
ON SOME INEQUALITIES OF SYMMETRIC MEANS AND MIXED MEANS

PENG GAO

Abstract. We improve some inequalities involving the symmetric means. We also prove some
mixed-mean inequalities for certain families of means.

1. Introduction

Let Mn,r(x) be the generalized weighted power means: Mn,r(x) = (
∑n

i=1 qix
r
i )

1
r , where qi >

0, 1 ≤ i ≤ n with
∑n

i=1 qi = 1 and x = (x1, x2, · · · , xn). Here Mn,0(x) denotes the limit of Mn,r(x)
as r → 0+. Let r ∈ {0, 1, · · · , n}, the r-th symmetric function En,r of x and its mean Pn,r are
defined by

En,r(x) =
∑

1≤i1<···<ir≤n

r∏
j=1

xij , 1 ≤ r ≤ n;En,0 = 1;P r
n,r(x) =

En,r(x)(
n
r

) .

Unless specified, we always assume xi > 0, 1 ≤ i ≤ n and we define σn :=
∑n

i=1 qi(xi −An)2.
To any given x, t ≥ 0 we associate x′ = (1 − x1, 1 − x2, · · · , 1 − xn),xt = (x1 + t, · · · , xn + t).

When there is no risk of confusion, we shall write Mn,r for Mn,r(x), Mn,r,t for Mn,r(xt) and M
′
n,r

for Mn,r(x′) if xi < 1, 1 ≤ i ≤ n. The meanings of En,r, E
′
n,r, En,r,t, Pn,r, P

′
n,r, Pn,r,t are similar. We

also define An = Mn,1, Gn = Mn,0,Hn = Mn,−1 and similarly for A′
n, G′

n,H ′
n, An,t, Gn,t,Hn,t.

The following counterpart of the arithmetic mean-geometric mean inequality, due to Ky Fan,
was first published in the monograph Inequalities by Beckenbach and Bellman [5]:

Theorem 1.1. For xi ∈ (0, 1/2], qi = 1/n, 1 ≤ i ≤ n,

(1.1)
A′

n

G′
n

≤ An

Gn

with equality holding if and only if x1 = · · · = xn.

We refer the reader to the survey article[2] and the references therein for an account of Ky Fan’s
inequality. See also [11]-[16] for recent developments in this subject. Among numerous sharpenings
of Ky Fan’s inequality in the literature, we note the following inequalities connecting the three
classical means(with qi = 1/n here):

(1.2) (
Hn

H ′
n

)n−1 An

A′
n

≤ (
Gn

G′
n

)n ≤ (
An

A′
n

)n−1 Hn

H ′
n

.

The right-hand side inequality of (1.2) is due to P.F.Wang and W.L.Wang[24] and the left-hand
side inequality was proved recently by H. Alzer, S. Ruscheweyh and L. Salinas[3]. The result of
P.F.Wang and W.L.Wang is more general, they have shown

Theorem 1.2. For 1 ≤ r ≤ n− 1, xi ∈ (0, 1/2], 1 ≤ i ≤ n,

(1.3) lnPn,r − lnPn,r+1 ≥ lnP ′
n,r − lnP ′

n,r+1.
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By letting qi = wi/Wn,Wn =
∑n

i=1 wi, wi > 0(note for different n’s, qi’s take different values),
we have the following Popoviciu-type inequality due to C.L.Wang[23] which generalizes (1.1):

Theorem 1.3. For xi ∈ (0, 1/2], 1 ≤ i ≤ n,

Wn+1

(
ln(

An+1

A′
n+1

)− (
Gn+1

G′
n+1

)
)
≥ Wn

(
ln(

An

A′
n

)− (
Gn

G′
n

)
)
.

We also note the following result of P.S. Bullen and M. Marcus[8]:

Theorem 1.4. For 1 ≤ r ≤ k ≤ n,

(k + 1)
(
ln(Pn+1,r)− ln(Pn+1,k+1)

)
≥ k

(
ln(Pn,r)− ln(Pn,k)

)
with equality holding if and only if x1 = · · · = xn+1.

One way of obtaining refinements of known inequalities of means is to study the behavior of
means under equal increments of their variables. This was initiated by L. Hoehn and I. Niven[19]
and was further developed in [1],[6], [13]and [14]. In particular, one can check that Theorems 1.1-1.3
still hold with M ′

n,r, P
′
n,r’s replaced by the corresponding Mn,r,t, Pn,r,t’s.

It is then natural to ask whether one has for 1 ≤ r ≤ k ≤ n, t ≥ 0,

(1.4) (k + 1)
(
ln(

Pn+1,r

Pn+1,r,t
)− ln(

Pn+1,k+1

Pn+1,k+1,t
)
)
≥ k

(
ln(

Pn,r

Pn,r,t
)− ln(

Pn,k

Pn,k,t
)
)
.

Our first goal in the paper is to provide a refinement of Theorem 1.2 and also prove (1.4) for r = 1.
We then move on to study other families of means, such as those considered by E. Beckenbach[4]
and M.Dresher[10]. Our motivation comes from the existence of mixed-mean inequalities among
the family of generalized power means, described as follows:

For fixed x = (x1, · · · , xn),w = (w1, · · · , wn), wi > 0, we define xi = (x1, · · · , xi),wi =
(w1, · · · , wi),Wi =

∑i
j=1 wj , Mi,r = Mi,r(xi) = Mi,r(wi/Wi,xi),Mi,r = (M1,r, · · · ,Mi,r). Then we

have([22])

Theorem 1.5. If 1 > s and for 2 ≤ k ≤ n− 1, n ≥ 2, Wnwk −Wkwn > 0. Then

Wn−1Mn−1,s(Mn−1,1) + wnMn,s ≤ WnMn,s(Mn,1)

with equality holding if and only if x1 = · · · = xn and the inequality reverses when s > 1.

It follows from this the following mixed-mean inequality(see also [7])

Theorem 1.6. If r > s and for 2 ≤ k ≤ n− 1, n ≥ 2, Wnwk −Wkwn > 0. Then

Mn,s(Mn,r) ≥ Mn,r(Mn,s),

with equality holding if and only if x1 = · · · = xn.

One expects similar mixed-mean inequalities among other families of means under certain con-
ditions(on the weights) and in the last part of the paper, we will establish some results of this
type.

2. Results on Symmetric Means

For most parts of the section, we need the following key lemma due to C.Wu, W.Wang and L.
Fu[25](see also p. 317, [2]), we include its proof for completeness.

Lemma 2.1. Let 2 ≤ r ≤ n,x = (x1, · · · , xn), x1 ≤ x2 ≤ · · · ≤ xn. There exists y = (y1, · · · , yr)
with x1 ≤ y1 ≤ · · · ≤ yr ≤ xn such that Pn,i(x) = Pr,i(y), 0 ≤ i ≤ r. Moreover, if x1, · · · , xn are
not all equal, then y1, · · · , yr are also not all equal.
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Proof. Let f(t) =
∏n

i=1(t−xi), where we assume that the xi’s are not all equal. Then we conclude
that the zeros of fn−r, which we denote by y1, · · · yr with x1 ≤ y1, yr ≤ xn, are also not all equal.
We define

f (n−r)(t) =
n!
r!

r∑
i=0

(−1)igi(x)tr−i.

Then we have for 0 ≤ i ≤ r,

(2.1) gi(x) =
r!
n!

En,i(x)
n−r−1∏

j=0

(n− i− j).

Since

f (n−r)(t) =
n!
r!

r∑
i=0

(−1)iEr,i(y)tr−i,

we conclude that gi(x) = Er,i(y) for 0 ≤ i ≤ r and the lemma follows from this and (2.1). �

We remark here it follows from the proof of the lemma that for any t ≥ 0, Pn,i(xt) = Pr,i(yt).
For an application of the lemma, we note the following result(see [18], Theorems 51 and 52, be
aware of the changes in notation):

Theorem 2.1.

(2.2) Pn,n ≤ Pn,n−1 ≤ · · · ≤ Pn,2 ≤ Pn,1,

and for 0 < r < n,

(2.3) P r−1
n,r−1P

r+1
n,r+1 ≤ P 2r

n,r.

In [18], it shows (2.3) implies (2.2). We now use Lemma 2.1 to show the two are equivalent.

Theorem 2.2. Inequalities (2.2), (2.3) and Pn,1 ≥ Pn,n are equivalent.

Proof. Plainly (2.2) implies Pn,1 ≥ Pn,n and via a change of variables xi → 1/xn−i+1, Pn,1 ≥ Pn,n

is equivalent to Pn,n−1 ≥ Pn,n and then Lemma 2.1 gives (2.2). To show (2.3) implies (2.2), we let
f(t) = ln(Pn,r(xt)/Pn,r+1(xt)) and note that f ′(t) ≤ 0 implies (2.2) since limt→∞ f(t) = 0. As x
is arbitrary, it suffices to show f ′(0) ≤ 0, which is equivalent to (2.3). Now we show (2.3) follows
from (2.2). For a given x = (x1, · · · , xn), we define x−1 = (1/x1, · · · , 1/xn). Note P j

n,j(x
−1) =

Pn−j
n,n−j(x)/Pn

n,n(x). Hence (2.2) implies Pn,1(x−1) ≥ Pn,2(x−1) or P
2(n−1)
n,n−1 ≥ Pn−2

n,n−2P
n
n,n. This

combined with Lemma 2.1 gives (2.3). �

We now look at the following inequalities in the unweighted case(qi = 1/n, n ≥ 2):

(n− 1)(M2
n,2 −A2

n) ≥ A2
n −G2

n ≥ 1
n− 1

(M2
n,2 −A2

n),(2.4)

(n− 1)(M2
n,2 −A2

n) ≥ A2
n −AnHn ≥ 1

n− 1
(M2

n,2 −A2
n).(2.5)

Inequality (2.4) is due to Diananda[9]. Theorem 5.1 of [13] implies f ′(0) ≤ 0, g′(0) ≤ 0 with
f(t) = (1−1/n) ln An,t +(1/n) ln Hn,t− lnGn,t and g(t) = lnGn,t− (1/n) ln An,t− (1−1/n) ln Hn,t.
Inequality (2.5) follows from this and a change of variables xi → 1/xn−i+1.

We note the two left-hand side inequalities of (2.4), (2.5) give refinements of (2.3). Since M2
n,2−

A2
n = (n − 1)(P 2

n,1 − P 2
n,2), the left-hand side inequality of (2.4) is equivalent to (n − 1)2P 2

n,2 ≤
n(n− 2)P 2

n,1 + P 2
n,n. By a change of variables xi → 1/xn−i+1, this is

(n− 1)2Pn−2
n,n−2P

n
n,n ≤ n(n− 2)P 2n−2

n,n−1 + P 2n−2
n,n .
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It follows then from Lemma 2.1 that for 2 ≤ r ≤ n,

(r − 1)2P r−2
n,r−2P

r
n,r ≤ r(r − 2)P 2r−2

n,r−1 + P 2r−2
n,r ≤ (r − 1)2P 2r−2

n,r−1.

Similarly, the left-hand side inequality of (2.5) gives for 2 ≤ r ≤ n,

(r − 1)2P r−2
n,r−2P

r
n,r ≤ r(r − 2)P 2r−2

n,r−1 + P r−1
n,r−1P

r
n,r/Pn,1 ≤ (r − 1)2P 2r−2

n,r−1.

The two right-hand inequalities of (2.4) and (2.5) are relatively easy. For example, the right-hand
side inequality of (2.4) is equivalent to Pn,2 ≥ Pn,n. We now give a uniform treatment of the two
right-hand side inequalities.

Theorem 2.3. For t ≥ 0, 1 < r ≤ n, f(t;α) = Pα
n,1,t − Pα

n,r,t is a decreasing function of t for
α ≤ r/(r−1) and Pα

n,1,t−Pα
n,r,t is an increasing function for α ≥ r. In particular, for n ≥ 3, qi = 1/n,

one has

(2.6) (1− 1/n)
G

n/(n−2)
n A

(n−3)/(n−2)
n

H
1/(n−2)
n

+ 1/nM2
n,2 ≤ A2

n.

Proof. The first assertion of the theorem follows from Proposition 3.1 in [16] and Lemma 2.1. Apply
this to r = n− 1 so that f ′(0; (n− 1)/(n− 2)) ≤ 0, (2.6) follows from this by a change of variables
xi → 1/xn−i+1. �

Note when n ≥ 3 and by the well-known Sierpiński’s inequality: AnHn−1
n ≤ Gn

n,

max{G2
n, AnHn} ≤

G
n/(n−2)
n A

(n−3)/(n−2)
n

H
1/(n−2)
n

.

Hence (2.6) gives a refinement of the right-hand side inequalities of (2.4) and (2.5).
Now we give a generalization of (1.3).

Theorem 2.4. For 2 ≤ r ≤ n, x1 ≤ x2 · · · ≤ xn,
σn

2(n− 1)x2
1

≥ lnPn,r−1 − lnPn,r ≥ σn

2(n− 1)x2
n

,(2.7)

rσn

2(n− 1)x2−r/(r−1)
1

≥ P
r/(r−1)
n,1 − P

r/(r−1)
n,r ≥ rσn

2(n− 1)x2−r/(r−1)
n

.(2.8)

Proof. We note first in our case σn = (n − 1)(P 2
n,1 − P 2

n,2). By Lemma 2.1, there exists y =
(y1, · · · , yr) with x1 ≤ y1 ≤ · · · ≤ yr ≤ xn such that Pn,i(x) = Pr,i(y), 0 ≤ i ≤ r. Further note that
Pr,r(y) = Gr, Pr,r−1(y) = G

r/(r−1)
r /H

1/(r−1)
r . By a result of the author[15], we have

(P 2
r,1(y)− P 2

r,2(y))/2y2
1 ≥ lnPr,r−1(y)− lnPr,r(y) ≥ (P 2

r,1(y)− P 2
r,2(y))/2y2

r .

Inequality (2.7) then follows from this and Lemma 2.1. Similarly, (2.8) follows from Theorem 3.1
in [16] and Lemma 2.1. �

Theorem 2.5. Inequality (1.4) holds for r = 1 ≤ k ≤ n with equality holding if and only if
x1 = · · · = xn when k 6= n and xn+1 = An when k = n.

Proof. We use the idea in [8] and we may assume k < n. In our case, (1.4) is equivalent to

(2.9)
( P k+1

n+1,k+1/P k
n,k

P k+1
n+1,k+1,t/P k

n,k,t

)( Pn,1

Pn,1,t

)k ≤
( Pn+1,1

Pn+1,1,t

)k+1
.

Using the relation

P k+1
n+1,k+1 =

n− k

n + 1
P k+1

n,k+1 +
k + 1
n + 1

xn+1P
k
n,k,
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we can express the first factor on the left-hand side of (2.9) as

(n− k)P k+1
n,k+1/P k

n,k + (k + 1)xn+1

(n− k)P k+1
n,k+1,t/P k

n,k,t + (k + 1)(xn+1 + t)
.

Similarly, by Theorem 2.3 with α = 0,( Pn+1,1

Pn+1,1,t

)k+1 =
( Pn+1,1(xn+1, Pn,1, · · · , Pn,1)
Pn+1,1(xn+1 + t, Pn,1 + t, · · · , Pn,1 + t)

)k+1

≥
( Pn+1,k+1(xn+1, Pn,1, · · · , Pn,1)
Pn+1,k+1,t(xn+1 + t, Pn,1 + t, · · · , Pn,1 + t)

)k+1

=
(n− k)P k+1

n,1 + (k + 1)xn+1P
k
n,1

(n− k)P k+1
n,1,t + (k + 1)(xn+1 + t)P k

n,1,t

.

Thus our conclusion will follow provides that

(n− k)P k+1
n,k+1/P k

n,k + (k + 1)xn+1

(n− k)P k+1
n,k+1,t/P k

n,k,t + (k + 1)(xn+1 + t)
≤ (n− k)Pn,1 + (k + 1)xn+1

(n− k)Pn,1,t + (k + 1)(xn+1 + t)
.

If x1 = · · · = xn then equality holds above, otherwise little calculation shows the above is equivalent
to

Pn,1 − P k+1
n,k+1/P k

n,k

Pn,1,t − P k+1
n,k+1,t/P k

n,k,t

− 1 ≥ −t(n + 1)
(n− k)Pn,1,t + (k + 1)(xn+1 + t)

.

Since only the denominator on the right-hand side above depends on xn+1, it suffices to show the
left-hand side above ≥ 0(the case xn+1 →∞) and this last inequality follows by using the method
in the proof of Theorem 2.4 combined with the case s = −1 in Theorem 3.1 of [13] and Lemma
2.1. �

Corollary 2.1. For r = 1 ≤ k ≤ n,

(k + 1)
( P k

n+1,k

P k+1
n+1,k+1

− 1
An+1

)
≥ k

(P k−1
n,k−1

P k
n,k

− 1
An

)
.

Proof. It follows from Theorem 2.5 that the function f(t) = (k + 1)
(
ln(An+1,t)− ln(Pn+1,k+1,t)

)
−

k
(
ln(An,t)− ln(Pn,k,t)

)
is a decreasing function of t and the conclusion follows from f ′(0) ≤ 0. �

3. The Derived Means and Mixed-Mean Inequalities

Let I = [m,M ] with 0 < m < M and fix n, qi, 1 ≤ i ≤ n, we may think Mn,r’s as a family
of mappings, parameterized by r, from (0,∞)n to (0,∞), such that Mn,r(x) ∈ I for x ∈ In,
Mn,r(kx) = kMn,r(x) for k > 0 and Mn,r ≥ Mn,s for r > s. We may thus regard any family of
mappings satisfying the above properties to be certain family of “generalized” means. One example
is given by the family of Rr = M r

n,r/M
r−1
n,r−1’s, parameterized by r. Note for r > s, Rr ≥ Rs(see

[4]). Furthermore, we may think of Rr’s as the family of means derived from that of Mn,r’s since
Rr = 1/f ′(0) with f(t) = ln Mn,r,t. More generally, we can think of Rr’s as a subfamily of the
family of Rr,s’s, parameterized by both r and s. Here

Rr,s = (
M r

n,r

M s
n,s

)
1

r−s , r 6= s;Rr,r = exp(
∑n

i=1 qia
r
i ln ai∑n

i=1 qiar
i

).

We note for fixed r(resp. s), Rr,s is an increasing function of s(resp. r)(Theorem 3.2, [21]).
Moreover, we have the Beckenbach-Dresher inequality(see [4, 10, 17]):



6 PENG GAO

Theorem 3.1. Let r ≥ 1 ≥ s ≥ 0, r 6= s and xi, yi > 0 for i = 1, 2, · · · , n, then

(3.1) (
∑n

i=1(xi + yi)r∑n
i=1(xi + yi)s

)1/(r−s) ≤ (
∑n

i=1 xr
i∑n

i=1 xs
i

)1/(r−s) + (
∑n

i=1 yr
i∑n

i=1 ys
i

)1/(r−s),

and the inequality is reversed for 1 ≥ r ≥ 0 ≥ s.

Similarly, we can consider the family of Pn,r,r−1 = P r
n,r/P r−1

n,r−1’s, parameterized by r with 1 ≤
r ≤ n. Theorem 2.1 implies Pn,r,r−1 ≤ Pn,s,s−1 for r > s. Observe Pn,r,r−1 = 1/f ′(0) with
f(t) = lnPn,r,t, so we may think of Pn,r,r−1’s as the family of means derived from that of Pn,r’s.
More generally, we may also think of Pn,r,r−1’s as a subfamily of Pn,r,s’s, parameterized by both r
and s with 0 ≤ s < r ≤ n. Here

Pn,r,s = (
P r

n,r

P s
n,s

)1/(r−s).

Analogue to Theorem 3.1, we have the following result of M. Marcus and L. Lopes[20](see also
pp. 33-35 in [5]):

Theorem 3.2. Let 0 ≤ s < r ≤ n and xi, yi > 0 for i = 1, 2, · · · , n, then

Pn,r,s(x + y) ≥ Pn,r,s(x) + Pn,r,s(y),

with equality holding if and only if r = 1 or there exists a constant λ such that x = λy.

We want to establish certain mixed-mean inequalities among each families we considered above.
From now on the notations we use will be consistent with those defined in the paragraph containing
Theorem 1.6. First, we state a Lemma of C. Tarnavas and D. Tarnavas[22].

Lemma 3.1. Let f : R → R be a convex function and suppose for n ≥ 2, 1 ≤ k ≤ n − 1,
Wnwk −Wkwn > 0. Then

1
Wn−1

n−1∑
k=1

wkf(Wn−1Ak) ≥
1

Wn

n∑
k=1

wkf(WnAk − wnxk).

The equality holds if n = 2 or x1 = · · · = xn when f(x) is strictly convex. When f(x) is concave,
then the above inequality is reversed.

We now relate Lemma 3.1 to Schur convexity. We first recall a few notations, which the reader
can find in [5],§29 − §31. An n × n matrix S = [sij ] is a doubly stochastic matrix if sij ≥ 0 for
1 ≤ i, j ≤ n, and

∑n
j=1 sij =

∑n
i=1 sij = 1, 1 ≤ i, j ≤ n. Let In = I× I×· · ·× I ( n copies), where I

is an interval of the real line. A function f : In → R is Schur convex if for every doubly stochastic
matrix S, f(Sx) ≤ f(x) for all x ∈ In and f is Schur concave if the inequality is reversed. If f also
has continuous partial derivatives on In, then f is Schur convex if and only if

(3.2) (xi − xj)(
∂f

∂xi
− ∂f

∂xj
) ≥ 0.

Consider the case wi = 1, 1 ≤ i ≤ n and let u be an n(n−1)-tuple ((n−1)A1, · · · , (n−1)A1, (n−
1)A2, · · · , (n−1)A2, · · · , (n−1)An−1, · · · , (n−1)An−1) with each of the term (n−1)Ai, 1 ≤ i ≤ n−1
repeating n times and let v be an n(n − 1)-tuple (nA1 − x1, · · · , nA1 − x1, nA2 − x2, · · · , nA2 −
x2, · · · , nAn − xn, · · · , nAn − xn) with each of the term nAi − xi, 1 ≤ i ≤ n repeating n− 1 times.
On writing xi = iAi − (i − 1)Ai−1, it is easy to see that there exists a doubly stochastic matrix
S such that v = Su. Hence for a Schur convex function f , we have f(v) ≤ f(u). Now consider
f(x) = (

∑n(n−1)
i=1 xr

i /
∑n(n−1)

i=1 xs
i )

1/(r−s), r > s. It is easy to check via (3.2) that f is Schur concave
for s ≤ 0 ≤ r ≤ 1 and Schur convex for 0 ≤ s ≤ 1 ≤ r. Hence we obtain
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Lemma 3.2. Let wi = 1, 1 ≤ i ≤ n. For 0 ≤ s ≤ 1 ≤ r,

(
M r

n,r(nAn − xn)
M s

n,s(nAn − xn)
)1/(r−s) ≤ (

M r
n−1,r((n− 1)An−1)

M s
n−1,s((n− 1)An−1)

)1/(r−s),

and the above inequality reverses when s ≤ 0 ≤ r ≤ 1.

Define P1,2 = P1,1, we have

Lemma 3.3. For n ≥ 2,

Pn−1,2((n− 1)An−1) ≤ Pn,2(nAn − xn),
P 2

n−1,2((n− 1)An−1)
Pn−1,1((n− 1)An−1)

≤
P 2

n,2(nAn − xn)
Pn,1(nAn − xn)

,

with equality holding in both cases if and only if n = 2 or x1 = · · · = xn.

Proof. We may assume n ≥ 3 here. Write ai = (n− 1)Ai, 1 ≤ i ≤ n− 1; bj = nAj − xj , 1 ≤ j ≤ n.
Note n

∑n−1
i=1 ai = (n− 1)

∑n
i=1 bi, hence it is enough to prove the first assertion of the lemma.

Lemma 3.1 with f(x) = x2 implies (n− 1)
∑n

i=1 b2
i ≤ n

∑n−1
i=1 a2

i . On expanding (n
∑n−1

i=1 ai)2 =
((n− 1)

∑n
i=1 bi)2, we obtain

n2
n−1∑
i=1

a2
i + 2n2

∑
1≤i6=j≤n−1

aiaj = (n− 1)2
n∑

i=1

b2
i + 2(n− 1)2

∑
1≤i6=j≤n

bibj

≤ n(n− 1)
n−1∑
i=1

a2
i + 2(n− 1)2

∑
1≤i6=j≤n

bibj .

Hence

(3.3) n

n−1∑
i=1

a2
i + 2n2

∑
1≤i6=j≤n−1

aiaj ≤ 2(n− 1)2
∑

1≤i6=j≤n

bibj .

Using Mn,2 ≥ An = Pn,1 ≥ Pn,2, we obtain

1
n− 1

n−1∑
i=1

a2
i ≥

1(
n−1

2

) ∑
1≤i6=j≤n−1

aiaj .

So by (3.3),
1(

n−1
2

) ∑
1≤i6=j≤n−1

aiaj ≤
1(
n
2

) ∑
1≤i6=j≤n

bibj ,

which is just what we want. �

We now extend the result of Theorems 1.5, 1.6 to the symmetric means case:

Theorem 3.3. Define Pn,2 = (P1,2, · · · , Pn,2),P2
n,2/Pn,1 = (P 2

1,2/P1,1, · · · , P 2
n,2/Pn,1), then

Pn,2 + (n− 1)Pn−1,2(Pn−1,1) ≤ nPn,2(Pn,1),(3.4)
P 2

n,2

Pn,1
+ (n− 1)

P 2
n−1,2(An−1)

Pn−1,1(An−1)
≤ n

P 2
n,2(Pn,1)

Pn,1(Pn,1)

with equality holding if and only if x1 = · · · = xn. It follows that

Pn,1(Pn,2) ≤ Pn,2(Pn,1); Pn,1(P2
n,2/Pn,1) ≤ P 2

n,2(Pn,1)/Pn,1(Pn,1)

with equality holding if and only if x1 = · · · = xn.



8 PENG GAO

Proof. Since the proofs are similar, we will only prove (3.4) here. We use the idea in [22]. By
Lemma 3.3

Pn,2 + (n− 1)Pn−1,2(Pn−1,1) ≤ Pn,2 + Pn,2(nAn − xn)
≤ Pn,2(nAn − xn + xn) = nPn,2(Pn,1),

where the last inequality follows from Theorem 3.2 for the case r = 2, s = 0. �

Now for r > s, define (Mr
i,r/M

s
i,s)

1/(r−s) = ((M r
1,r/M

s
1,s)

1/(r−s), · · · , (M r
i,r/M

s
i,s)

1/(r−s)) and by
repeating the proof of Theorem 3.3 using the Lemma 3.2 and (3.1), we obtain

Theorem 3.4. Let wi = 1, xi > 0, then for r > s, 0 ≤ s ≤ 1 ≤ r,

(Mr
n,r/M

s
n,s)

1/(r−s) + (n− 1)(M r
n−1,r/M

s
n−1,s(An))1/(r−s) ≥ n(M r

n,r/M
s
n,s(An))1/(r−s),

An((Mr
i,r/M

s
i,s)

1/(r−s)) ≥ (M r
n,r/M

s
n,s(An))1/(r−s),

and the above inequality reverses for s ≤ 0 ≤ r ≤ 1.

References
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