# ON THE KY FAN INEQUALITY 

S.S. DRAGOMIR AND F.P. SCARMOZZINO


#### Abstract

Some inequalities related to the Ky Fan and C.-L. Wang inequalities for weighted arithmetic and geometric means are given.


## 1. Introduction

In 1961, E.F. Beckenbach and R. Bellman published in their well known book "Inequalities" the following "unpublished result due to Ky Fan" [2, p. 5] (see also [1, p. 150]).
Theorem 1. If $0<x_{i} \leq \frac{1}{2},(i=1, \ldots, n)$; then:

$$
\begin{equation*}
\left[\prod_{i=1}^{n} x_{i} / \prod_{i=1}^{n}\left(1-x_{i}\right)\right]^{\frac{1}{n}} \leq \sum_{i=1}^{n} x_{i} / \sum_{i=1}^{n}\left(1-x_{i}\right) \tag{1.1}
\end{equation*}
$$

with equality only if $x_{1}=\cdots=x_{n}$.
A generalisation of Ky Fan's inequality for weighted means was proved by C.-L. Wang in 1980, [9].
Theorem 2. If $0<x_{i} \leq \frac{1}{2},(i=1, \ldots, n)$, then

$$
\begin{equation*}
\frac{A_{n}(\bar{p}, \bar{x})}{A_{n}(\bar{p}, 1-\bar{x})} \geq \frac{G_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, 1-\bar{x})} \tag{1.2}
\end{equation*}
$$

where $p_{i}>0(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$ and $A_{n}(\bar{p}, \bar{x}):=\sum_{i=1}^{n} p_{i} x_{i}$ is the weighted arithmetic mean, $G_{n}(\bar{p}, \bar{x}):=\prod_{i=1}^{n} x_{i}^{p_{i}}$ is the weighted geometric mean. The equality holds in (1.2) iff $x_{1}=\cdots=x_{n}$.

For a survey on related results of Ky Fan's inequality, see [1] by H. Alzer.
For different refinements and generalisations, see $[4]-[8]$.

## 2. The Results

The following result holds.
Theorem 3. Assume that $0<m \leq x_{i} \leq M \leq \frac{1}{2},(i=1, \ldots, n), p_{i}>0(i=1, \ldots, n)$, with $\sum_{i=1}^{n} p_{i}=1$, then we have the inequalities:

$$
\begin{equation*}
\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})} \geq\left[\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]^{\frac{M^{2}}{(1-M)^{2}}} \geq \frac{A_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, 1-\bar{x})} \geq\left[\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]^{\frac{m^{2}}{(1-m)^{2}}} \geq 1 \tag{2.1}
\end{equation*}
$$

The equality will hold in all inequalities iff $x_{1}=\cdots=x_{n}$.

[^0]Proof. The first and the last inequality in (2.1) follow by the fact that $\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\overline{\bar{p}}, \bar{x})} \geq 1$ (by the weighted arithmetic mean - geometric mean inequality), $m \in\left(0, \frac{1}{2}\right]$ and $M \in\left(0, \frac{1}{2}\right]$.

We define the function $f:(0,1) \rightarrow \mathbb{R}, f(t)=\ln \left(\frac{1-t}{t}\right)+\alpha \ln t$ with $\alpha \in \mathbb{R}$. We have

$$
\begin{gathered}
f^{\prime}(t)=-\frac{1}{t(1-t)}+\frac{\alpha}{t}, \quad t \in(0,1) \\
f^{\prime \prime}(t)=\frac{1-2 t}{[t(1-t)]^{2}}-\frac{\alpha}{t^{2}}=\frac{1}{t^{2}}\left[\frac{1-2 t}{(1-t)^{2}}-\alpha\right], \quad t \in(0,1)
\end{gathered}
$$

If we consider the function $g:(0,1) \rightarrow \mathbb{R}, g(t)=\frac{1-2 t}{(1-t)^{2}}$, then $g^{\prime}(t)=\frac{2 t(t-1)}{(t-1)^{4}}$, showing that the function $g$ is monotonically strictly decreasing on $(0,1)$.

Consequently for $t \in(m, M)$, we have

$$
\begin{equation*}
\frac{1-2 M}{(1-M)^{2}}=g(M) \leq g(t) \leq g(m)=\frac{1-2 m}{(1-m)^{2}} \tag{2.2}
\end{equation*}
$$

Using (2.2) we observe that the function $f$ is strictly convex on $(m, M)$ if $\alpha \leq$ $\frac{1-2 M}{(1-M)^{2}}$.

Applying Jensen's discrete inequality for the function $f:(m, M) \rightarrow \mathbb{R}, f(t)=$ $\ln \left(\frac{1-t}{t}\right)+\alpha \ln t$, with $\alpha \leq \frac{1-2 M}{(1-M)^{2}}$, we deduce

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i}\left[\ln \left(\frac{1-x_{i}}{x_{i}}\right)+\alpha \ln x_{i}\right] & =\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \\
& =\ln \left(\frac{1-\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i} x_{i}}\right)+\alpha \ln \left(\sum_{i=1}^{n} p_{i} x_{i}\right)
\end{aligned}
$$

which is equivalent to

$$
\ln \left[\frac{G_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]+\alpha \ln G_{n}(\bar{p}, \bar{x}) \geq \ln \left[\frac{A_{n}(\bar{p}, 1-\bar{x})}{A_{n}(\bar{p}, \bar{x})}\right]+\alpha \ln A_{n}(\bar{p}, \bar{x})
$$

or, moreover, to

$$
\ln \left[\frac{G_{n}(\bar{p}, \bar{x})}{A_{n}(\bar{p}, \bar{x})}\right]^{\alpha} \geq \ln \left[\frac{A_{n}(\bar{p}, 1-\bar{x})}{A_{n}(\bar{p}, \bar{x})} / \frac{G_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]
$$

that is,

$$
\begin{equation*}
\left[\frac{G_{n}(\bar{p}, \bar{x})}{A_{n}(\bar{p}, \bar{x})}\right]^{\alpha-1} \geq \frac{A_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, 1-\bar{x})} \tag{2.3}
\end{equation*}
$$

Now, we observe that the inequality (2.3) is the best possible if $\alpha$ is maximal, i.e., $\alpha=\frac{1-2 M}{(1-M)^{2}}$, getting

$$
\left[\frac{G_{n}(\bar{p}, \bar{x})}{A_{n}(\bar{p}, \bar{x})}\right]^{\frac{1-2 M}{(1-M)^{2}}-1} \geq \frac{A_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, 1-\bar{x})}
$$

which is clearly equivalent to the second inequality in (2.1).
The third inequality is produced in a similar fashion, using the function $h(t)=$ $\beta \ln t-\ln \left(\frac{1-t}{t}\right)$ which is strictly convex on $(m, M)$ if $\beta \geq \frac{1-2 m}{(1-m)^{2}}$.

The case of equality follows by the fact that in Jensen's inequality for strictly convex functions, the equality holds iff $x_{1}=\cdots=x_{n}$.

We omit the details.

Remark 1. Since Wang's inequality (1.2) is equivalent to:

$$
\begin{equation*}
\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})} \geq \frac{A_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, 1-\bar{x})}, \tag{2.4}
\end{equation*}
$$

then the first part of (2.1) may be seen as a refinement of Wang's result while the second part

$$
\begin{equation*}
\frac{A_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, 1-\bar{x})} \geq\left[\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]^{\frac{m^{2}}{(1-m)^{2}}} \tag{2.5}
\end{equation*}
$$

can be considered a counterpart of (1.2).
Now, let us recall the Lah-Ribarić inequality for convex functions (see for example [3, p. 140]).

If $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is convex on $[a, b], x_{i} \in[a, b], p_{i} \geq 0(i=1, \ldots, n)$ and $\sum_{i=1}^{n} p_{i}=1$, then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leq \frac{b-\sum_{i=1}^{n} p_{i} x_{i}}{b-a} \cdot f(a)+\frac{\sum_{i=1}^{n} p_{i} x_{i}-a}{b-a} \cdot f(b) \tag{2.6}
\end{equation*}
$$

Now, we can state and prove the following inequality related to the Ky Fan result.
Theorem 4. Assume that $0<m \leq x_{i} \leq M \leq \frac{1}{2}, p_{i}>0 \quad(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$, then we have the inequalities:

$$
\begin{align*}
& \left(\frac{1-m}{m\left(\frac{m}{1-m}\right)^{2}}\right)^{\frac{M-A_{n}(\bar{p}, \bar{x})}{M-m}}\left(\frac{1-M}{M^{\left(\frac{m}{1-m}\right)^{2}}}\right)^{\frac{A_{n}(\overline{(\bar{p}, \bar{x})-m}}{M-m}} \cdot G_{n}(\bar{p}, \bar{x})^{\left(\frac{m}{1-m}\right)^{2}}  \tag{2.7}\\
\leq & G_{n}(\bar{p}, 1-\bar{x}) \\
\leq & \left(\frac{1-m}{m\left(\frac{M}{1-M}\right)^{2}}\right)^{\frac{M-A_{n}(\bar{p}, \bar{x})}{M-m}}\left(\frac{1-M}{M^{\left(\frac{M}{1-M}\right)^{2}}}\right)^{\frac{A_{n}(\bar{p}, \bar{x})-m}{M-m}} G_{n}(\bar{p}, \bar{x})^{\left(\frac{M}{1-M}\right)^{2}} .
\end{align*}
$$

Proof. From the proof of Theorem 3, we know that the function $f:(m, M) \subset$ $\left(0, \frac{1}{2}\right] \rightarrow \mathbb{R}, f(t)=\ln \left(\frac{1-t}{t}\right)+\frac{1-2 M}{(1-M)^{2}} \ln t$ is strictly convex on $(m, M)$. Now, if we apply the Lah-Ribarić inequality for $f$ as above, $a=m$ and $b=M$, we get:

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i}\left[\ln \left(\frac{1-x_{i}}{x_{i}}\right)+\frac{1-2 M}{(1-M)^{2}} \ln x_{i}\right] \\
= & \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leq \frac{M-\sum_{i=1}^{n} p_{i} x_{i}}{M-m} f(m)+\frac{\sum_{i=1}^{n} p_{i} x_{i}-m}{M-m} f(M) \\
= & \frac{M-\sum_{i=1}^{n} p_{i} x_{i}}{M-m}\left[\ln \left(\frac{1-m}{m}\right)+\frac{1-2 M}{(1-M)^{2}} \ln m\right] \\
& +\frac{\sum_{i=1}^{n} p_{i} x_{i}-m}{M-m}\left[\ln \left(\frac{1-M}{M}\right)+\frac{1-2 M}{(1-M)^{2}} \ln M\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \ln \left[\frac{G_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]+\frac{1-2 M}{(1-M)^{2}} \ln G_{n}(\bar{p}, \bar{x}) \\
\leq & \frac{M-A_{n}(\bar{p}, \bar{x})}{M-m}\left[\ln \left(\frac{1-m}{m}\right)+\ln (m)^{\frac{1-2 M}{(1-M)^{2}}}\right] \\
& +\frac{A_{n}(\bar{p}, \bar{x})-m}{M-m}\left[\ln \left(\frac{1-M}{M}\right)+\ln (M)^{\frac{1-2 M}{(1-M)^{2}}}\right],
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \frac{G_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, \bar{x})} \cdot\left[G_{n}(\bar{p}, \bar{x})\right]^{\frac{1-2 M}{(1-M)^{2}}} \\
\leq & \left((1-m) m^{\left\{\frac{1-2 M}{(1-M)^{2}}-1\right\}}\right)^{\frac{M-A_{n}(\bar{p}, \bar{x})}{M-m}} \cdot\left((1-M) M^{\left\{\frac{1-2 M}{(1-M)^{2}}-1\right\}}\right)^{\frac{A_{n}(\bar{p}, \bar{x})-m}{M-m}}
\end{aligned}
$$

from which we obtain the second inequality in (2.7).
To prove the first inequality, we apply the Lah-Ribarić inequality for the function $h:(m, M) \rightarrow \mathbb{R}, h(t)=\frac{1-2 m}{(1-m)^{2}} \ln t-\ln \left(\frac{1-t}{t}\right)$ which is strictly convex on $(m, M)$.

We omit the details.
Finally, let us recall Dragomir-Ionescu's inequality for differentiable convex functions (see [7])

$$
\begin{align*}
0 & \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)  \tag{2.8}\\
& \leq \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)-\sum_{i=1}^{n} p_{i} x_{i} \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)
\end{align*}
$$

provided $f:(a, b) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is differentiable convex on $(a, b), x_{i} \in(a, b)$ and $p_{i}>0$ $(i=1, \ldots, n)$ with $\sum_{i=1}^{n} p_{i}=1$.

If $f$ is strictly convex on $(a, b)$, then the equality holds in (2.8) iff $x_{1}=\cdots=x_{n}$, we may state the following result.
Theorem 5. With the assumptions of Theorem 4, we have

$$
\begin{align*}
& \exp \left[A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}(1-\bar{x})}\right)-A_{n}\left(\bar{p}, \frac{1}{1-\bar{x}}\right)\right]  \tag{2.9}\\
& \times\left[\frac{1-2 M}{(1-M)^{2}}\left\{1-A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}}\right)\right\}\right] \times\left[\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]^{\frac{1-2 M}{(1-M)^{2}}} \\
\geq & {\left[\frac{G_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, \bar{x})}\right] /\left[\frac{A_{n}(\bar{p}, 1-\bar{x})}{A_{n}(\bar{p}, \bar{x})}\right] } \\
\geq & \exp \left[A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}(1-\bar{x})}\right)-A_{n}\left(\bar{p}, \frac{1}{1-\bar{x}}\right)\right] \\
& \times\left[\frac{1-2 m}{(1-m)^{2}}\left\{1-A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}}\right)\right\}\right] \times\left[\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]^{\frac{1-2 m}{(1-m)^{2}}},
\end{align*}
$$

where $\frac{1}{\bar{x}}$ denotes the vector $\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right), \bar{y} \cdot \bar{z}:=\left(y_{1} z_{1}, \ldots, z_{n} y_{n}\right)$, and $\bar{x} \in \mathbb{R}^{n}$, $\bar{x}>\overline{0}$ (i.e., $x_{i}>0$ for any $i \in\{1, \ldots, n\}$ ), $\bar{y}, \bar{z} \in \mathbb{R}^{n}$.

Proof. Since the function $f:(m, M) \subset\left(0, \frac{1}{2}\right] \rightarrow \mathbb{R}, f(t)=\ln \left(\frac{1-t}{t}\right)+\frac{1-2 M}{(1-M)^{2}} \ln t$ is strictly convex on $(m, M)$, by (2.8) we may state that

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i}\left[\ln \left(\frac{1-x_{i}}{x_{i}}\right)+\frac{1-2 M}{(1-M)^{2}} \ln x_{i}\right]-\ln \left(\frac{1-\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i} x_{i}}\right) \\
& -\frac{1-2 M}{(1-M)^{2}} \ln \left(\sum_{i=1}^{n} p_{i} x_{i}\right) \\
= & \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)-\sum_{i=1}^{n} p_{i} x_{i} \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \\
= & \sum_{i=1}^{n} p_{i} x_{i}\left[\frac{1-2 M}{(1-M)^{2}} \cdot \frac{1}{x_{i}}-\frac{1}{x_{i}\left(1-x_{i}\right)}\right] \\
& -\sum_{i=1}^{n} p_{i} x_{i} \sum_{i=1}^{n} p_{i}\left[\frac{1-2 M}{(1-M)^{2}} \cdot \frac{1}{x_{i}}-\frac{1}{x_{i}\left(1-x_{i}\right)}\right],
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \ln \left[\frac{G_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]+\frac{1-2 M}{(1-M)^{2}} \ln G_{n}(\bar{p}, \bar{x})-\ln \left[\frac{A_{n}(\bar{p}, 1-\bar{x})}{A_{n}(\bar{p}, \bar{x})}\right] \\
& -\frac{1-2 M}{(1-M)^{2}} \ln A_{n}(\bar{p}, \bar{x}) \\
\leq & \frac{1-2 M}{(1-M)^{2}}-A_{n}\left(\bar{p}, \frac{1}{1-\bar{x}}\right) \\
& -A_{n}(\bar{p}, \bar{x}) \times\left[\frac{1-2 M}{(1-M)^{2}} A_{n}\left(\bar{p}, \frac{1}{\bar{x}}\right)-A_{n}\left(\bar{p}, \frac{1}{\bar{x}(1-\bar{x})}\right)\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \ln \left[\left[\frac{G_{n}(\bar{p}, 1-\bar{x})}{G_{n}(\bar{p}, \bar{x})}\right] /\left[\frac{A_{n}(\bar{p}, 1-\bar{x})}{A_{n}(\bar{p}, \bar{x})}\right]\right] \\
\leq & \ln \left[\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]^{\frac{1-2 M}{(1-M)^{2}}}+\frac{1-2 M}{(1-M)^{2}}\left[1-A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}}\right)\right] \\
& +A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}(1-\bar{x})}\right)-A_{n}\left(\bar{p}, \frac{1}{1-\bar{x}}\right) \\
= & \ln \left\{\left[\frac{A_{n}(\bar{p}, \bar{x})}{G_{n}(\bar{p}, \bar{x})}\right]^{\frac{1-2 M}{(1-M)^{2}}} \cdot \exp \left[\frac{1-2 M}{(1-M)^{2}}\left\{1-A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}}\right)\right\}\right]\right. \\
& \left.\times \exp \left[A_{n}(\bar{p}, \bar{x}) A_{n}\left(\bar{p}, \frac{1}{\bar{x}(1-\bar{x})}\right)-A_{n}\left(\bar{p}, \frac{1}{1-\bar{x}}\right)\right]\right\}
\end{aligned}
$$

hence the first inequality in (2.9).
The second inequality follows by (2.8) applied for the strictly convex function $h(t)=\frac{1-2 m}{(1-m)^{2}} \ln t-\ln \left(\frac{1-t}{t}\right), t \in(m, M)$.

We omit the details.

## References

[1] H. ALZER, The inequality of Ky Fan and related results, Acta Applicandae Mathematicae, An International Survey Journal on Applying Mathematics and Mathematical Applications, 38 (1995), 305-354.
[2] E. F. BECKENBACH and R. BELLMAN, Inequalities, Springer-Verlag, Berlin, 1961.
[3] P.S. BULLEN, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics, 97, Addison Wesley Longman, 1998.
[4] S.S. DRAGOMIR, Some refinements of Ky Fan's inequality, J. Math. Anal. Appl., 163 (1992), 317-321.
[5] S.S. DRAGOMIR, A further improvement of Jensen's inequality, Tamkang J. of Math., $\mathbf{2 5}(1)$ (1994), 29-36.
[6] S.S. DRAGOMIR, A new improvement of Jensen's inequality, Indian J. Pure Appl. Math., 26(10) (1995), 959-968.
[7] S.S. DRAGOMIR and N.M. IONESCU, Some converse of Jensen's inequality and applications, Anal. Num. Theor. Approx., 23 (1994), 71-78.
[8] S.S. DRAGOMIR and D.M. MILOŠEVIĆ, A sequence of mappings connected with Jensen's inequality and applications, Matematiki Vesnik, 44 (1992), 113-121.
[9] C.L. WANG, A Ky Fan inequality of the complementary $A .-G$. type and its variants, J. Math. Anal. Appl., 73 (1980), 501-505.

School of Communications and Informatics, Victoria University of Technology, PO
Box 14428, Melbourne City MC 8001, Victoria, Australia.
E-mail address: sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html
E-mail address: fps@matilda.vu.edu.au
URL: http://cams.vu.edu.au/staff/fernandos.html


[^0]:    Date: January 11, 2001.
    1991 Mathematics Subject Classification. Primary 26D15, 26D10.
    Key words and phrases. Ky Fan's Inequality, Weighted arithmetic and geometric means.

