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Abstract. In the article, some strictly Logarithmically completely monotonic

ratios of mean values are presented.

A function f is said to be completely monotonic on an interval I, if f has
derivatives of all orders on I and satisfies

(−1)nf (n)(x) ≥ 0 (1)

for x ∈ I and n ≥ 0. If inequality (1) is strict, then f is said to be strictly completely
monotonic on I.

Completely monotonic functions have remarkable applications in different math-
ematical branches. For instance, they play a role in potential theory [3], probability
theory [4, 7, 10], physics [5], numerical and asymptotic analysis [8, 18], and combi-
natorics [1]. A detailed collection of the most important properties of completely
monotonic functions can be found in [17, Chapter IV], and in an abstract in [2].

A positive function f is said to be logarithmically completely monotonic on an
interval I if its logarithm ln f satisfies

(−1)n[ln f(x)](n) ≥ 0 (2)

for x ∈ I and n ∈ N. If inequality (2) is strict, then f is said to be strictly
logarithmically completely monotonic.

The terminology “(strictly) logarithmically completely monotonic function” was
named first by F. Qi, B.-N. Guo and Ch.-P. Chen in [11, 12, 13]. It was also showed
in these papers that a (strictly) logarithmically completely monotonic function is
also (strictly) completely monotonic.

The generalized logarithmic mean or Stolarsky mean Lr(a, b) of two positive
numbers a and b was introduced in [9, 15, 16] and [6, p. 6] for a = b by Lr(a, b) = a
and for a 6= b by

Lr(a, b) =
(

br+1 − ar+1

(r + 1)(b− a)

)1/r

, r 6= −1, 0; (3)

L−1(a, b) =
b− a

ln b− ln a
; (4)

L0(a, b) =
1
e

(
bb

aa

)1/(b−a)

. (5)
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Here L−1(a, b) , L(a, b) and L0(a, b) , I(a, b) are the logarithmic and identric
means, respectively. When a 6= b, Lr(a, b) is a strictly increasing function of r.
Further,

L1(a, b) , A(a, b), L−2(a, b) , G(a, b), (6)

where A and G are the arithmetic and geometric means, respectively.
For a 6= b, the following well known inequalities hold

H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b), (7)

where H is the harmonic mean.
In this paper, the (logarithmically) complete monotonicity of some ratios of mean

values are obtained. Our main results are as follows.

Theorem 1. The ratios

A(x, x + 1)
I(x, x + 1)

,
A(x, x + 1)
G(x, x + 1)

=
G(x, x + 1)
H(x, x + 1)

, (8)

A(x, x + 1)
H(x, x + 1)

,
I(x, x + 1)
G(x, x + 1)

,
I(x, x + 1)
H(x, x + 1)

(9)

of mean values A, G, H and I are strictly logarithmically completely monotonic in
(0,∞) and the ratio

A(x, x + 1)
L(x, x + 1)

(10)

is strictly completely monotonic in (0,∞).

Proof. Define for x > 0

φA/I(x) = ln
A(x, x + 1)
I(x, x + 1)

= ln
x + 1/2

(x + 1)(1 + 1/x)x
. (11)

Differentiating directly, using the following representations for x > 0, s ≥ 0 and
n ∈ N

lnx =
∫ ∞

0

e−t − e−xt

t
dt, (12)

1
(x + s)n

=
1

(n− 1)!

∫ ∞

0

tn−1e−(x+s)t dt (13)

and the power series expansion of tet/2 − et + 1 at 0, we conclude that

(−1)nφ
(n)
A/I(x) = −

∫ ∞

0

(tet/2 − et + 1)tn−2e−(x+1)t dt

=
∞∑

k=3

(
1
k
− 1

2k−1

)
1

(k − 1)!

∫ ∞

0

tn+k−2e−(x+1)t dt

> 0.

(14)

This means that the ratio A(x,x+1)
I(x,x+1) is strictly logarithmically monotonic in (0,∞).

Define for x > 0

φA/G(x) = ln
A(x, x + 1)
G(x, x + 1)

= ln
(

x +
1
2

)
− 1

2
lnx− 1

2
ln(x + 1), (15)
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then, by argument as above, we have for any nonnegative integer n

(−1)nφ
(n)
A/G(x) =

1
2

∫ ∞

0

(et + 1− 2et/2)tn−1e−(x+1)t dt

=
1
2

∞∑
k=2

(
1− 1

2k−1

)
1
k!

∫ ∞

0

tn+k−1e−(x+1)t dt

> 0.

(16)

This reveals that the ratio A(x,x+1)
G(x,x+1) is strictly logarithmically completely monotonic

in (0,∞).
Define for x > 0

φA/H(x) = ln
A(x, x + 1)
H(x, x + 1)

= 2 ln
(

x +
1
2

)
− lnx− ln(x + 1), (17)

then we have for nonnegative integer n

(−1)nφ
(n)
A/H(x) =

∫ ∞

0

(et − 2et/2 + 1)tn−1e−(x+1)t dt

=
∞∑

k=2

(
1− 1

2k−1

)
1
k!

∫ ∞

0

tn+k−1e−(x+1)t dt

> 0.

(18)

Therefore, it follows that the ratio A(x,x+1)
H(x,x+1) is strictly logarithmically completely

monotonic in (0,∞).
Define for x > 0

φI/G(x) = ln
I(x, x + 1)
G(x, x + 1)

= x ln
(

1 +
1
x

)
+

1
2

ln(x + 1)− 1
2

lnx− 1. (19)

By standard argument above, differentiation for nonnegative integer n yields

(−1)nφ
(n)
I/G(x) =

1
2

∫ ∞

0

(2et − tet − t− 2)tn−2e−(x+1)t dt

=
1
2

∞∑
k=3

k − 2
k!

∫ ∞

0

tn+k−2e−(x+1)t dt

> 0.

(20)

This shows that the ratio I(x,x+1)
G(x,x+1) is also strictly logarithmically completely mono-

tonic in (0,∞).
Define for x > 0

φI/H(x) = ln
I(x, x + 1)
H(x, x + 1)

= x ln
(

1 +
1
x

)
+ ln

(
x +

1
2

)
− lnx− 1. (21)

By the same procedure as above, we obtain for n ∈ N

(−1)nφ
(n)
I/H(x) =

∫ ∞

0

(et + tet/2 − tet − t− 1)tn−2e−(x+1)t dt

=
∞∑

k=3

(
1− 1

k
− 1

2k−1

)
1

(k − 1)!

∫ ∞

0

tn+k−2e−(x+1)t dt

> 0.

(22)
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Thus, it is proved that I(x,x+1)
H(x,x+1) is also strictly logarithmically completely monotonic

in (0,∞).
Define for x > 0

φA/L(x) =
A(x, x + 1)
L(x, x + 1)

=
(

x +
1
2

)
ln

(
1 +

1
x

)
. (23)

Straightforward differentiating, using formulas (12) and (13) and expanding the
function 2et − tet − t− 2 at 0 yields

(−1)nφ
(n)
A/L(x) = −1

2

∫ ∞

0

(2et − tet − t− 2)tn−2e−(x+1)t dt

=
1
2

∞∑
k=3

k − 2
k!

∫ ∞

0

tn+k−2e−(x+1)t dt

> 0.

(24)

This tell us that the ratio A(x,x+1)
L(x,x+1) is strictly completely monotonic in (0,∞).

The proof is complete. �

In the final, as an applications of Theorem 1, we give the following remark.

Remark 1. As stated above, a strictly logarithmically completely monotonic func-
tion is also strictly completely monotonic. As a result, we deduce from Theorem 1
that

e

(
1− 1

2x + 1

)
< e

√
x

x + 1
<

(
1 +

1
x

)x

< e

(
1− 1

2x + 2

)
(25)

for x > 0. Inequality (25) can be found in [14, 19].
By using the right-hand side of (25), Yang in [19] obtained a strengthened

Hardy’s inequality:
∞∑

n=1

λn+1

(
aλ1
1 aλ2

2 · · · aλn
n

)1/Λn
< e

∞∑
n=1

[
1− λn

2(Λn + λn)

]
λnan, (26)

where 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm and an ≥ 0 for n ∈ N, 0 <
∑∞

n=1 λnan < ∞.
In particular, if setting λn ≡ 1, then (26) becomes the following strengthened

Carleman’s inequality [19]:
∞∑

n=1

(a1a2 · · · an)1/n < e
∞∑

n=1

[
1− 1

2(n + 1)

]
an. (27)
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