A Generalization of Multiplication Table

Mehdi Hassani
Department of Mathematics
Institute for Advanced Studies in Basic Sciences
Zanjan, Iran
mhassani@iasbs.ac.ir

Abstract

In this note, we generalize the concept of multiplication table by connecting with lattice points. Then we introduce and proof a generalization of Erdös multiplication table theorem.

2000 Mathematics Subject Classification: 65A05.
Keywords: Multiplication Table.

Consider the following $n \times n$ Multiplication Table (we call after this $\mathrm{MT}_{n \times n}$):

1	2	3	\cdots	n
2	4	6	\cdots	$2 n$
3	6	9	\cdots	$3 n$
\vdots	\vdots	\vdots	\ddots	\vdots
n	$2 n$	$3 n$	\cdots	n^{2}

One of the wonderful results about $\mathrm{MT}_{n \times n}$ is the following theorem [2]:
Erdös Multiplication Table Theorem. Suppose $M(n)=\#\{i j \mid 1 \leq i, j \leq n\}$, then

$$
\lim _{n \rightarrow \infty} \frac{M(n)}{n^{2}}=0
$$

In fact $M(n)$ is the number of distinct numbers that you can find in $\mathrm{MT}_{n \times n}$. Asymptotic behavior of $M(n)$ is an open problem! The following table include some computational results about $M(n)$ by Maple software.

n	$M(n)$	$\frac{M(n)}{n^{2}} \approx$
10	42	0.4200000000
50	800	0.3200000000
100	2906	0.2906000000
200	11131	0.2782750000
1000	248083	0.2480830000
2000	959759	0.2399397500
2500	1483965	0.2374344000
3000	2121063	0.2356736667
4000	3723723	0.2327326875

It is shown that [1] there is some constant $c>0$ such that

$$
M(n)=O\left(\frac{n^{2}}{\log ^{c} n}\right)
$$

Now, consider lattice points on a quarter of plan;

$$
L_{2}(n):=\left\{(a, b) \in \mathbb{N}^{2}: 1 \leq a, b \leq n\right\} .
$$

Clearly, $\mathrm{MT}_{n \times n}$ is generated by multiplying point's entries in $L_{2}(n)$. This idea is generalizable! Consider the following lattice in \mathbb{R}^{k} :

$$
L_{k}(n):=\left\{\left(a_{1}, a_{2}, \cdots, a_{k}\right) \in \mathbb{N}^{k}: 1 \leq a_{1}, a_{2}, \cdots, a_{k} \leq n\right\} .
$$

Generalized Multiplication Table. A k-dimensional multiplication table, denoted by $\mathrm{MT}_{n \times n}^{k}$, is a k-dimensional array of n^{k} numbers in \mathbb{R}^{k} in which every number generated by multiplying entries of corresponding lattice point in $L_{k}(n)$.

Theorem 1 Suppose

$$
M_{k}(n)=\#\left\{a_{1} a_{2} \cdots a_{k}: a_{1}, a_{2}, \cdots, a_{k} \in \mathbb{N}, 1 \leq a_{1}, a_{2}, \cdots, a_{k} \leq n\right\}
$$

Then we have

$$
\lim _{n \rightarrow \infty} \frac{M_{k}(n)}{n^{k}}=0
$$

and more precisely, there is some constant $c>0$ such that

$$
M_{k}(n)=O\left(\frac{n^{k}}{\log ^{c} n}\right) .
$$

Proof: According to the definition of $M_{k}(n)$, we have

$$
M_{k+1}(n)<n M_{k}(n)
$$

Considering this fact with Erdös's result and with Linnik-Vinogradov's result yield the results of theorem, respectively.

We end this short note with the following table inclosing the values of $M_{k}(n)$ for some k and n. For generating this table we used the following kind of program in Maple (for example for computing $M_{3}(100)$ here):
with(stats):
$\mathrm{n}:=10$:
$M[3](n):=\operatorname{describe}[$ count $](\operatorname{convert(seq(seq(seq(i*j*k,i=1..n),j=1..n),k=1..n),'list'));~}$

n	$M_{2}(n)$	$M_{3}(n)$	$M_{4}(n)$	$M_{5}(n)$
10	42	120	275	546
20	152	732	2670	8052
30	308	1909	8679	31856
40	517	3919	21346	OCCOC *
50	800	7431	49076	OCCOC *

*Out of our computer's computational capacity!

References

[1] http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi
[2] C. Pomerance, Paul Erdös, Notices of Amer. Math. Soc., vol. 45, no. 1, 1998, 19-23.

