REFINEMENTS OF THE HERMITE-HADAMARD INTEGRAL INEQUALITY FOR LOG-CONVEX FUNCTIONS

S.S. DRAGOMIR

Abstract

Two refinements of the classical Hermite-Hadamard integral inequality for log-convex functions and applications for special means are given.

1. Introduction

Let I be an interval of real numbers.
The function $f: I \rightarrow \mathbb{R}$ is said to be convex on I if for all $x, y \in I$ and $t \in[0,1]$, one has the inequality:

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) . \tag{1.1}
\end{equation*}
$$

A function $f: I \rightarrow(0, \infty)$ is said to be log-convex or multiplicatively convex if $\log (f)$ is convex, or, equivalently, if for all $x, y \in I$ and $t \in[0,1]$ one has the inequality:

$$
\begin{equation*}
f(t x+(1-t) y) \leq[f(x)]^{t}[f(y)]^{1-t} \tag{1.2}
\end{equation*}
$$

We note that if f and g are convex functions and g is monotonic nondecreasing, then $g \circ f$ is convex. Moreover, since $f=\exp (\log f)$, it follows that a log-convex function is convex, but the converse is not true [2, p. 7]. This fact is obvious from (1.2) as by the arithmetic-geometric mean inequality, we have

$$
\begin{equation*}
[f(x)]^{t}[f(y)]^{1-t} \leq t f(x)+(1-t) f(y) \tag{1.3}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
The next inequality (see for example [2, p. 137]) is well known in the literature as the Hermite-Hadamard inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.4}
\end{equation*}
$$

where $f: I \rightarrow \mathbb{R}$ is a convex function on the interval I and $a, b \in I$ with $a<b$.
For some recent results related to this classic result, see the papers [4] - [13] and the books [1], [2] and [3] where further references are given.

[^0]In [13], S.S. Dragomir and B. Mond proved that the following inequalities of Hermite-Hadamard type hold for log-convex functions:

$$
\begin{aligned}
(1.5) f\left(\frac{a+b}{2}\right) & \leq \exp \left[\frac{1}{b-a} \int_{a}^{b} \ln [f(x)] d x\right] \\
& \leq \frac{1}{b-a} \int_{a}^{b} G(f(x), f(a+b-x)) d x \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq L(f(a), f(b)) \leq \frac{f(x)+f(b)}{2}
\end{aligned}
$$

where $G(p, q):=\sqrt{p q}$ is the geometric mean and $L(p, q):=\frac{p-q}{\ln p-\ln q}(p \neq q)$ is the logarithmic mean of the positive real numbers p, q (for $p=q$, we put $L(p, p)=p$).

In this paper we prove another refinement of the Hermite-Hadamard Inequality for differentiable log-convex functions. Some applications for special means are also given.

2. The Results

We shall start with the following refinement of the Hermite-Hadamard inequality for log-convex functions.

Theorem 1. Let $f: I \rightarrow(0, \infty)$ be a differentiable log-convex function on the interval of real numbers $\stackrel{\circ}{I}$ (the interior of I) and $a, b \in \stackrel{\circ}{I}$ with $a<b$. Then the following inequalities hold:

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{2.1}\\
& f\left(\frac{a+b}{2}\right) \\
& \geq L\left(\exp \left[\frac{f^{\prime}\left(\frac{a+b}{2}\right)}{f\left(\frac{a+b}{2}\right)}\left(\frac{b-a}{2}\right)\right], \exp \left[-\frac{f^{\prime}\left(\frac{a+b}{2}\right)}{f\left(\frac{a+b}{2}\right)}\left(\frac{b-a}{2}\right)\right]\right) \geq 1
\end{align*}
$$

Proof. Since f is differentiable and log-convex on I , we have that

$$
\log f(x)-\log f(y) \geq \frac{d}{d t}(\log f)(y)(x-y)
$$

for all $x, y \in \stackrel{\circ}{\mathrm{I}}$, which gives that

$$
\log \left[\frac{f(x)}{f(y)}\right] \geq \frac{f^{\prime}(y)}{f(y)}(x-y)
$$

for all $x, y \in ⿺$.

$$
\begin{equation*}
f(x) \geq f(y) \exp \left[\frac{f^{\prime}(y)}{f(y)}(x-y)\right] \quad \text { for all } x, y \in \stackrel{\circ}{\mathrm{I}} \tag{2.2}
\end{equation*}
$$

Now, if we choose $y=\frac{a+b}{2}$, we obtain:

$$
\begin{equation*}
\frac{f(x)}{f\left(\frac{a+b}{2}\right)} \geq \exp \left[\frac{f^{\prime}\left(\frac{a+b}{2}\right)}{f\left(\frac{a+b}{2}\right)}\left(x-\frac{a+b}{2}\right)\right], x \in[a, b] \tag{2.3}
\end{equation*}
$$

Integrating this inequality over x on $[a, b]$ and using Jensen's integral inequality, we deduce that:

$$
\begin{align*}
\frac{\frac{1}{b-a} \int_{a}^{b} f(x) d x}{f\left(\frac{a+b}{2}\right)} & \geq \frac{1}{b-a} \int_{a}^{b} \exp \left[\frac{f^{\prime}\left(\frac{a+b}{2}\right)}{f\left(\frac{a+b}{2}\right)}\left(x-\frac{a+b}{2}\right)\right] d x \tag{2.4}\\
& \geq \exp \left[\frac{1}{b-a} \int_{a}^{b}\left[\frac{f^{\prime}\left(\frac{a+b}{2}\right)}{f\left(\frac{a+b}{2}\right)}\left(x-\frac{a+b}{2}\right)\right] d x\right]=1
\end{align*}
$$

Now, as for $\alpha \neq 0$ we have that

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} \exp (\alpha x) d x & =\frac{\exp (\alpha b)-\exp (\alpha a)}{\alpha(b-a)} \\
& =L[\exp (\alpha b), \exp (\alpha a)]
\end{aligned}
$$

where $L(\cdot, \cdot)$ is the usual logarithmic mean, then

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} \exp \left[\alpha\left(x-\frac{a+b}{2}\right)\right] d x \\
= & \frac{\exp \left[\alpha\left(\frac{b-a}{2}\right)\right]-\exp \left[-\alpha\left(\frac{b-a}{2}\right)\right]}{\alpha\left[\left(\frac{b-a}{2}\right)-\left(-\left(\frac{b-a}{2}\right)\right)\right]} \\
= & L\left(\exp \left[\alpha\left(\frac{b-a}{2}\right)\right], \exp \left[-\alpha\left(\frac{b-a}{2}\right)\right]\right) .
\end{aligned}
$$

Using the above equality for $\alpha=\frac{f^{\prime}\left(\frac{a+b}{2}\right)}{f\left(\frac{a+b}{2}\right)}$ the inequality (2.4) gives the desired result (2.1).

The following corollary holds.
Corollary 1. Let $g: I \rightarrow \mathbb{R}$ be a differentiable convex function on $\stackrel{\circ}{I}$ and $a, b \in \stackrel{\circ}{I}$ with $a<b$. Then we have the inequality:

$$
\begin{align*}
& \frac{\frac{1}{b-a} \int_{a}^{b} \exp (g(x)) d x}{\exp g\left(\frac{a+b}{2}\right)} \tag{2.5}\\
\geq & L\left(\exp \left[g^{\prime}\left(\frac{a+b}{2}\right)\left(\frac{b-a}{2}\right)\right], \exp \left[-g^{\prime}\left(\frac{a+b}{2}\right)\left(\frac{b-a}{2}\right)\right]\right) \geq 1
\end{align*}
$$

The following theorem also holds.
Theorem 2. Let $f: I \rightarrow \mathbb{R}$ be as in Theorem 1. Then we have the inequality:

$$
\begin{align*}
\frac{\frac{f(a)+f(b)}{2}}{\frac{1}{b-a} \int_{a}^{b} f(x) d x} & \geq 1+\log \left[\frac{\int_{a}^{b} f(x) d x}{\int_{a}^{b} f(x) \exp \left[\frac{f^{\prime}(x)}{f(x)}\left(\frac{a+b}{2}-x\right)\right] d x}\right] \tag{2.6}\\
& \geq 1+\log \left[\frac{\frac{1}{b-a} \int_{a}^{b} f(x) d x}{f\left(\frac{a+b}{2}\right)}\right] \geq 1
\end{align*}
$$

Proof. From the inequality (2.2) we have

$$
f\left(\frac{a+b}{2}\right) \geq f(y) \exp \left[\frac{f^{\prime}(y)}{f(y)}\left(\frac{a+b}{2}-y\right)\right]
$$

for all $y \in[a, b]$.
Integrating over y and using Jensen's integral inequality for $\exp (\cdot)$ functions, we have

$$
\begin{aligned}
(b-a) f\left(\frac{a+b}{2}\right) & \geq \int_{a}^{b} f(y) \exp \left[\frac{f^{\prime}(y)}{f(y)}\left(\frac{a+b}{2}-y\right)\right] d y \\
& \geq \int_{a}^{b} f(y) d y \cdot \exp \left(\frac{\int_{a}^{b} f(y)\left[\frac{f^{\prime}(y)}{f(y)}\left(\frac{a+b}{2}-y\right)\right] d y}{\int_{a}^{b} f(y) d y}\right) \\
& =\int_{a}^{b} f(y) d y \cdot \exp \left(\frac{\int_{a}^{b} f^{\prime}(y)\left(\frac{a+b}{2}-y\right) d y}{\int_{a}^{b} f(y) d y}\right)
\end{aligned}
$$

A simple integration by parts gives

$$
\int_{a}^{b} f^{\prime}(y)\left(\frac{a+b}{2}-y\right) d y=\int_{a}^{b} f(y) d y-\frac{f(a)+f(b)}{2}(b-a)
$$

Then we have

$$
\begin{aligned}
\exp \left[1-\frac{\frac{f(a)+f(b)}{2}(b-a)}{\int_{a}^{b} f(x) d x}\right] & \leq \frac{\int_{a}^{b} f(y) \exp \left[\frac{f^{\prime}(y)}{f(y)}\left(\frac{a+b}{2}-y\right)\right] d y}{\int_{a}^{b} f(y) d y} \\
& \leq \frac{(b-a) f\left(\frac{a+b}{2}\right)}{\int_{a}^{b} f(y) d y}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
1-\frac{\frac{f(a)+f(b)}{2}(b-a)}{\int_{a}^{b} f(x) d x} & \leq \log \left[\frac{\int_{a}^{b} f(y) \exp \left[\frac{f^{\prime}(y)}{f(y)}\left(\frac{a+b}{2}-y\right)\right] d y}{\int_{a}^{b} f(y) d y}\right] \\
& \leq \log \left[\frac{f\left(\frac{a+b}{2}\right)}{\frac{1}{b-a} \int_{a}^{b} f(x) d x}\right]
\end{aligned}
$$

from where we get the desired inequality.
The following corollary is a natural consequence of the above theorem.
Corollary 2. Let $g: I \rightarrow \mathbb{R}$ be as in Corollary 1. Then we have the inequality:

$$
\begin{aligned}
\frac{\frac{\exp g(a)+\exp g(b)}{2}}{\frac{1}{b-a} \int_{a}^{b} \exp g(x) d x} & \geq 1+\log \left[\frac{\int_{a}^{b} \exp g(x) d x}{\int_{a}^{b} \exp \left[g(x)-\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right] d x}\right] \\
& \geq 1+\log \left[\frac{\frac{1}{b-a} \int_{a}^{b} \exp g(x) d x}{\exp g\left(\frac{a+b}{2}\right)}\right] \geq 1 .
\end{aligned}
$$

3. Applications

The function $f(x)=\frac{1}{x}, x \in(0, \infty)$ is log-convex on $(0, \infty)$. Then we have

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} \frac{d x}{x} & =L^{-1}(a, b) \\
f\left(\frac{a+b}{2}\right) & =A^{-1}(a, b) \\
\frac{f^{\prime}\left(\frac{a+b}{2}\right)}{f\left(\frac{a+b}{2}\right)} & =-\frac{1}{A}
\end{aligned}
$$

Now, applying the inequality (2.1) for the function $f(x)=\frac{1}{x}$, we get the inequality:

$$
\begin{equation*}
\frac{A(a, b)}{L(a, b)} \geq L\left(\exp \left(-\frac{b-a}{2 A}\right), \exp \left(\frac{b-a}{2 A}\right)\right) \geq 1 \tag{3.1}
\end{equation*}
$$

which is a refinement of the well-known inequality

$$
\begin{equation*}
A(a, b) \geq L(a, b) \tag{3.2}
\end{equation*}
$$

where $A(a, b)$ is the arithmetic mean and $L(a, b)$ is the logarithmic mean of a, b, that is, $A(a, b)=\frac{a+b}{2}$, and $L(a, b)=\frac{a-b}{\ln a-\ln b}$.

For $f(x)=\frac{1}{x}$, we also get

$$
\frac{f(a)+f(b)}{2}=H^{-1}(a, b)
$$

where $H(a, b):=\frac{1}{\frac{1}{a}+\frac{1}{b}}$ is the harmonic mean of a, b. Now, using the inequality (2.6) we obtain another interesting inequality:

$$
\begin{equation*}
\frac{L(a, b)}{H(a, b)} \geq 1+\log \left[\frac{A(a, b)}{L(a, b)}\right] \geq 1 \tag{3.3}
\end{equation*}
$$

which is a refinement of the following well-known inequality

$$
\begin{equation*}
L(a, b) \geq H(a, b) \tag{3.4}
\end{equation*}
$$

Similar inequalities may be stated for the log-convex functions $f(x)=x^{x}, x>0$ or $f(x)=e^{x}+1, x \in \mathbb{R}$, etc. We omit the details.

References

[1] S.S. DRAGOMIR and C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. http://rgmia.vu.edu.au/monographs.html
[2] J.E. PEČARIĆ, F. PROSCHAN and Y.L. TONG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, 1991.
[3] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[4] S.S. DRAGOMIR, J.E. PEČARIĆ and J. SÁNDOR, A note on the Jensen-Hadamard inequality, Anal. Num. Theor. Approx., 19 (1990), 29-34.
[5] S.S. DRAGOMIR, Two functions in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.
[6] S.S. DRAGOMIR, On Hadamard's inequalities for convex functions, Mat. Balkanica, 6 (1992), 215-222.
[7] S.S. DRAGOMIR, Some integral inequalities for differentiable convex functions, Contributions, Macedonian Acad. of Sci. and Arts, 13(1) (1992), 13-17.
[8] S.S. DRAGOMIR, A refinements of Hadamard's inequality for isotonic linear functional, Tamkang J. of Math. (Taiwan), 24 (1993), 101-106.
[9] S.S. DRAGOMIR, D.S. MILOSEVIĆ and J. SANDOR, On some refinements of Hadamard's inequalities and applications, Univ. Beograd, Publ. Elek. Fak., Ser. Math., 4 (1993), 21-24.
[10] D. BARBU, S.S. DRAGOMIR and C. BUŞE, A probabilistic argument for the convergence of some sequences associated to Hadamard's inequality, Studia Univ. "Babes-Bolyai", Math., 38(1) (1993), 29-33.
[11] S.S. DRAGOMIR and G. TOADER, Some inequalities for m-convex functions, Studia Univ. Babeş-Bolyai Math, 38 (1993), 21-28.
[12] S.S. DRAGOMIR, Some remarks on Hadamard's inequalities for convex functions, Extracta Math., 9(2) (1994), 88-94.
[13] S.S. DRAGOMIR and B. MOND, Integral inequalities of Hadamard type for log-convex functions, Demonstratio Mathematica, 31 (2)(1998), 354-364.

School of Communications and Informatics, Victoria University of Technology, Melbourne City MC, Victoria 8001, Australia.

E-mail address: sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

[^0]: Date: June 20, 2000.
 1991 Mathematics Subject Classification. Primary 26D15; Secondary 26D99.
 Key words and phrases. Hermite-Hadamard Inequality, Log-Convex Functions.

