A NOTE ON BESSEL'S INEQUALITY

S.S. DRAGOMIR

Abstract

A monotonicity property of Bessel's inequality in inner product spaces is given.

1. Introduction

Let X be a linear space over the real or complex number field \mathbb{K}. A mapping $(\cdot, \cdot): X \times X \rightarrow \mathbb{K}$ is said to be a positive hermitian form if the following conditions are satisfied:
(i) $(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$ for all $x, y, z \in X$ and $\alpha, \beta \in \mathbb{K}$;
(ii) $(y, x)=\overline{(x, y)}$ for all $x, y \in X$;
(iii) $(x, x) \geq 0$ for all $x \in X$.

If $\|x\|:=(x, x)^{\frac{1}{2}}, x \in X$ denotes the semi-norm associated to this form and $\left(e_{i}\right)_{i \in I}$ is an orthornormal family of vectors in X, i.e., $\left(e_{i}, e_{j}\right)=\delta_{i j}(i, j \in I)$, then one has the following inequality [15]:

$$
\begin{equation*}
\|x\|^{2} \geq \sum_{i \in I}\left|\left(x, e_{i}\right)\right|^{2} \quad \text { for all } x \in X \tag{1.1}
\end{equation*}
$$

which is well known in the literature as Bessel's inequality.
Indeed, for every finite part H of I, one has:

$$
\begin{aligned}
0 & \leq\left\|x-\sum_{i \in H}\left(x, e_{i}\right) e_{i}\right\|^{2}=\left(x-\sum_{i \in H}\left(x, e_{i}\right) e_{i}, x-\sum_{j \in H}\left(x, e_{j}\right) e_{j}\right) \\
& =\|x\|^{2}-\sum_{i \in H}\left|\left(x, e_{i}\right)\right|^{2}-\sum_{j \in H}\left|\left(x, e_{j}\right)\right|^{2}+\sum_{i, j \in H}\left(x, e_{i}\right)\left(e_{j}, x\right) \delta_{i j} \\
& =\|x\|^{2}-\sum_{i \in H}\left|\left(x, e_{i}\right)\right|^{2}
\end{aligned}
$$

for all $x \in X$, which proves the assertion.
The main aim of this paper is to improve this result as follows.

2. Results

The following theorem holds.
Theorem 1. Let X be a linear space and $(\cdot, \cdot)_{2},(\cdot, \cdot)_{1}$ two hermitian forms on X such that $\|\cdot\|_{2}$ is greater than or equal to $\|\cdot\|_{1}$, i.e., $\|x\|_{2} \geq\|x\|_{1}$ for all $x \in$ X. Assume that $\left(e_{i}\right)_{i \in I}$ is an orthornormal family in $\left(X ;(\cdot, \cdot)_{2}\right)$ and $\left(f_{i}\right)_{i \in J}$ is an

Date: January 05, 2000.
1991 Mathematics Subject Classification. Primary 26D15; Secondary 46C99.
Key words and phrases. Bessel's inequality, Inner product spaces.
orthornormal family in $\left(X ;(\cdot, \cdot)_{1}\right)$ such that for any $i \in I$ there exists a finite $K \subset J$ so that

$$
\begin{equation*}
e_{i}=\sum_{j \in K} \alpha_{j} f_{j}, \quad \alpha_{j} \in \mathbb{K}(j \in K) \tag{F}
\end{equation*}
$$

then one has the inequality:

$$
\begin{equation*}
\|x\|_{2}^{2}-\sum_{i \in I}\left|\left(x, e_{i}\right)_{2}\right|^{2} \geq\|x\|_{1}^{2}-\sum_{j \in J}\left|\left(x, f_{j}\right)_{1}\right|^{2} \geq 0 \tag{2.1}
\end{equation*}
$$

for all $x \in X$.
In order to prove this fact, we require the following lemma.
Lemma 1. Let X be a linear space endowed with a positive hermitian form (\cdot, \cdot) and $\left(g_{k}\right)_{k=\overline{1, n}}$ be an orthornormal family in $(X ;(\cdot, \cdot))$. Then

$$
\begin{equation*}
\left\|x-\sum_{k=1}^{n} \lambda_{k} g_{k}\right\|^{2} \geq\|x\|^{2}-\sum_{k=1}^{n}\left|\left(x, g_{k}\right)\right|^{2} \geq 0 \tag{2.2}
\end{equation*}
$$

for all $\lambda_{k} \in \mathbb{K}$ and $x \in X(k=1, \ldots, n)$.
Proof. We will prove this fact by induction over " n ".
Suppose $n=1$. Then we must prove that

$$
\left\|x-\lambda_{1} g_{1}\right\|^{2} \geq\|x\|^{2}-\left|\left(x, g_{1}\right)\right|^{2}, x \in X, \lambda_{1} \in \mathbb{K}
$$

A simple computation shows that the above inequality is equivalent with

$$
\left|\lambda_{1}\right|^{2}-2 \operatorname{Re}\left(x, \lambda_{1} g_{1}\right)+\left|\left(x, g_{1}\right)\right|^{2} \geq 0, x \in X, \lambda_{1} \in \mathbb{K}
$$

Since $\operatorname{Re}\left(x, \lambda_{1} g_{1}\right) \leq\left|\left(x, \lambda_{1} g_{1}\right)\right|$, one has

$$
\begin{aligned}
\left|\lambda_{1}\right|^{2}-2 \operatorname{Re}\left(x, \lambda_{1} g_{1}\right)+\left|\left(x, g_{1}\right)\right|^{2} & \geq\left|\lambda_{1}\right|^{2}-2\left|\lambda_{1}\right|\left|\left(x, g_{1}\right)\right|+\left|\left(x, g_{1}\right)\right|^{2} \\
& \geq\left(\left|\lambda_{1}\right|-\left|\left(x, g_{1}\right)\right|\right)^{2} \geq 0
\end{aligned}
$$

for all $\lambda_{1} \in \mathbb{K}$ and $x \in X$, which proves the statement.
Now, assume that (2.2) is valid for " $(n-1)$ ". Then we have:

$$
\begin{aligned}
& \left\|x-\sum_{k=1}^{n} \lambda_{k} g_{k}\right\|^{2} \\
= & \left\|\left(x-\lambda_{n} g_{n}\right)-\sum_{k=1}^{n-1} \lambda_{k} g_{k}\right\| \geq\left\|x-\lambda_{n} g_{n}\right\|^{2}-\sum_{k=1}^{n-1}\left|\left(x-\lambda_{n} g_{n}, g_{k}\right)\right|^{2} \\
= & \left\|x-\lambda_{n} g_{n}\right\|^{2}-\sum_{k=1}^{n-1}\left|\left(x, g_{k}\right)\right|^{2} \geq\|x\|^{2}-\left|\left(x, g_{n}\right)\right|^{2}-\sum_{k=1}^{n-1}\left|\left(x, g_{k}\right)\right|^{2} \\
= & \|x\|^{2}-\sum_{k=1}^{n}\left|\left(x, g_{k}\right)\right|^{2}
\end{aligned}
$$

for all $\lambda_{k} \in \mathbb{K}, x \in X(k=1, \ldots, n)$, and the proof of the lemma is complete.

Proof. (Theorem) Let H be a finite part of I. Since $\|\cdot\|_{2}$ is greater than $\|\cdot\|_{1}$, we have:

$$
\begin{aligned}
\|x\|_{2}^{2}-\sum_{i \in H}\left|\left(x, e_{i}\right)_{2}\right|^{2} & =\left\|x-\sum_{i \in H}\left(x, e_{i}\right)_{2} e_{i}\right\|_{2}^{2} \\
& \geq\left\|x-\sum_{i \in H}\left(x, e_{i}\right)_{2} e_{i}\right\|_{1}^{2}, x \in X
\end{aligned}
$$

Since, by (F), we may state that for any $i \in H$ there exists a finite $K \subset J$ with

$$
e_{i}=\sum_{j \in K}\left(e_{i}, f_{j}\right)_{1} f_{j}
$$

we have

$$
\begin{aligned}
\left\|x-\sum_{i \in H}\left(x, e_{i}\right)_{2} e_{i}\right\|_{1}^{2} & =\left\|x-\sum_{i \in H}\left(x, e_{i}\right)_{2} \sum_{j \in K}\left(e_{i}, f_{j}\right)_{1} f_{j}\right\|_{1}^{2} \\
& =\left\|x-\sum_{j \in K}\left(\sum_{i \in H}\left(x, e_{i}\right)_{2} e_{i}, f_{j}\right)_{1} f_{j}\right\|_{1}^{2}
\end{aligned}
$$

for all $x \in X$.
Applying the above lemma for $(\cdot, \cdot)=(\cdot, \cdot)_{1},\left(g_{k}\right)_{k=\overline{1, n}}=\left(f_{j}\right)_{j \in K}$, we can conclude that

$$
\left\|x-\sum_{j \in K} \lambda_{j} f_{j}\right\|_{1}^{2} \geq\|x\|_{1}^{2}-\sum_{j \in K}\left|\left(x, f_{j}\right)_{1}\right|^{2}, x \in X
$$

where

$$
\lambda_{j}=\left(\sum_{i \in H}\left(x, e_{i}\right)_{2} e_{i}, f_{j}\right)_{1} \in \mathbb{K} \quad(j \in K)
$$

Consequently, we have:

$$
\|x\|_{2}^{2}-\sum_{i \in H}\left|\left(x, e_{i}\right)_{2}\right|^{2} \geq\|x\|_{1}^{2}-\sum_{j \in K}\left|\left(x, f_{j}\right)_{1}\right|^{2} \geq\|x\|_{1}^{2}-\sum_{j \in J}\left|\left(x, f_{j}\right)_{1}\right|^{2}
$$

for all $x \in X$ and H a finite part of I, from where results (2.1).
The proof is thus completed.
Corollary 1. Let $\|\cdot\|_{1},\|\cdot\|_{2}: X \rightarrow \mathbb{R}_{+}$be as above. Then for all $x, y \in X$, we have the inequality:

$$
\begin{equation*}
\|x\|_{2}^{2}\|y\|_{2}^{2}-\left|(x, y)_{2}\right|^{2} \geq\|x\|_{1}^{2}\|y\|_{1}^{2}-\left|(x, y)_{1}\right|^{2} \geq 0 \tag{2.3}
\end{equation*}
$$

which is an improvement of the well known Cauchy-Scwartz inequality.
Proof. If $\|y\|_{2}=0$, then (2.3) holds with equality.
If $\|y\|_{i} \neq 0,(i=1,2)$, then for $\left\{e_{1}\right\}=\left\{\frac{y}{\|y\|_{2}}\right\}, \quad\left\{f_{1}\right\}=\left\{\frac{y}{\|y\|_{1}}\right\}$, the above theorem yields that

$$
\frac{\|x\|_{2}^{2}\|y\|_{2}^{2}-\left|(x, y)_{2}\right|^{2}}{\|y\|_{2}^{2}} \geq \frac{\|x\|_{1}^{2}\|y\|_{1}^{2}-\left|(x, y)_{1}\right|^{2}}{\|y\|_{1}^{2}}
$$

and since $\|y\|_{2} \geq\|y\|_{1}$, the inequality (2.3) is obtained.
Remark 1. For a different proof of (2.3), see also [5].
Now, we will give some natural applications of the above theorem.

3. Applications

(1) Let $(X ;(\cdot, \cdot))$ be an inner product space and $\left(e_{i}\right)_{i \in I}$ an orthornormal family in X. Assume that $A: X \rightarrow X$ is a linear operator such that $\|A x\| \leq\|x\|$ for all $x \in X$ and $\left(A e_{i}, A e_{j}\right)=\delta_{i j}$ for all $i, j \in I$. Then one has the inequality

$$
\|x\|^{2}-\sum_{i \in I}\left|\left(x, e_{i}\right)\right|^{2} \geq\|A x\|^{2}-\sum_{i \in I}\left|\left(A x, A e_{i}\right)\right|^{2} \geq 0
$$

for all $x \in X$.
The proof follows by the hermitian forms $(x, y)_{2}=(x, y)$ and $(x, y)_{1}=$ $(A x, A y)$ for $x, y \in X$ and for the family $\left(f_{i}\right)_{i \in I}=\left(e_{i}\right)_{i \in I}$.
(2) If $A: X \rightarrow X$ is such that $\|A x\| \geq\|x\|$ for all $x \in X$, then, with the previous assumptions, we also have

$$
0 \leq\|x\|^{2}-\sum_{i \in I}\left|\left(x, e_{i}\right)\right|^{2} \leq\|A x\|^{2}-\sum_{i \in I}\left|\left(A x, A e_{i}\right)\right|^{2}
$$

for all $x \in X$.
(3) Suppose that $A: X \rightarrow X$ is a symmetric positive definite operator with $(A x, x) \geq\|x\|^{2}$ for all $x \in X$. If $\left(e_{i}\right)_{i \in I}$ is an orthornormal family in X such that $\left(A e_{i}, A e_{j}\right)=\delta_{i j}$ for all $i, j \in I$, then one has the inequality

$$
0 \leq\|x\|^{2}-\sum_{i \in I}\left|\left(x, e_{i}\right)\right|^{2} \leq(A x, x)-\sum_{i \in I}\left|\left(A x, e_{i}\right)\right|^{2},
$$

for all $x \in X$.
The proof follows from the above theorem for the choices $(x, y)_{1}=(A x, y)$ and $(x, y)_{2}=(x, y), x, y \in X$. We omit the details.
For other inequalities in inner product spaces, see the papers [1]-[14] and [7]-[6] where further references are given.

References

[1] S.S. DRAGOMIR, A refinement of Cauchy-Schwartz inequality, G.M. Metod. (Bucharest), 8(1987), 94-95.
[2] S.S. DRAGOMIR, Some refinements of Cauchy-Schwartz inequality, ibid, 10(1989), 93-95.
[3] S.S. DRAGOMIR and B. MOND, On the Boas-Bellman generalisation of Bessel's inequality in inner product spaces, Italian J. of Pure and Appl. Math., 3 (1998), 29-38.
[4] S.S. DRAGOMIR and B. MOND, On the superadditivity and monotonicity of Gram's inequality and related results, Acta Math. Hungarica, 71 (1-2) (1996), 75-90.
[5] S.S. DRAGOMIR and B. MOND, On the superadditivity and monotonicity of Schwartz's inequality in inner product spaces, Contributions Macedonian Acad. Sci. and Arts, 15 (2) (1994), 5-22.
[6] S.S. DRAGOMIR, B. MOND and Z. PALES, On a supermultiplicity property of Gram's determinant, Aequationes Mathematicae, 54 (1997), 199-204.
[7] S.S. DRAGOMIR, B. MOND and J.E. PEČARIC, Some remarks on Bessel's inequality in inner product spaces, Studia Univ. "Babes-Bolyai", Math., 37 (4) (1992), 77-86.
[8] S.S. DRAGOMIR and J. SANDOR, On Bessel's and Gram's inequalities in prehilbertian spaces, Periodica Math. Hungarica, 29 (3) (1994), 197-205.
[9] S.S. DRAGOMIR and J. SÁNDOR, Some inequalities in prehilbertian spaces, Studia Univ. "Babeş-Bolyai", Mathematica, 1, 32, (1987), 71-78.
[10] W.N. EVERITT, Inequalities for Gram determinants, Quart. J. Math., Oxford, Ser. (2), 8(1957), 191-196.
[11] T. FURUTA, An elementary proof of Hadamard theorem, Math. Vesnik, 8(23)(1971), 267269.
[12] C.F. METCALF, A Bessel-Schwartz inequality for Gramians and related bounds for determinants, Ann. Math. Pura Appl., (4) 68(1965), 201-232.
[13] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin-Heidelberg and New York, 1970.
[14] C.F. MOPPERT, On the Gram determinant, Quart. J. Math., Oxford, Ser (2), 10 (1959), 161-164.
[15] K. YOSHIDA, Functional Analysis, Springer-Verlag, Berlin, 1966.
School of Communications and Informatics, Victoria University of Technology, P.O. Box 14428, Melbourne City MC, Victioria 8001, Australia

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

