential mean of two complex numbers z, w defined by

$$E(z, w) := \begin{cases} \frac{e^{z} - e^{w}}{z - w} & \text{if } z \neq w, \\ & z, w \in \mathbb{C}. \end{cases}$$
$$\exp(w) & \text{if } z = w,$$

Now, for $w(s) = \exp(-2\pi i t s)$, on applying the identity (2.9), which holds for complex-valued functions as well, we get the following representation of the Finite Fourier Transform

$$(5.1) \ \mathcal{F}\left(f\right)\left(t\right) = \frac{p}{\left(b-a\right)^{p-1}} \cdot E\left(-2\pi i t b, -2\pi i t a\right) \cdot \int_{a}^{b} \left(s-a\right)^{p-1} f\left(s\right) ds + \mathcal{R}\left(f\right)\left(t\right),$$

where the remainder $\mathcal{R}(f)$ has the representation

$$\mathcal{R}(f)(t) = \frac{1}{(b-a)^{p-1}} \int_{a}^{b} (s-a) \left[(s-a)^{p-1} E(-2\pi i t b, -2\pi i t a) - (b-a)^{p-1} E(-2\pi i t s, -2\pi i t a) \right] df(s).$$

In order to provide a composite rule in approximating the Finite Fourier Transform in terms of moments for the function f, we consider a division $I_n : a = x_0 < x_1 < ... < x_{n-1} < x_n = b$ and the quadrature rule

(5.2)
$$A(I_n, t) := \sum_{i=0}^{n-1} \frac{p}{(x_{i+1} - x_i)^{p-1}} \cdot E(-2\pi i t x_{i+1}, -2\pi i t x_i) \times \int_{x_i}^{x_{i+1}} (s - x_i)^{p-1} f(s) ds$$

that has been obtained from (5.1) applied on each subinterval $[x_i, x_{i+1}]$ and the results were summed over i from 0 to n-1. It is an open question as to whether or not $A(I_n, t)$ is uniformly convergent to $\mathcal{F}(f)(t)$ on [a, b] and what the order of convergence is ?

The following numerical experiment obtained by implementing the quadrature (5.2) for the function f(s) = s + 1 and p = 2 shows the behavior of the absolute error value

$$(5.3) E_n(t) := |\mathcal{F}(f)(t) - A(I_n, t)|, t \in [a, b],$$

for a division with 10 points (Figure 1) respectively 100 points (Figure 2).

References

- P.L. BUTZER and R.J. NESSEL, Fourier Analysis and Approximation Theory, I, Academic Press, New York and London, 1971.
- [2] P. CERONE, On an identity for the Chebyshev functional and some ramifications, J. Ineq. Pure & Appl. Math., 3(1) (2002), Art. 2.
- [3] P. CERONE and S.S. DRAGOMIR, New bounds for the three-point rule involving the Riemann-Stieltjes integral, in *Advances in Statistics, Combinatorics and Related Areas*, Chandra Gulati, Yan-Xia Lin, Satya Mishra and John Rayner (Eds.), World Scientific Publishers, New Jersey London Singapore Hong Kong, 2002, 53-62.
- [4] P. CERONE and S.S. DRAGOMIR, Approximation of the Stieltjes integral and applications in numerical integration, *Appl. Math.*, **51**(1) (2006), 37-47.
- [5] S.S. DRAGOMIR, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math., 26 (2004), 89-122.
- [6] S.S. DRAGOMIR, Inequalities for Stieltjes integrals with convex integrators and applications, Applied Math. Lett., 20(1) (2007), 123-130.
- [7] S.S. DRAGOMIR, A generalisation of Cerone's identity and applications, Tamsui Oxford J. Math. (Taiwan), (in press).
- [8] S.S. DRAGOMIR and I. FEDOTOV, An inequality of Grüss type for the Riemann-Stieltjes integral and applications for special means, Tamkang J. Math., 29(4) (1998), 287-292.

FIGURE 1. The behaviour of $E_n(t)$ from (5.3) for n = 10.

FIGURE 2. The behaviour of $E_n(t)$ from (5.3) for n = 100.

- [9] S.S. DRAGOMIR and I. FEDOTOV, A Grüss type inequality for mappings of bounded variation and applications for numerical analysis, *Nonlinear Funct. Anal. Appl.*, 6(3) (2001), 425-433.
- [10] S.S. DRAGOMIR and S. FITZPATRICK, The Hadamard inequalities for s-convex functions in the second sense. *Demonstratio Math.* 32 (1999), no. 4, 687–696
- [11] S.S. DRAGOMIR and C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs/).

- [12] H. HUDZIK and M. MALIGRANDA, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100–111.
- [13] Z. LIU, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, $Soochow\ J.$ $Math.,\ 30(4)\ (2004),\ pp.\ 483-489.$

School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne City, VIC 8001, Australia.

 $\label{eq:constraint} \begin{tabular}{ll} E-mail~address: pietro.cerone@vu.edu.au \\ $URL:$ http://rgmia.vu.edu.au/cerone \\ \end{tabular}$

 $E\text{-}mail\ address: \ \texttt{sever.dragomir@vu.edu.au}$ $URL: \ \texttt{http://rgmia.vu.edu.au/dragomir}$