ON THE LUPAS-BEESACK-PECARIC INEQUALITY FOR
ISOTONIC LINEAR FUNCTIONALS

S.S. DRAGOMIR

ABSTRACT. Some inequalities related to the Lupasg-Beesack-Pecarié result for
m — W—convex and M — ¥—convex functions and applications are given.

1. INTRODUCTION

Let L be a linear class of real-valued functions g : £ — R having the properties

(L1) f,g € Limply (af + Bg) € L for all o, € R;

(L2) 1€ L, ie.,if fo(t) =1,t € E then fy € L.

An isotonic linear functional A : L — R is a functional satisfying

(Al) A(af+Bg) =aA(f)+PBA(g) forall f,ge L and o, 5 € R.

(A2) If f € L and f >0, then A (f) > 0.

The mapping A is said to be normalised if

(A3) A(1)=1.

Isotonic, that is, order-preserving, linear functionals are natural objects in analy-
sis which enjoy a number of convenient properties. Thus, they provide, for example,
Jessen’s inequality, which is a functional form of Jensen’s inequality (see [2] and
31)-

We recall Jessen’s inequality (see also [9]).

Theorem 1. Let ¢ : I C R— R (T is an interval), be a convex function and
f:E — I suchthatpof, fe L. If A: L — R is an isotonic linear and normalised
functional, then

(1.1) ¢ (A(f) <A(gof).

A counterpart of this result was proved by Beesack and Pecari¢ in [2] for compact
intervals I = [a, f].
Theorem 2. Let ¢ : [a, f] C R — R be a convez function and [ : E — |a, 8] such
that po f, fe€ L. If A: L — R is an isotonic linear and normalised functional,
then

B—A(f) Alf) —«a
(1.2) A(d’of)ﬁﬁ_ia‘b(a)Jrﬂ(b(ﬂ)-
Remark 1. Note that (1.2) is a generalisation of the inequality
b— Aler) Ale1) —a
(1.3) A(g) < ﬁ¢(a)+ﬁ¢(b)
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due to Lupas [1] (see for example [2, Theorem A]), which assumed E = [a,b], L
satisfies (L1), (L2), A : L — R satisfies (A1), (A2), A(1) =1, ¢ is convex on E
and ¢ € L, e; € L, where e1 (x) =z, x € [a,]].

The following inequality is well known in the literature as the Hermite-Hadamard
inequality

b
(1.4) @(a;b><bia/(l<p(t)dt<90(a);w(b)7

provided that ¢ : [a,b] — R is a convex function.

Using Theorem 1 and Theorem 2, we may state the following generalisation of
the Hermite-Hadamard inequality for isotonic linear functionals ([4] and [5]).
Theorem 3. Let ¢ : [a,b] C R — R be a convex function and e : E — [a,b] with

e, poe € L. If A — R is an isotonic linear and normalised functional, with
Ale) = £, then

(1.5) @(“;b)smaﬁoe)sw.

For other results concerning convex functions and isotonic linear functionals, see
[4] — [9] and the recent monograph [12].

2. THE CONCEPTS OF m — W—CONVEX AND M — V—CONVEX FUNCTIONS

Assume that the mapping ¥ : I C R — R (I is an interval) is convex on I and
m € R. We shall say that the mapping ¢ : I — R is m — ¥ — lower convez if ¢ —mW¥
is a convex mapping on I (see [11]). We may introduce the class of functions

(2.1) L(I,m,¥):={¢:1—R|¢p—mT isconvexon [}.

Similarly, for M € R and ¥ as above, we can introduce the class of M — W—upper
conver functions by

(2.2) U ,M,T):={¢p: ] >RMU —¢ is convex on I}.

The intersection of these two classes will be called the class of (m, M) — ¥—convex
functions and will be denoted by (see [11])

(2.3) B(I,m, M, W) :=L£(I,m,¥)NUI,M,7T).

Remark 2. If U € B(I,m,M,¥), then ¢ — m¥ and MV — ¢ are conver and
then (¢ — mW¥U) + (MU — ¢)is also convex which shows that (M —m) ¥ is convez,
implying that M > m (as U is assumed not to be the trivial convex function W (t) =
0,tel)

The above concepts may be introduced in the general case of a convex subset in
a real linear space, but we do not consider this extension here.

In [10], S.S. Dragomir and N.M. Ionescu introduced the concept of g—convez
dominated mappings, for a mapping f : I — R. We recall this, by saying, for a
given convex function g : I — R, the function f : I — R is g—conver dominated
iff g+ f and g — f are convex mappings on I. In [10], the authors pointed out a
number of inequalities for convex dominated functions related to Jensen’s, Fuchs’,
Pecari¢’s, Barlow-Marshall-Proschan and Vasié¢-Mijalkovié¢ results, etc.

We observe that the concept of g—convex dominated functions can be obtained

as a particular case from (m, M) —W¥—convex functions by choosingm = —1, M =1
and ¥ = g.
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The following lemma holds (see also [11]).

Lemma 1. Let ¥, ¢ : I CR — R be differentiable functions on I and ¥ is a conver
function on I.

(i) For m € R, the function ¢ € L (I, m, \I/) iff

(2.4) m (¥ (z) =¥ (y) =¥ (y) (z —y)] <o (x) =D (y) — ¢ (y) (z — )
for all x,y el
(ii) For M € R, the function ¢ € U (L M, \If) iff

(2.5) ¢(x) = (y) —¢' (y) (& —y) < M[¥(2) - T (y) - (y) (z —y)]
for all x,y el.
(ii7) For M,m € R with M > m, the function ¢ € B (I, m, M, \Il> iff both (2.4)
and (2.5) hold.

Proof. Follows by the fact that a diﬁ’erentiajale mapping h : I — R is convex on I
iff hz)—h(y) >h (y) (z—y) for all z,y €1. 11

Another elementary fact for twice differentiable functions also holds (see also
[11]).

Lemma 2. Let U,¢: I CR — R be twice differentiable on I and U is convex on I.
(i) For m € R, the function ¢ € L <I, m, \I!> iff
(2.6) mU” (t) < ¢" (t) forallte L
(i1) For M € R, the function ¢ € U (L M, \I/) iff
(2.7) ¢" (t) < MY (t) forallte I
(#i1) For M,m € R with M > m, the function ¢ € B (f,m, M, ‘1/> iff both (2.6)
and (2.7) hold.

Proof. Follows by the fact that a twice differentiable function h : I — R is convex
on Liff b (t) >0 for all t €. I
We consider the p—logarithmic mean of two positive numbers given by

a if b=a,

Ly (a,b) := [ pptl _ gptl
(

1
= MR
and p € R\ {-1,0}.
The following proposition holds (see also [11]).
Proposition 1. Let ¢ : (0,00) — R be a differentiable mapping.
(i) For m € R, the function ¢ € L ((0,00),m, (-)") with p € (—o00,0) U (1, 00)
if

(2.8) mp (x —y) [Lii} (z,y) =y | <o(x) = (y) — ¢ (v) (x—y)

for all z,y € (0,00) .
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(ii) For M € R, the function ¢ € U ((0,00), M, (-)*) with p € (—o0,0) U (1, 00)
iff

(29) 9@ —0() ¢ ) (@ —y) < Mp@—y) |} (@) — ']

for all z,y € (0,00).
(iti) For M,m € R with M > m, the function ¢ € B((0,00), M, (-)") with
p € (—00,0) U (1,00) iff both (2.8) and (2.9) hold.

The proof follows by Lemma 1 applied for the convex mapping W () = P,
p € (—00,0) U (1,00) and via some elementary computation. We omit the details.
The following corollary is useful in practice.

Corollary 1. Let ¢ : (0,00) — R be a differentiable function.

(i) Form € R, the function ¢ is m— quadratic-lower convez (i.e., for p = 2) iff

(2.10) m(z—y)* <o) —dy) —¢ () (= —y)

for all z,y € (0,00).
(ii) For M € R, the function ¢ is M —quadratic-upper convez iff

(2.11) $(x)—d(y) — ¢ (y) (x—y) < M (z —y)°

for all z,y € (0,00).
(#i7) For m, M € R with M > m, the function ¢ is (m, M) —quadratic convez if
both (2.10) and (2.11) hold.

The following proposition holds (see also [11]).
Proposition 2. Let ¢ : (0,00) — R be a twice differentiable function.
(i) For m € R, the function ¢ € L ((0,00),m, (-)F) with p € (—o00,0) U (1, 00)

if
(2.12) p(p—1)mtP=2 < ¢" (t) for allt € (0,00).
(it) For M € R, the function ¢ € U ((0,00), M, (-)*) with p € (—o0,0) U (1, 00)
it
(2.13) " (t) <p(p—1)MtP=2 for allt € (0,00).

(i73) For m,M € R with M > m, the function ¢ € B((0,00),m, M, (-)*) with
p € (—00,0) U (1,00) iff both (2.12) and (2.13) hold.

As can be easily seen, the above proposition offers the practical criterion of
deciding when a twice differentiable mapping is (-)” —lower or (-)” —upper convex
and which weights the constant m and M are.

The following corollary is useful in practice.

Corollary 2. Assume that the mapping ¢ : (a,b) C R — R is twice differentiable.
(i) If i(nfb) @" (t) =k > —o0, then ¢ is g—quadmtic lower convex on (a,b);
te(a,

(ii) If sup ¢"(t) = K < oo, then ¢ is %—quadmtic upper convex on (a,b).
te(a,b)
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3. LUPAS-BEESACK-PECARIC INEQUALITY FOR m — ¥ —CONVEX AND
M — U—CONVEX FUNCTIONS

In [11], S.S. Dragomir proved the following inequality of Jessen’s type for m —
WU —convex and M — W—convex functions.

Theorem 4. Let ¥ : [ C R — R be a convex function and f : E — I such that
Vof, feLand A: L — R be an isotonic linear and normalised functional.

(i) If p € LI, m, V) and ¢po f € L, then we have the inequality

(3.1) m[A(Vo f) =W (A(f))] <A(dof)—o(A(Sf))-
(id) If p eU (I, M,¥) and ¢ o f € L, then we have the inequality
(3.2) Ao f) = (A(f)) S M[A(Yo f)—T(A(f))].

(#i1) If o € B(I,m, M, ¥) and ¢po f € L, then both (3.1) and (3.2) hold.
The following corollary is useful in practice.
Corollary 3. Let ¥ : I C R — R be a twice differentiable convex function on f,
f+E — I such that Vo f, f € L and A : L — R be an isotonic linear and
normalised functional.
(i) If ¢ : I — R is twice differentiable and ¢" (t) > m¥” (t), t € (where m is
a given real number), then (3.1) holds, provided that ¢ o f € L.
(ii) If ¢ : I — R is twice differentiable and ¢" (t) < MU" (t), t €I (where M is
a given real number), then (3.2) holds, provided that ¢ o f € L.
(iii) If ¢ : I — R is twice differentiable and m¥” (t) < ¢" (t) < MY” (t), t €,
then both (3.1) and (3.2) hold, provided ¢ o f € L.
We now prove the following new result.
Theorem 5. Let U : [a, f] CR — R be a convex function and f : I — [a, 8] such
that Wo f, f € L and A: L — R is an isotonic linear and normalised functional.

(i) If o € L(I,m,¥) and o f € L, then we have the inequality

(3.3) m W\I’(a)—FWW(ﬁ)—A(\I}of)
< A @+ 2% ) - a0).
(i) If o e U (I,M,¥) and ¢po f € L, then
(3.4 AWy @)+ 222 5) a0 )
< |52 g )+ D=2 (g~ awe ).

(tit) If p € B(I,m,M,¥) and ¢o f € L, then both (3.3) and (3.4) hold.

Proof. The proof is as follows.

(i) As ¢ € L(I,m, V) and ¢po f € L, it follows that ¢ — m¥ is convex and
(p —mP)o feL.
Applying Lupag-Beesack-Pecari¢’s inequality for the convex function ¢ —
mU, we get
B—A(f)

35 Al-m)on<ZEH G-mu) )+

Alf) -«

S o —mu) (9).
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However,

A((¢p=m¥)o f)=A(dpo f) —mA(Vof)
and then, after some simple computation, (3.5) is equivalent to (3.3).
(74) Goes likewise and we omit the details.
(#i7) Follows by (i) and (it).
|

The following corollary is useful in practice.

Corollary 4. Let ¥V : I C R — R be a twice differentiable convex function on Io,
f:+E — I such that Vo f, f € L and A : L — R is an isotonic linear and
normalised functional.
(i) If ¢ : I — R is twice differentiable, ¢ o f € L and ¢" (t) > mW” (t), t €1
(where m is a given real number), then (3.3) holds.
(ii) If ¢ : I — R is twice differentiable, ¢p o f € L and ¢" (t) < MY" (t), t el
(where m is a given real number), then (3.4) holds.
(iii) If m@" (t) < ¢" (t) < MVY” (t), t €I, then both (3.3) and (3.4) hold.
Some particular important cases of the above corollary are embodied in the
following propositions.
Io’roposition 3. Assume that the function ¢ : I C R — R is twice differentiable on
L

(i) Ifinf ¢" (t) = k > —oo, then we have the inequality:

tel
(3.6) P B A —ap - A()
< AW @+ 225 - a00).

provided that ¢ o f, f?, f € L.
(ii) If sup ¢” (t) = K < oo, then we have the inequality
tel

B=Af), o, A —a
(37) G ol

< Sla+p A -as-A(7).

provided that ¢ o f, f2, f € L. )
(iii) If —o < k < ¢"(t) < K < oo, t €I, then both (3.6) and (5.7) hold,
provided that ¢ o f, f?, f € L.

¢(B) = A(dof)

Proof. The proof is as follows.
(i) Consider the auxiliary mapping h (t) := ¢ (t) — 2kt>. Then " (t) = ¢" (t)—
k > 0 i.e., h is convex, or, equivalently, ¢ € L (I, %k, ()2) Applying
Corollary 4, we may state

ﬁ B—A(f) - A(f)_aﬁz_A(fz)}

a® +

2 0—a 08—«
< A @+ 2% ) - a0,
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which is clearly equivalent to (3.6)
(73) Goes likewise and we omit the details.
(#i7) Follows by (i) and (it).

Another result is the following one.

Proposition 4. Assume that the mapping ¢ : [a,f] C (0,00) — R is twice
differentiable on (c, ), Let p € (—00,0) U (1,00) and define g, : [, 5] — R,
9p (t) = ¢N (t) 2P,

(¢) Ifinf g, (t) =y > —oo, then we have the inequality
tel

(3.8) —— - [pEL T} (@, B) A () — aB (0 = 1) L5 (o, B) — A (f7)]

pp—1)

provided that ¢ o f, fP, f € L.

< 24 5(5) = A6 f),
(i) Ifsupgy (t) =T < oo, then we have the inequality

tel
ao A 2 - e
p(pﬁ_l)[PLi1(Q,B)A(f)—>aﬁ(p-1)L§ﬁ(avﬂ)—vA(fp)~

(190) If —oo <y <gp(t) <I'< oo, t el, then we have both (3.8) and (3.9).
Proof. The proof is as follows.
(i) Consider the auxiliary mapping h, (t) = ¢ (t) — ﬁt’”. Then
WD) = 6 () =t = B (12 (1) — )
= ") =) =0

That is, hy, is convex, or, equivalently, ¢ € L (L ﬁ7 (-)p>. Applying
Corollary 4, we may state

Y B—A(f) P A(f) -« D p
v o-D| Foa © + 5 a g —A(f )]
< AW ) A= 4oy,

B—a
which is equivalent to (3.8).
(77) Goes likewise.
(#it) Follows by () and (if).

08—«

The following proposition also holds.

Proposition 5. Assume that the mapping ¢ : [o, 3] C (0,00) — R is twice differ-
entiable on (o, 3). Define I (t) = t2¢" (t), t € [, B].
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(1) If inf [(t) =s> —o0, then we have the inequality

te(a,B)
(3.10) s {A (Inf)+In [1 (; ;)} t1- ﬁg}ﬂ
< AW+ 2% ) - a00).

provided that ¢ o f,Inf and f € L, and I (-,-) denotes the identric mean,
i.e., we recall it

u if v=u,
I (u,v) = )
LI
(i3) If sup [(t) =S < oo, then we have the inequality
te(a,B)

(3.11)

5o ¢ (B) — A(dof)

< s[Alnfﬂn[( )] .

(491) If —oo < s < I(t) < 5 < o0 fort € (a,f), then both (3.10) and (3.11)
hold.

Proof. The proof is as follows.

(i) Define the auxiliary function h (t) = ¢ (t) + slnt. Then
S 1
W) =6 (1)~ 5 = 5 (" (07 —5) 20,
showing that h is convex, or, equivalently, ¢ € L (I,s,—In(-)). Applying
Corollary 4, we may state that:

|52 e+ 220 )+ 4n )
< AW+ 22 ) - a0).

which is equivalent to (3.10).
(i1) Goes likewise.
(#it) Follows by () and (if).

Finally, the following result also holds.

Proposition 6. Assume that the mapping ¢ : [a, 3] C (0,00) — R is twice differ-
entiable on (o, B). Define I (t) =t¢" (t), t € I.

(i) If inf I(t)=0> —oo, then we have the inequality
te(a,f)

(3.12) slammiam - S D v ag - A
< BAWD gy A= 5 as0 ),

- 08—« 08—«
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provided that ¢ o f, fIn f, f € L and G (o, 3) = Vab is the geometric mean
and L («, 8) is the logarithmic mean, i.e., we recall it

o if B=a
A
Inf—Ina :

(#1) If sup I(t)=A < oo, then we have the inequality

te(aB)
(3.13) A )+ 222 5) - a0 )
2 «
{ Hinl(a,B) — G((a’ﬁﬁ))JrA(f)A(flnf)
(i17) If —0o < § < I(t) < A < oo fort € (a,3), then both (3.12) and (3.13)

hold.

Proof. The proof is as follows.
(i) Define the auxiliary mapping h (t) = ¢ (¢t) — dtlnt, t € (o, 3). Then
o 1 17-
S 0" @t—o] =2 [ -3 =0

HORFAUREES

which shows that h is convex or, equivalently, ¢ € £ (I,6,(-)In(-)). Apply-
ing Corollary 4, we can write

(B4 A(p)-a
2D fama + A2 g - a (7 )|
< AW @)+ A0 agpe ),

which is clearly equivalent to (3.12).
(1) Goes similarly.
(#it) Follows by () and (i4).

4. APPLICATIONS FOR HERMITE-HADAMARD INEQUALITIES

a) Assume that ¢ : [a,b] C R — R is a twice differentiable function satisfying the
condition —oo < k < ¢” (t) < K < oo for t € (a,b). If in Propostion 3 we choose

A(f) =+ f;f (t)dt, f=e, ie, e(x) =2z, z € [a,b] and take into account that

b2 + ab + a®
Ay = PR
then we may state the inequality (see also [12, p. 40])
E(b—a)® _ ¢(b)+¢(a) / K (b—a)®
. < < —".
(4.1) 12 - 2 —o ), e@de 12

b) Now, if we assume that ¢ : [a,b] C (0,00) — R is twice differentiable on (a,b)
and —oo < v < t27P¢" (t) <T < oo, t € (a,b), p € (—00,0)U(1,00), then, applying
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Proposition 4 for integrals, we may state the inequality

(4.2) ﬁ [pLP 1(@,0) A(a,b) = (p— 1) G2 (a,0) L173 (a,) — L (a,1)|
¢(b) +¢(a
< 20 L[y
T

IN

S5=D [pngl (a,b) A(a,b) — (p — 1) G2 (a,b) LV (a,b) — L2 (a, b)} .

¢) Suppose that the twice differentiable function ¢ : [a,b] C (0,00) — R satisfies
the condition —oo < s < t2¢” (t) < S < oo. Then by Proposition 5 applied for the
integral functional, we may state the following inequality

(a,0)1(5.3) o)+ 1 [
(43)  sln pr< A(ab)— L(:b))] = 2 B b—a/a ¢ (w)de

L(a,b)

o | L@ I(G3)

IN

A(a,b)—L(a,b
exp (HUpE )
or, equivalently,
s () +¢(a)
w I(a,b)1(%,%) < eXp[ : }
. S b
o (2e5e2) | e[ ot

I(a,b)1 ( ’b)

= [ A(a,b)—L(a,b) :|
eXP( T(a.b) )

d) Finally, if we assume that the twice differentiable function ¢ : [a,b] C (0,00) — R
satisfies the condition —co < § < t¢” (t) < 1 < oo, then by Proposition 6 applied
for the integral functional, we may state the following inequality:

I(a,b) L (a,b) A(a,b) — G?(a,b)
(4.5) A (a,b)In KI 3 b2)> - exp ( L (a.b) A(a.D) )]

b
)o@ 1 [

IN

2 b—a

I(a,b o <L(a,b)A(a7b)—G2(a,b)>
D) *P L(a,b) A(a,b) ’

< AA(a,b)In [(

or, equivalently,

I(a,b) L(a,b) Aoh) - 6 @)\
(4.6) [(W)'exl)( 7L(a,b’)A(a,b) | )]
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exp [¢(b>;¢(a)]

exp {ﬁ f;(b(x) dx}

I(a,b) L (a,b) A(a,b) — G (a,b)
Ji@wy) P ( L (a,b) A(a,0) )

IN

AA(a,b)
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