ON OSTROWSKI TYPE INEQUALITIES FOR STIELTJES
INTEGRALS WITH ABSOLUTELY CONTINUOUS INTEGRANDS
AND INTEGRATORS OF BOUNDED VARIATION

P. CERONE, W.S. CHEUNG*, AND S.S. DRAGOMIR

ABSTRACT. Some Ostrowski type inequalities are given for the Stieltjes inte-
gral where the integrand is absolutely continuous while the integrator is of
bounded variation. The case when |f’| is convex is explored. Applications for
the midpoint rule and a generalised trapezoid type rule are also presented.

1. INTRODUCTION

The following result is known in the literature as Ostrowski’s inequality:
Let f : [a,b] — R be a differentiable mapping on (a,b) with the property that

If' ()| <M for all t € (a,b). Then
2
1 r — atb

b
(1) ‘f(fv) e RACL

for all x € (a,b). The constant i s best possible in the sense that it cannot be

replaced by a smaller constant.
The above result has been naturally extended for absolutely continuous functions
and Lebesgue p—norms of the derivative f’ in [11] — [13] and can be stated as:

Theorem 1. Let f : [a,b] — R be absolutely continuous on [a,b]. Then for all
x € [a,b] we have:

(1.2)

b
g RACL

z—atb 2
[1+( = }(ba>|f'|oo if J' € Loc [a.8];

1 —a Pt b—x 1
< (p+1)7 [(b“) (H) b—a) |l f'l,
if f'€Lplab], 2+i=1,p>1;
1 a—2fr /
3+ 5= || 170

Date: June 1, 2006.
2000 Mathematics Subject Classification. Primary 26D15, 26D10; Secondary 41A35.
Key words and phrases. Integral inequalities, Ostrowski inequality, Stieltjes integral, Quadra-
ture rules, Mid-point rule, Trapezoidal rule, Convex functions.
*Research is supported in part by the Research Grants Council of the Hong Kong SAR (Project
No. HKU7017/05P).
1



https://core.ac.uk/display/10835266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 P. CERONE, W.S. CHEUNG*, AND S.S. DRAGOMIR

where ||-||,. (r € [1,00]) are the usual Lebesque norms on L, [a,b], i.e.,

1
b T
l9lloo :=ess sup |g(t)] and |lg|, := </ Ig(t)lrdt> , rell o).
a

te€[a,b]

The constants i, and % respectively are sharp in the sense mentioned above.

1
(p+1)'/?

They can also be obtained, in a slightly different form, as particular cases of
some results established by A.M. Fink in [14] for n—time differentiable functions.

For other Ostrowski type inequalities concerning Lipschitzian and r — H—Hélder
type functions, see [8] and [10].

The cases of bounded variation functions and monotonic functions were consid-
ered in [4] and [7] while the case of convex functions was studied in [3].

In an effort to obtain an Ostrowski type inequality for the Stieltjes integral,
which obviously contains the weighted integrals case, S.S. Dragomir established in
[5] the following result:

Theorem 2. Let f : [a,b] — R be a function of bounded variation and u : [a,b] — R
a function of r — H—Hélder type, i.e.,

(1.3) lu(z) —u(y) < Hlz—yl"  for any x,y € [a,b]

where r € (0,1] and H > 0 are given. Then, for any z € [a,b],

(1.4)

SHXY -+ -0 [VE 7 + (V)]
if p>1, 5+

a Ty /b
[3(0—a)+[e— 2] Vo (),
where \/g (f) denotes the total variation of f on the interval [c,d].
The dual case was considered in [6] and can be stated as follows:

Theorem 3. Let u : [a,b] — R be a function of bounded variation on [a,b] and
f:a,b] = R a function of r — H—Holder type. Then

b
(1.5) [u®) —u(a) f(z)— [ f(t)du(?)
r b
<H[;(b—a)+ x—a;b} \/ (w)

for any x € [a,b].
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For other results concerning inequalities for Stieltjes integrals, see [1], [15] and
[16].

The aim of the present paper is to continue the study of Ostrowski type in-
equalities for Stieltjes integrals fab f (t) du (t) where the function f, the integrand,
is assumed to be absolutely continuous while the integrator u, is of bounded vari-
ation. Applications to the midpoint rule and for a generalised trapezoid rule are
also pointed out.

2. GENERAL BOUNDS FOR ABSOLUTELY CONTINUOUS FUNCTIONS

The following representation result is of interest:

Lemma 1. Let f : [a,b] — R be an absolutely continuous function on [a,b] and
u: [a,b] — R such that the Stieltjes integrals

/abfm du(t)  and /ab (x—1) (/Olf’ AE (1= X)) dA) et

exist for each x € [a,b]. Then
b
(2.1) f (@) [u(b) —u(a)] */ f(#)du(t)

—/ab(xt) (/Olf'[)\t+(1>\)x]d>\>du(t)

b
(2.2) / u(t)df (t) —u(b) [f(b) = f(2)] —ula) [f (x) = [ (a)]

:/ab(x—t) (/(Jlf’[At+(1—)\)x]d>\)du(t)

Proof. Since f is absolutely continuous on [a,b], hence, for any x,t € [a,b] with
x # t, one has

fl@) =) _ Jf (w)du :/1f/[(1_)\)x+/\t}d)\
0

or, equivalently,

for each x € [a,b].

x—t r—t

giving the equality (see also [9]):

(2.3) f(x):f(t)—i—(x—t)/o P = Nz + M dr

for any x,t € [a,b].
Integrating the identity (2.3) we deduce

f(:c)/abdu(t)—Lbf(t)du(t)+/ab(xt) (/Olf'[(l)\)er)\t]d)\)du(t),

which is exactly the desired inequality (2.1).
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Now, on utilising the integration by parts formula for the Stieltjes integral, we
have

and the representation (2.2) is also obtained. O

For an absolutely continuous function f : [a,b] — R, let us denote by u (f;z,t) :=
fol M+ (1 =X 2] d/\’7 where (t,#) € [a,b]*. It is obvious that, by the Holder
inequality, we have

||fl||[t,z],oo if f/ E LOO [a/ﬂ b] ;
(2.4) p(fiz,t) <
||f/||[t,x],p lf f/ 6 LP [aﬁ b]? p Z 13

where

1 e 21,00 7= S0P [ ()]

w€e(t,x]
(u€lz,t])

1
P

1 ey = ] [irwra), =

and ¢,z € [a, b].
We can also state the following result of Ostrowski type for the Stieltjes integral:

Theorem 4. Let f : [a,b] — R be an absolutely continuous function and u : [a,b] —
R a function of bounded variation on [a,b]. Then

(2.5)

b
[u(b)w(a)}f(x%/ £ () du(t)| < M (2),

and, equivalently

(2.6) < M(z),

/ w(t)df (t) —u®)[f () = f ()] —u(a) [f (x) = f (a)]

where M (x) = M; (x) + My (z) and

My (2) :=\/ (u) S [(z =) p(fiz, )],
b
My (z) == \/ (u) S [t —2)pu(fi2,1)],

for x € [a,b].
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Remark 1. Using the notations in Theorem 4, we have

M ( m—a\/ sup u(f;x,t)
a te(a,x]
z ||f ||[a7x]7oo Zf f/ G LOO [a?b]7
<@-a)\/ (- |
a ||f/||[a’;p]’p Zf fl S Lp [a‘ab]7 p Z 1a

b
Ms (z) < (b—2x) \/ t:l[ipb],u (f;z,t)
1 ||[1,b},oo if f'€ Lo [a,b];
(u) |
Hflll[z,b],p Zf f/ € LP [a” b]’ p > 1)

for any x € [a,b].

Proof. We use the fact that, if p,v : [¢,d] — R are such that p is continuous and v
is of bounded variation, then the Stieltjes integral f p(t) dv (t) exists and

/C () v (a)

Utilising the representation (2.1) we have

d

< sup [p(@)]\/ (v).

z€le,d]

‘f (2) [ (8) — u (a)] — / £ (t) du (1)

/az(a:t) (/Olf,[)\t+(1)\)z]d)\> du (#)
—&-/:(:c—t) (/()1fl[)‘t+(1—)\)w]d)\> du ()
/: (z —1t) </01f’ [At—l—(l—)\)x]d)\) du(t)'

b

S\/ sup [(& —8) p (f;2,0)] + \/ (u) sup [(t =) p(f;,1)]

tela,x] te(z,b]

M () + My (x) =: M ().

<

+

x

The other inequalities for M; and My are obvious from the inequality (2.4) and the
details are omitted. (]
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Remark 2. Hence, if we denote by | f'l|. 4, the p norm on the interval [c,d],
where 1 < p < oo, then for f' € Ly[a,b], we have

b
en |[f@ub -u@l- [ o

b

x —a \/ ||f/||[a,:z],p + (b - 37) \/ (U) ||f/||[;p,b],p =N (Z‘) )

where p € [1,00] and x € [a,b].

Obviously one can derive many upper bounds for the function N (z) defined
above. We intend to present in the following only a few that are simple and perhaps
of interest for applications.

Estimate 1:

T b
(28) N(z)< |(x—a)\/(w)+(®-2)\/ (u)] 1" a0,
max {z — a,b — z} [\/z (u) + \/i (U)} ;

oo a0 0= [V )+ (Vi) ]
othe ifa>1, 14+4=1
(b= a)ymax { V& (), V) ()}
[3 (0 —a)+ [ — =52{] V, (u);
Ny | @0+ @) <\/Z<u>>‘3+(vi<u>)ﬂ]é

for any x € [a,b].

Estimate 2:

x

b
V @) 1 a1, + V(@) |f'||[x,b],p]

a

N (z) < max{z —a,b—z}

x

b
\/ ||f/||[a,x],p+\/(u)|fll[z,b},p]

fro-aek-22]

a
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ook

b
e {1 F g1 1 ) Vo (0

»a\»a

1] [V )

if p>1

)]

[3 Ve @)+ 3{VE @) = V5 @] 17 N + 1701

fpo-ae|-2£]

»Q\»—l

T —

2 2
max {1l a1+ I/

[Ivap} VZ (u);
o1 s [V @)+ (V2 @) :

+

1 .
a ’

[3 Ve @)+ 5 [VE @) = V2 @] 17N+ 1]

if p>1

S =

for any x € [a,}].

Estimate 3:

N (z) < max

—N—

T b
Vw.\ <u>} (@ = @) 1 g+ 6= )1 )

-y

8

IN
| e Y E——

] {x—a 1 Nz o (b_x)Hf/”[w,b],p:I

. 13 b
V3 V-V

S (T TN T Y USSR

5 (@ =a)! + =) 'l an)p
if p>1 + - =1

1
q

D =

3 0-a) + o= 2] (1 Narp + 1 a1

for each = € [a, b] .
In practical applications, the midpoint rule, that results for z = '2" is of obvious
interest due to its simpler form.
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Corollary 1. With the assumptions in Theorem /4, we have the inequalities:

u(5) —u (@) f (““) /f ) du

1 2
L—a) [V @17 ey, + V0 |unm]1

a+b

(2.9)

IN
I

nwx{nfn[ w1 ey b Ve ()

{Hf,”f; “;rb]’p + ||f/||féa<2¢»b b

Lo—a) va?bw0ﬁ+(v@bmnﬂé

IA

Ve @+ 3Ve® ()= Vi )]
<18 o,y + 1 g2 01,0

where p € [1,00].
From the above, it is obvious that we can get some appealing inequalities as
follows:

210 Juo-v@is (“50) - [ romo
1F a0 Vo (), i f7 € Log [a,b];
ey d W (Ve @)+ (Vi @)’
-2 if p>1, %—F%:l,f’eLp[a,b];
[LVe @)+ 3 |VaE @) = Vi @] 1110,

Remark 3. Similar inequalities can be obtained for the generalised tmpezozd rule.
We only state here the following simple results:

Liuowxw—uw>paa—f(a§b)}—uw>p(“§b>—fmﬂ‘

1 o0 Vo (W), if f' € Log [a,b];

Loy 1N (Ve )+ (Ve @)']°
2 if p>1, 24 =1 pe L, fa);

3V 0+ 3 [V @) = Vs @] 1l

provided that u is of bounded variation and f is absolutely continuous on [a,b].
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3. BounDps IN THE CASE OF |f’| A CONVEX FUNCTION

Some of the above results can be improved provided that a convexity assumption
for |f'| is in place:

Theorem 5. Let f : [a,b] — R be an absolutely continuous function on [a,b],
u : [a,b] — R a function of bounded variation on [a,b] and x € [a,b]. If |f'] is
convezx on [a, x| and [x,b] (and the intervals can be reduced at a single point), then

b
31 ) —ua)]f (@) - / £ (t) du (1)

t€la,z]
- b
|f [x—a\/ b—w \/(u)l
‘ b
Hf/H[a,I],OO +(b—2x) \/ (u) ||f/||[z7b],oo‘|

7 [x—a W () + bz v<u>],

IN
N
L —— |
@<H

(u) sup {(z—1)|f (¢ }+\/ Sup {@ fﬂ)lf'(t)}l

INA

N | =
l—|
H

|

a8
9<R

N | =

for any x € [a,b].

Proof. As in the proof of Theorem 4, we have

‘f(x) [u(b)—u(a)}—/bfmdu(t)
/f M+ (1— A dAH\7
/ f [/\t+(1—)\)x]d)\H\:/(u)

< sup [J:—t
tEar

-+ sup [(t —x)

te(z,b)
< sup [x—t/ lff I+ (1= A |d)\}\/
t€la,z] a
b
+ sup [t—x/ |f A+ (1= A |d)\}\/
t€(z,b] T
! / &
t€la,z]

l /:L' b
) sup][@ )If OIEd; >|W

telz,b
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T b
sup {(z =) [f"(®)}-\/ (u) + sup {(t—x)lf/(t)lk\/(U)]

te(z,b] z

which proves the first inequality in (3.1).
The second inequality in (3.1) is obvious using properties of sup and the theorem
is completely proved. O

The midpoint inequality is of interest in applications and provides a much simpler
inequality:

Corollary 2. If f and u are as above and |f'| is convexr on [a, “TH’} and [a+b b} ,
then

a+b b
(32) [w®) —u(@)f|—5— )~ | f#)du(t)

+ - (b—a)

b
<1 /
<j0-aVo ) |1 e +

=)

Remark 4. If we denote, from the second inequality in (3.1),

T b
Li(r) = [(x = @)1 g0 V@) + (0= 2) 17 0 V/ <u>]

and

x b
L) =P [x—a\/ —x>\/<u>]

for x € [a,b], then we can point out various upper bounds for the functions L1 and
Ly on [a,b].
For instance, we have

T b
Ly () < 3 1 oo l(m ~a)\ )+ (b2 <u>]

xT
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and by (3.1) we can state the following inequality of interest:

b
(3.3) |[u(d) —w(a)] f(x)— [ f(t)du(t)
x b
< % [Ilfll[abL +1f( )I} [(Js—a)\a/(u)+(b—x)\z/(u)]
1 [3(0—a)+ |z =5[]V, (u)
< 5 19w + 17 @] %

for each x € [a,b].

Remark 5. A similar result to (3.3) can be stated for the generalised trapezoid rule,
out of which we would like to note the following one that is of particular interest:

(3.4)

/ w(t)df () —u(®) [f () — f (@)] - u(a) [f (@) — f (@)

x

(1l .00 + 1 @)I] l(ww\/ IV (u ]
[L(6—a)+]a— =[] V2 (w

INA
N | =

A

< 2 (1 oo + 1 @]

for each x € [a,b].

As in Corollary 2, the case x = C‘T*'b in (3.4) provides the simple result

[ewaw-wnro-s ()] -vw|r () f(a)H

+

b
Si(a)[”fn \/ ) 17 g Y ]
r(45Y) Ve
Y \/ )1 e+ 7 (552

Remark 6. Similar inequalities may be stated if one assumes either that |f'| is
quasi-convex or that | f'| is log-convex on [a,x] and [z,b]. The details are left to the
interested readers.

(3.5)

L0

e~ \
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