LOGARITHMICALLY COMPLETELY MONOTONIC RATIOS OF
MEAN VALUES AND AN APPLICATION

CHAO-PING CHEN AND FENG QI

ABSTRACT. In the article, some strictly Logarithmically completely monotonic
ratios of mean values are presented.

A function f is said to be completely monotonic on an interval I, if f has
derivatives of all orders on I and satisfies

(1" (@) =0 (1)
for z € I and n > 0. If inequality (1) is strict, then f is said to be strictly completely
monotonic on 1.

Completely monotonic functions have remarkable applications in different math-
ematical branches. For instance, they play a role in potential theory [3], probability

theory [4, 7, 10], physics [5], numerical and asymptotic analysis [8, 18], and combi-
natorics [1]. A detailed collection of the most important properties of completely
monotonic functions can be found in [17, Chapter IV], and in an abstract in [2].

A positive function f is said to be logarithmically completely monotonic on an
interval I if its logarithm In f satisfies

(—1)"[In f(2)]™ >0 (2)

for x € I and n € N. If inequality (2) is strict, then f is said to be strictly
logarithmically completely monotonic.

The terminology “(strictly) logarithmically completely monotonic function” was
named first by F. Qi, B.-N. Guo and Ch.-P. Chen in [11, 12, 13]. It was also showed
in these papers that a (strictly) logarithmically completely monotonic function is
also (strictly) completely monotonic.

The generalized logarithmic mean or Stolarsky mean L. (a,b) of two positive
numbers a and b was introduced in [9, 15, 16] and [6, p. 6] for a = b by L,(a,b) = a
and for a # b by

b7'+1 _ ar—f—l 1/r
L,(a,b) = ((r~|—1)(b—a)) , r#F—=1,0; (3)
h—
L,1(a, b) = ﬁ; (4)
b\ 1/ (b—a)
Lo(a,b) = é <2) . (5)
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Here L_i(a,b) £ L(a,b) and Lo(a,b) £ I(a,b) are the logarithmic and identric
means, respectively. When a # b, L,(a,b) is a strictly increasing function of r.
Further,

Ll(av b) = A(av b)v L—Q(av b) = G(aa b)’ (6)

where A and G are the arithmetic and geometric means, respectively.
For a # b, the following well known inequalities hold

H(a,b) < G(a,b) < L(a,b) < I(a,b) < A(a,b), (7)

where H is the harmonic mean.
In this paper, the (logarithmically) complete monotonicity of some ratios of mean
values are obtained. Our main results are as follows.

Theorem 1. The ratios
A(z,z+1)  A(z,z+1) Gz,z+1)
I(z,z+1)’ G(x,gchl):H(x,erl)7
A(z,x + 1) I(z,z+1) I(z,z+1)
H(z,z+1) G(z,z+1)" H(z,z+1)

(®)

9)

of mean values A, G, H and I are strictly logarithmically completely monotonic in
(0,00) and the ratio

A 1
Ao+l (10)
L(z,x+1)
is strictly completely monotonic in (0, 00).
Proof. Define for x > 0
A(z,z +1) x+1/2
=1 =1 . 11
$an@) =0 Fo ey SN A 1) (11)
Differentiating directly, using the following representations for x > 0, s > 0 and
neN
o -t _ ,—xt
Inx :/ Ldt, (12)
0 t
1 1 o
= -l (@Hot gy 13
e 1

and the power series expansion of te!/2 — et + 1 at 0, we conclude that

oo
(—1)"¢%); (2) = —/ (te!/? — et + 1)t ~2e~ (=Dt q¢
0

= /1 1 1 o o (14)
- - tn+k 2 (x—i—l)t dt
Z(k 2'“) (kfn!/o ‘

=3

k
>0

A(z,z+1)
I(z,x+1)

This means that the ratio is strictly logarithmically monotonic in (0, 00).

Define for z > 0

L Alzyz+1) 1 1 1
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then, by argument as above, we have for any nonnegative integer n

(*U%X?G(x) ! / (¢! +1 — 2e/2)tn—Te= (1t gy

2 Jo
- %Z < > 1' /oo grth—le=(a+1)t 4 (16)
> 0.

ThlS reveals that the ratio ng rilg is strictly logarithmically completely monotonic
n (0, 00).
Define for x > 0

da/n(z) =In Az, z + 1)

H(z,z+1)

then we have for nonnegative integer n

(*1)%%/)11(93) = / (¢! —2et/?2 4 1)L~ (@Dt gy
0

= Z( ) 1' /OO grth—le=(+1)t 4 (18)

> 0.

=92In <x+;> —Inz —In(z+ 1), (17)

A(x,z+1)

Therefore, it follows that the ratio T(watl)

monotonic in (0, 00).
Define for z > 0

1 1 1
br/c(xr) =In —7——= =2ln <1+x)+21n(x+1)21nx1. (19)

By standard argument above, differentiation for nonnegative integer n yields
1

(1 o) =5 [ e =ttty ey
0

_ % k}; 2 /oo k=2~ (@)t gy (20)
k=3 70

> 0.

is strictly logarithmically completely

I(z,xz+1)

This shows that the ratio Glwatl)

tonic in (0, 00).
Define for x > 0

I
gbI/H(z)ln}mxln <1+i>+ln (LIZ+;) —Inz -1 (21)

By the same procedure as above, we obtain for n € N

(=" (bgT/L)H( )= / (e' +tet/? —tet —t — 1)t 2e" @ TVl

1 1 1 o 9 _ (22)
— 1o - ) - n+k—2_ —(z+1)t dt
Z( R 2k—1><k—1>!/0 e

is also strictly logarithmically completely mono-
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Thus it is proved that % is also strictly logarithmically completely monotonic
in (0, 00).
Define for z > 0
Az, xz + 1) 1 1
=—<= —JIn{1+—). 2
ownle) = 6 m = (242 (1+3) =

Straightforward differentiating, using formulas (12) and (13) and expanding the
function 2e* — te! —t — 2 at 0 yields

1 oo
(=" ¢A/L( z) = —5/ (2e" —te! —t — Q)tn—2€—(x+1)t dt
0

o0 e’}
_lyko2 / =241t gy 24)
2 0

This tell us that the ratio
The proof is complete. O

is strictly completely monotonic in (0, 00).

In the final, as an applications of Theorem 1, we give the following remark.

Remark 1. As stated above, a strictly logarithmically completely monotonic func-
tion is also strictly completely monotonic. As a result, we deduce from Theorem 1

that
1 T 1\" 1
1-— — 1+ — 1-— 2
e( 2x+1)<e’/x+1<(+x) <e( 2$+2> (25)

for x > 0. Inequality (25) can be found in [14, 19].
By using the right-hand side of (25), Yang in [19] obtained a strengthened
Hardy’s inequality:

Z An+1 (alla;Q cay” 1/A <e Z |: A‘f')\):| AnGn, (26)
n=1

where 0 < A\pi1 < Ay, Ay =5 Apanda, >0forneN,0< Zzozl Al < 00.

m=1

In particular, if setting A, = 1, then (26) becomes the following strengthened
Carleman’s inequality [19]:

= 1/n 1
;(alag- an)/™ < enz:l [1 — 2(n—|—1)] (27)
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