HARDY-TYPE INEQUALITIES VIA AUXILIARY SEQUENCES

PENG GAO

ABSTRACT. We prove some Hardy-type inequalities via an approach that involves constructing
auxiliary sequences.

1. INTRODUCTION

Suppose throughout that p # 0, % + % = 1. Let [P be the Banach space of all complex sequences
a = (ap)n>1 with norm

lall := (D lan[?)"/? < oo.
n=1

The celebrated Hardy’s inequality ([5, Theorem 326]) asserts that for p > 1,

(L1) e Zak\p < (P laxl”
n=1 p k=1

Hardy’s inequality can be regarded as a special case of the following inequality:

\Z%%! < UZ jaxl”,
=1 k=1
in which C' = (¢; 1) and the parameter p are assumed fixed (p > 1), and the estimate is to hold for
all complex sequences a. The [P operator norm of C' is then defined as the p-th root of the smallest
value of the constant U: )
|Cllpp =U?.
Hardy’s inequality thus asserts that the Cesdro matrix operator C, given by ¢, = 1/j5,k < j
and 0 otherwise, is bounded on [? and has norm < p/(p —1). (The norm is in fact p/(p — 1).)
We say a matrix A is a summability matrix if its entries satisfy: a;, > 0, a; = 0 for k¥ > j and
Zizl a;r = 1. We say a summability matrix A is a weighted mean matrix if its entries satisfy:

J
ajr=M/Nj, 1<k <Ay = Z)\ia)\i >0,A > 0.
i=1
Hardy’s inequality (1.1) now motivates one to determine the [P operator norm of an arbitrary

summability matrix A. For examples, the following two inequalities were claimed to hold by Bennett
( [1, p. 40-41]; see also [2, p. 407]):

(1.2) i ‘nia i(ia (-1 < (apaf 1)pi |an?,
n=1 =1 n=1
13 Sl = () S

n=1
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whenever a > 0,p > 1, ap > 1.

No proofs of the above two inequalities were supplied in [1]-[2] and recently, the author [4] and
Bennett himself [3] proved inequalities (1.2) for p > 1, > 1,ap > 1 and (1.3) for p > 1,a > 2 or
0 < a <1,ap > 1 independently.

We point out here that Bennett in fact was able to prove (1.2) for p > 1,a > 0,ap > 1 (see [3,
Theorem 1] with § = 1 there) which now leaves the case p > 1,1 < a < 2 of inequality (1.3) the
only case open to us. For this, Bennett expects inequality (1.3) to hold for 14+ 1/p < o < 2 (see
page 830 of [3]) and as a support, Bennett [3, Theorem 18] has shown that inequality (1.3) holds
fora=1+1/p,p>1.

In this paper, we will study inequality (1.3) using a method of Knopp [6] which involves con-
structing auxiliary sequences. We will partially resolve the remaining case p > 1,1 < a < 2 of
inequality (1.3) by proving in Section 2 the following:

Theorem 1.1. Inequality (1.3) holds forp>2,1<a<1+4+1/porl<p<4/3,1+1/p<a<2.

We shall leave the explanation of Knopp’s approach in detail in Section 2 by pointing out here
that it can be applied to prove other types of inequalities similar to that of Hardy’s. As an example,
we note that Theorem 359 of [5] states:

Theorem 1.2. For0<p <1 and a, > 0,
OIEDIINED it
n=1 k=n n=1

The constant pP in Theorem 1.2 is not best possible and this was fixed by Levin and Steckin [7,
Theorem 61] for 0 < p < 1/3 in the following

Theorem 1.3. For 0 < p <1/3 and a, >0,

SEYa) s (L)Y
n=1 n k=n 1= p n=1

We shall give another proof of this result in Section 3 using Knopp’s approach. We point out
here for each 1/3 < p < 1, Levin and Steckin also gave a better constant than the one p? given in
Theorem 1.2. For example, when p = 1/2, they gave v/3/2 instead of 1/v/2. In Section 4, we shall
further improve this constant by proving the following

Theorem 1.4. For a, > 0,

— > .

S (LS a) = viny
n=1 k=n n=1

In our proofs of Theorems 1.1-1.2, certain auxiliary sequences are constructed and there can

be many ways to construct such sequences. In Section 5, we give an example regarding these
possibilities by answering a question of Bennett.

2. PROOF OF THEOREM 1.1

We begin this section by explaining Knopp’s idea [6] on proving Hardy’s inequality (1.1). In
fact, we will explain this more generally for the case involving weighted mean matrices. For real
numbers A\; > 0, \; > 0,7 > 2, we write A, = )" ; A; and we are looking for a positive constant U
such that

n o0

(2.1) Z‘ALZ)‘kak‘ngz‘ak‘p
1 k=1

n=1 " k=
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holds for all complex sequences a with p > 1 being fixed. Knopp’s idea is to find an auxiliary
sequence w = {w;}°; of positive terms such that by Holder’s inequality,

(imaﬂ)p - (anAk|ak|w;i* . w,?)p
k=1

A
VS
>~
=5
S
=
3
g
Eol|
5
<
/N
g
<
N——
3
L

so that

n=1 " " k=1 n=1 k=1 j=1
- iwk(p”kp(i () )k
k=1 —

Suppose now one can find for each p > 1 a positive constant U, a sequence w of positive terms
with wg_l/ A\ decreasing to 0, such that for any integer n > 1,

— —1
p—1 wl’

w
(2.2) (w1 + -+ wp)P T < UAD(—5— — 251,
)‘" )‘n—i-l
then it is easy to see that inequality (2.1) follows from this. When \,, = 1 for all n, Knopp’s choice

for w is given by w, = ("_nl__ll/p) and one can show that (2.2) holds in this case with U = (p*)?

and Hardy’s inequality (1.1) follows from this.
We now want to apply Knopp’s approach to prove Theorem 1.1. For this, we replace a — 1 by
a and rewrite (1.3) as

Z‘Zz L > it < ((a(ii);)pﬂp;'“”‘p'

Note that we are interested in the case 0 < a < 1 here. From our discussions above, we are looking
for a sequence w of positive terms with wh~ / AL decreasing to 0, such that for any integer n > 1,

p—1

(23) <w1+-~+wn>P1<(<(a+1)pl>p(ii“)p(w" oy
=1

a+1)p-— ne?  (n+ 1)

Following Knopp’s choice, we define a sequence w such that

n+a—1
(2.4) Wpt1 = jL7/]01%, n > 1.
n
Note that the above sequence is uniquely determined for any given positive w; and therefore we
may assume wj = 1 here. We note further that we need a« > —1/p* in order for w, > 0 for all n

and we also point out that it is easy to show by induction that

(2.5) Zw,—n+a_1/p

l+a—-1/p
Moreover, one can easily check that
p—1
nap ’

so that wh ™ / Al decreases to 0 as n approaches infinity as long as a > —1/p*.
Now we need a lemma on sums of powers, which is due to Levin and Steckin [7, Lemma 1, 2,
p.18]:
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Lemma 2.1. For an integer n > 1,

n
1
2.6 > nn+1)7, 0<r<1,
(2. S0z gl 0<rs
n r r
1
(2.7) i > G

— ~ r4+ln+1)r—n"" T~

Inequality (2.7) reverses when —1 < r < 1.

We note here only the case r» > 0 for (2.7) was proved in [7] but one checks easily that the proof
extends to the case r > —1.

As we are interested in 0 < a < 1 here, we can now combine (2.4)-(2.6) to deduce that inequality
(2.3) will follow from

14 —nl/p)p_l <1 an_ 1/p<(1 N %)ap B —nl/p)p_l)'

We can simplify the above inequality further by recasting it as

a+1/p*\1/p a—1/p\1/r* 1y
29 (14 CEURY (Y (e
Now we define for fixed n > 1,p > 1,
B 1 x+1/p* 1 x—1/p
f(z) =xIn(1+1/n) pln(l—i— - ) p In(1+ - ).

It is easy to see here that inequality (2.8) is equivalent to f(a) > 0. It is also easy to see that f(x)
is a convex function of x for 0 < z < 1 and that f(1/p) = 0. It follows from this that if f/(1/p) <0
then f(x) >0 for 0 <z < 1/p and if f’(1/p) > 0 then f(x) >0 for 1/p < x < 1. We have

1 1
"(1/p) =In(1 +1 -t
FUp) =11 m) =
We now use Taylor expansion to conclude for = > 0,
(2.9) z—2%/2 <In(1+x) <z—2%/242%/3.

It follows from this that for p > 2, n > 2,
1 1 1 1 1 1 1

- . _— _— = <0.
3n3 +pn(n—i—l) ST T *

1
mz 3n3 " 2n(n+1) 303 2n2(n+1) =

) <,

and for n =1,
1 1
(1 =n2—-1+—<In2-1+-<0
/) =214+ o <214 <0,
It’s also easy to check that for 1 <p <4/3, n=1,
1
"(1/p) =In2 -1+ — > 0.
f(1/p)=In 3
For n > 2,1 < p <4/3, by using the first inequality of (2.9) we get
1 1
(1 >—-——4+ —F>0.
F/p) > =55 +pn(n+1) >

This now enables us to conclude the proof of Theorem 1.1.
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3. ANOTHER PROOF OF THEOREM 1.3

We use the idea of Levin and Steckin in the proof of Theorem 62 in [7] to find an auxiliary
sequence w = {w;}°; of positive terms so that for any finite summation from n = 1 to N with
N > 1, we have

a?
— = — 5
Za ZZ@_ Zwk ;wnl;lz o
On letting N — oo, we then have
P —
;an ;wn; Zfﬂwz

By Holder’s inequality, we have

> () ) (S

k=n Zi:l ? k=n =1 k=n

—1/(1=p) |, —p/(1-p)

Suppose now one can find a sequence w of positive terms with wy, decreasing to 0

for each 0 < p < 1/3, such that for any integer n > 1,

1 — p\p/(=p) fqpy; /7P w1/ 1-P)
. ~1/(1-p) 1-p » - -
(3.1) (w1 + + wy) < ( P ) ( np/(1-p) (n 4 1)?/(1—12) )’

then it is easy to see that Theorem 1.3 follows from this.
We now define our sequence w to be
n+1/p—2
(3.2) Wptl = iwn, n>1.
n
Note that the above sequence is uniquely determined for any given positive wy and therefore we
may assume wj = 1 here. We note further that w, > 0 for all n as 0 < p < 1/3 and it is easy to
show by induction that

n

n+1/p-2
(3.3) ;wz = -1 Wy,
Moreover, one can easily check that
—1/(1-p)
Wn _ —(1-p)/p
prycer )

so that wy, —1/(=1) ), —p/(1-p) decreases to 0 as n approaches infinity.

We now combine (3.2)-(3.3) to recast inequality (3.1) as
(n+1/p—2)~Y0-P < _P <nfp/(1fp) — (n+ 1)/l (=P) (5 1 /p — 2)*1/(1710)).

1—-p
We further rewrite the above inequality as
L2P o /) (41 p — )V D) (4 1)/ (D) 1/ (1)
p

_ n((l N 1/pn_2> 1/(1-p) B (1 n %) —p/(l—p)).

It is easy to see that the above inequality follows from f(1/n) > 0 where we define for x > 0,

fla) = (1 +/p— 2)gg)l/(lﬂa) B <1 n x) —p/(-p) 1 ;px‘




6 PENG GAO

We now prove that f(z) > 0 for z > 0 for 0 < p < 1/3 and this will conclude the proof of Theorem
1.3. We note that

fla) = 1{p_—p2 (1 ey 2)gc)p/(l—p) N 1p%p<1 N x) -p/(1-p)-1 1;])’
" 1/p —2)? p/(1-p)-1 -p/(1-p)=2
(z) = W(H(l/p—z)x) —ﬁ(l—i—x) .

We now define for x > 0,
(@) = (1/p — 220P/0=0(1 1 )E/0=2) (1 1 (1p ~ 2)).
It is easy to see that g(z) > 0 implies f”(x) > 0. Note that (2 — p)/(1 — 2p) > 1 so that
g(x) = (1/p—2)20 P22 — p) /(1 = 2p)(1 + )3P0 —(1/p — 2)
> (1/p—220P/072) —(1/p—2) > 0,

where the last inequality above follows from 2(1 — p)/(1 —2p) > 1 and 0 < p < 1/3 so that
1/p—2 > 1. It follows from this that f”(z) > 0 and as one checks easily that f’(0) = 0, which
implies f'(x) > 0 so that f(x) > f(0) = 0 which is just what we want to prove.

4. PROOF OF THEOREM 1.4

We follow our strategy in the previous section to look for a sequence w of positive terms with
2

w;,2n~1 decreasing to 0, such that for any integer n > 1,
92 —2
w w
41 —2<C(L— ntl )

then it is easy to see that Theorem 1.4 with v/7/3 replaced by C~1/2 follows from this.
We now define our sequence w to be

(4'2) Wn+1 = nta

Wy, N> 1.

Here o > —1/2 is our parameter so that we hope to optimize the constant C' in (4.1) later by
choosing a suitable «. Similar to our treatment in the previous section, we let w; = 1 here and
note that w,, > 0 for all n and that

- n—+ o
(4.3) ;_1 Wi = U
Moreover, one can easily check that
—2
Wy, —1-2«
=0
O,

so that w;, 2n~! decreases to 0 as n approaches infinity.
We now combine (4.2)-(4.3) to recast inequality (4.1) as
(1+a)? _(nt+a)®  n’

C - n n+1

Or equivalently,
2
(+a?
C
We point out here that the choice o = 0 will lead to C' > 2 in order for inequality (4.4) to hold for

all n > 1, which corresponds Theorem 1.2 with v/7/3 replaced by 2-1/2 The choice a = 1 will lead
to C' > 4/3 in order for inequality (4.4) to hold for all n > 1, which corresponds Theorem 1.2 with

(4.4) (1+20)n% + 20+ a®)n+a? > (n+1).
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V7/3 replaced by v/3/2. We now choose o = 1/2 here with C' = 9/7 and one checks readily that
inequality (4.4) holds for such choices and this leads to the desired constant v/7/3 in Theorem 1.2.

5. ANOTHER LOOK AT INEQUALITY (1.3)

In this section we return to the consideration of inequality (1.3) via our approach in Section 2,
which boils down to a construction of a sequence w of positive terms with wﬁ_l /AL decreasing to
0, such that for any integer n > 1, inequality (2.3) is satisfied. Certainly here the choice for w may
not be unique and in fact in the case & = 0, Bennett asked in [1] (see the paragraph below Lemma
4.11) for other sequences, not multiples of Knopp’s, that satisfy (2.3). He also mentioned that the
obvious choice, w, = n~ Y7, does not work.

We point out here even though the choice w, = n~'/? does not satisfy (2.3) when o = 0 for all
p > 1, as one can see by considering inequality (2.3) for the case n = 1 with p — 17, it nevertheless
works for p > 3, which we now show by first rewriting (2.3) in our case as

(5.1) <ii—1/17>p_1 < (%)pnp (n—(p—l)/p ~(n+ 1)—(p—1)/p>.
i=1

p_

We note that the case n =1 of (5.1) follows from the case o = 0 of the following inequality,

1 P
5.2 1— o (-V/p=a 5 (1 — 7) C0<a<1/p.
(5.2) CES <a<l/p
To show (5.2), we see by Taylor expansion, that for p > 2,2 < 0,
(p— 1)a?

(1+x)p<1+px+p 5

Apply the above inequality with x = —1/(ap + p), we obtain for p > 3,

1 \p 1 (p—1)
CHE N CPR R 5V I
(a+1)p (a+1)  2(a+1)%
Hence inequality (5.2) will follow from

p—1 2—(p—1)/pw

2(a+1)p A

It is easy to see that when p > 3, the function o — (1 + )27 % is an increasing function of « for
0 <a<1/p. It follows from this that for 0 < o < 1/p,

_p=l ppepplat) =1 oyt
2(a+1)p 2¢ 2p 21/p ’
and from which inequality (5.2) follows.

Now, to show (5.1) holds for all n > 2,p > 3, we first note that for p > 1,

> 0.

n

i< +/ VP dy = !tV =
— 1 p—1 p—1

On the other hand, by Hadamard’s inequality, which asserts that for a continuous convex function
f(z) on [a, b],

a+b 1 f(a) + f(b)

b
1052 < 5 [ flapae < HOTE),

we have for p > 1,

n+1
n~ PP _ (4 1)~ 1/P = p_l/ P gy > p;l(n +1/2)7 1P,
p n p
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Hence inequality (5.1) will follow from the following inequality for n > 2,

p—1 p—1

It is easy to see that for p > 1,

1\ -1+p*)/p 1 * 1
(e 2L
2n p  2n
Hence it suffices to show
p nl—l/p_i <p* 1/p* (1_ 1+p*i>’
p—1 p—1 p  2n

or equivalently,

(1455) <
wp—2) =™

It’s easy to check that the right-hand expression above is a decreasing function of p > 3 and is
equal to 53/4% < 2 when p = 3. Hence it follows that (5.1) holds for all n > 2,p > 3.

We consider lastly inequality (2.3) for other values of a and we take w, = n® /P for n > 1 so
that we can rewrite (2.3) as

- p-1 (@+1)p \P/x= o\P
53 ( 'a—l/p) < (7) ( ~a) ( ~(p—1)/p—a _ 1 —(p—l)/p—oz>'
(5.3) ;z @tp—1 ZZ}Z n (n+1)

We end our discussion here by considering the case 1 < o < 1+ 1/p and we apply Lemma 2.1 to

obtain
n

a—1 a—1 n+1 _
olr < a—1/p o P(p 4 1) 1/p _ 1 (/ x—a—i-l/p—ldl,) 1’
> a=1/p+1(n+1)e-Vp—npo-t/p  a—1/p+1\J,

i=1
Z L n(nt 1) L( /"“ )
i = T T
; T a+l(n+)*—n* a+1\/,
i=1

We further write

n+1
n==D/p=a _ (5 4 1)=0-D/p=a _ (o _ 1/p+1) / oot /P=2g,

n

so that inequality (5.3) will follow from

n+1 n+1 1,1/ n+1 1/
/ % dr < (/ :c_aH/p_ldx) p(/ x_a+1/p_2dx) p.

n n
One can easily see that the above inequality holds by Hélder’s inequality and it follows that in-
equality (5.3) holds for p > 1,1 < a <1+ 1/p. This provides another proof of inequality (1.3) for
p>1,1<a<1l+1/p.
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