
A GENERALISATION OF THE TRAPEZOIDAL RULE FOR THE
RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS

S.S. DRAGOMIR, C. BUŞE, M.V. BOLDEA, AND L. BRAESCU

Abstract. A generalisation of the trapezoid rule for the Riemann-Stieltjes
integral and applications for special means are given.

1. Introduction

The following inequality is well known in the literature as the “trapezoid inequal-
ity”:

∣

∣

∣

∣

∣

f (a) + f (b)
2

· (b− a)−
∫ b

a
f (t) dt

∣

∣

∣

∣

∣

≤ 1
12

(b− a)3 ‖f ′′‖∞ ,(1.1)

where the mapping f : [a, b] → R is assumed to be twice differentiable on (a, b) ,
with its second derivative f ′′ : (a, b) → R bounded on (a, b) , that is, ‖f ′′‖∞ :=
supt∈(a,b) |f ′′ (t)| < ∞. The constant 1

12 is sharp in (1.1) in the sense that it cannot
be replaced by a smaller constant.

If In : a = x0 < x1 < ... < xn−1 < xn = b is a division of the interval [a, b] and
hi = xi+1−xi, ν (h) := max {hi|i = 0, ..., n− 1} , then the following formula, which
is called the “trapezoid quadrature formula”

T (f, In) =
n−1
∑

i=0

f (xi) + f (xi+1)
2

· hi(1.2)

approximates the integral
∫ b

a f (t) dt with an error of approximation RT (f, In)
which satisfies the estimate

|RT (f, In)| ≤ 1
12
‖f ′′‖∞

n−1
∑

i=0

h3
i ≤

b− a
12

‖f ′′‖∞ [ν (h)]2 .(1.3)

In (1.3) , the constant 1
12 is sharp as well.

If the second derivative does not exist or f ′′ is unbounded on (a, b) , then we
cannot apply (1.3) to obtain a bound for the approximation error. It is important,
therefore, that we consider the problem of estimating RT (f, In) in terms of lower
derivatives.

Define the following functional associated to the trapezoid inequality

Ψ (f ; a, b) :=
f (a) + f (b)

2
· (b− a)−

∫ b

a
f (t) dt(1.4)

where f : [a, b] → R is an integrable mapping on [a, b] .
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The following result is known [3]:

Theorem 1. Let f : [a, b] → R be an absolutely continuous mapping on [a, b] .
Then

|Ψ(f ; a, b)|(1.5)

≤































(b−a)2

4 ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

(b−a)
1+ 1

q

2(q+1)
1
q
‖f ′‖p if f ′ ∈ Lp [a, b] , p > 1, 1

p + 1
q = 1;

b−a
2 ‖f ′‖1 ,

where ‖·‖p are the usual p−norms, i.e.,

‖f ′‖∞ : = ess sup
t∈[a,b]

|f ′ (t)| ,

‖f ′‖p : =

(

∫ b

a
|f ′ (t)|p dt

) 1
p

, p > 1

and

‖f ′‖1 :=
∫ b

a
|f ′ (t)| dt,

respectively.

The following corollary for composite formulae holds [3].

Corollary 1. Let f be as in Theorem 1. Then we have the quadrature formula
∫ b

a
f (x) dx = T (f, In) + RT (f, In) ,(1.6)

where T (f, In) is the trapezoid rule and the remainder RT (f, In) satisfies the esti-
mation

|RT (f, In)| ≤











































1
4 ‖f

′‖∞
n−1
∑

i=0
h2

i if f ′ ∈ L∞ [a, b] ;

1

2(q+1)
1
q
‖f ′‖p

(

n−1
∑

i=0
hq+1

i

)
1
q

if f ′ ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;
1
2 ‖f

′‖1 ν (h) .

(1.7)

A more general result concerning a trapezoid inequality for functions of bounded
variation has been proved in the paper [4].

Theorem 2. Let f : [a, b] → R be a mapping of bounded variation on [a, b] and
denote

∨b
a (f) as its total variation on [a, b] . Then we have the inequality

|Ψ(f ; a, b)| ≤ 1
2

(b− a)
b

∨

a

(f) .(1.8)

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller constant.
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The following corollary which provides an upper bound for the approximation
error in the trapezoid quadrature formula, for f of bounded variation, holds [4].

Corollary 2. Assume that f : [a, b] → R is of bounded variation on [a, b] . Then
we have the quadrature formula (1.6) where the reminder satisfies the estimate

|RT (f, In)| ≤ 1
2
ν (h)

b
∨

a

(f) .(1.9)

The constant 1
2 is sharp.

For other recent results on the trapezoid inequality see [5]-[10], or the book [11]
where further references are given.

The following theorem generalizing the classical trapezoid inequality for map-
pings of bounded variation holds [12].

Theorem 3. Let f : [a, b] → K (K=R,C) be a p − H−Hölder type mapping, that
is, it satisfies the condition

|f (x)− f (y)| ≤ H |x− y|p for all x, y ∈ [a, b] ,(1.10)

where H > 0 and p ∈ (0, 1] are given, and u : [a, b] → K is a mapping of bounded
variation on [a, b] . Then we have the inequality:

|Ψ(f, u; a, b)| ≤ 1
2p H (b− a)p

b
∨

a

(u) ,(1.11)

where Ψ(f, u; a, b) is the generalized trapezoid functional

Ψ(f, u; a, b) :=
f (a) + f (b)

2
[u (b)− u (a)]−

∫ b

a
f (t) du (t) .(1.12)

The constant C = 1 on the right hand side of (1.11) cannot be replaced by a smaller
constant.

The following corollaries are natural consequences of (1.11):

Corollary 3. Let f be as above and u : [a, b] → R be a monotonic mapping on
[a, b] . Then we have

|Ψ(f, u; a, b)| ≤ 1
2p H (b− a)p |u (b)− u (a)| .(1.13)

Corollary 4. Let f be as above and u : [a, b] → K be a Lipschitzian mapping with
the constant L > 0. Then

|Ψ(f, u; a, b)| ≤ 1
2p HL (b− a)p+1 .(1.14)

Corollary 5. Let f be as above and G : [a, b] → R be the cumulative distribution
function of a certain random variable X. Then

∣

∣

∣

∣

∣

f (a) + f (b)
2

−
∫ b

a
f (t) dG (t)

∣

∣

∣

∣

∣

≤ 1
2p H (b− a)p .(1.15)
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Remark 1. If we assume that g : [a, b] ((a, b)) → K is continuous, then u (x) =
∫ x

a g (t) dt is differentiable, u (b) =
∫ b

a g (t) dt, u (a) = 0, and
∨b

a (u) =
∫ b

a |g (t)| dt.
Consequently, by (1.11) , we obtain

∣

∣

∣

∣

∣

f (a) + f (b)
2

·
∫ b

a
g (t) dt−

∫ b

a
f (t) g (t) dt

∣

∣

∣

∣

∣

(1.16)

≤ 1
2p H (b− a)p

∫ b

a
|g (t)| dt.

The following theorem which complements, in a sense, the previous result also
holds [13].

Theorem 4. Let f : [a, b] → K be a mapping of bounded variation on [a, b] and
u : [a, b] → K be a p−H−Hölder type mapping, that is, it satisfies the condition:

|u (x)− u (y)| ≤ H |x− y|p for all x, y ∈ [a, b] ,(1.17)

where H > 0 and p ∈ (0, 1] are given. Then we have the inequality:

|Ψ(f, u; a, b)| ≤ 1
2p H (b− a)p

b
∨

a

(f) .(1.18)

The constant C = 1 on the right hand side of (1.18) cannot be replaced by a smaller
constant.

The following corollary is a natural consequence of the above result.

Corollary 6. Let f : [a, b] → K be as in Theorem 4 and u be an L−Lipschitzian
mapping on [a, b] , that is,

|u (t)− u (s)| ≤ L |t− s| for all t, s ∈ [a, b] ,(1.19)

where L > 0 is fixed. Then we have the inequality

|Ψ (f, u; a, b)| ≤ L
2

(b− a)
b

∨

a

(f) .(1.20)

Remark 2. If f : [a, b] → R is monotonic and u is of p−H−Hölder type, then the
inequality (1.18) becomes:

|Ψ(f, u; a, b)| ≤ 1
2p H (b− a) |f (b)− f (a)| .(1.21)

In addition, if u is L−Lipschitzian, then the inequality (1.20) can be replaced by

|Ψ (f, u; a, b)| ≤ L
2

(b− a) |f (b)− f (a)| .(1.22)

Remark 3. If f is Lipschitzian with a constant K > 0, then it is obvious that f is
of bounded variation on [a, b] and

∨b
a (f) ≤ K (b− a) . Consequently, the inequality

(1.18) becomes

|Ψ(f, u; a, b)| ≤ 1
2p HK (b− a)p+1 ,(1.23)

and the inequality (1.20) becomes

|Ψ(f, u; a, b)| ≤ LK
2

(b− a)2 .(1.24)
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We now point out some results in estimating the integral of a product.

Corollary 7. Let f : [a, b] → R be a mapping of bounded variation on [a, b] and g
be continuous on [a, b] . Put ‖g‖∞ := supt∈[a,b] |g (t)| . Then we have the inequality:

∣

∣

∣

∣

∣

f (a) + f (b)
2

∫ b

a
g (s) ds−

∫ b

a
f (t) g (t) dt

∣

∣

∣

∣

∣

≤
‖g‖∞

2
(b− a)

b
∨

a

(f) .(1.25)

Remark 4. Now, if in the above corollary we assume that f is monotonic, then
(1.25) becomes

∣

∣

∣

∣

∣

f (a) + f (b)
2

∫ b

a
g (s) ds−

∫ b

a
f (t) g (t) dt

∣

∣

∣

∣

∣

(1.26)

≤
‖g‖∞ |f (b)− f (a)| (b− a)

2
,

and if in Corollary 7 we assume that f is K−Lipschitzian, then the inequality (1.25)
becomes

∣

∣

∣

∣

∣

f (a) + f (b)
2

∫ b

a
g (s) ds−

∫ b

a
f (t) g (t) dt

∣

∣

∣

∣

∣

≤
‖g‖∞K (b− a)2

2
.(1.27)

The following corollary is also a natural consequence of Theorem 4.

Corollary 8. Let f and g be as in Corollary 7. Put

‖g‖p :=

(

∫ b

a
|g (s)|p ds

) 1
p

; p > 1.

Then we have the inequality
∣

∣

∣

∣

∣

f (a) + f (b)
2

∫ b

a
g (s) ds−

∫ b

a
f (t) g (t) dt

∣

∣

∣

∣

∣

(1.28)

≤ 1

2
p−1

p

‖g‖p (b− a)
p−1

p

b
∨

a

(f) .

2. The Results

The following theorem holds.

Theorem 5. Let u : [a, b] → R be of H − r-Hölder type, i.e., we recall this

|u(x)− u(y)| ≤ H|x− y|r, for any x, y ∈ [a, b] and some H > 0,(2.1)

where r ∈ (0, 1] is given, and f : [a, b] → R is of bounded variation.
Then we have the inequality:

∣

∣

∣

∣

∣

∫ b

a
f(t)du(t)− [(u(b)− u(x))f(b) + (u(x)− u(a))f(a)]

∣

∣

∣

∣

∣

(2.2)

≤ H
[

1
2
(b− a) +

∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

]r b
∨

a

(f) ≤ H(b− a)r
b

∨

a

(f)

for any x ∈ [a, b].
The constant 1

2 is sharp in the sense that we cannot put a smaller constant instead.
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Proof. Using the integration by parts formula, we may state:
∫ b

a
(u(t)− u(x))df(t)(2.3)

= [u(b)− u(x)]f(b)− [u(a)− u(x)]f(a)−
∫ b

a
f(t)du(t).

It is well known that if m : [a, b] → R is continuous and n : [a, b] → R is of bounded
variation, the Riemann-Stieltjes integral

∫ b
a m(t)dn(t) exists, and

∣

∣

∣

∣

∣

∫ b

a
m(t)dn(t)

∣

∣

∣

∣

∣

≤ sup
t∈[a,b]

|m(t)| ·
b

∨

a

(n).

Thus,
∣

∣

∣

∣

∣

∫ b

a
(u(t)− u(x))df(t)

∣

∣

∣

∣

∣

≤ sup
t∈[a,b]

|u(t)− u(x)|
b

∨

a

(f) ≤ sup
t∈[a,b]

{H|t− x|r}
b

∨

a

(f)

= H max{|b− x|r, |x− a|r}
b

∨

a

(f) = H[max(b− x, x− a)]r
b

∨

a

(f)

= H
[

1
2
(b− a) +

∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

]r b
∨

a

(f).

Finally, as
∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

≤ 1
2
(b− a) for any x ∈ [a, b]

we get the last inequality in (2.2).
To prove the sharpness of the constant 1

2 , we assume that (2.2) holds with the
constant c > 0, i.e.,

∣

∣

∣

∣

∣

∫ b

a
f(t)du(t)− [(u(b)− u(x))f(b) + (u(x)− u(a))f(a)]

∣

∣

∣

∣

∣

(2.4)

≤ H
[

c(b− a) +
∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

]r b
∨

a

(f).

Choose u(t) = t which is of (1 − 1)-Hölder type and f : [a, b] → R, f(t) = 0 if
t ∈ {a, b} and f(t) = 1 if t ∈ (a, b), which is of bounded variation, in (2.4).

We get:

|b− a| ≤ 2
[

c(b− a) +
∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

]

, for any x ∈ [a, b].

For x = a+b
2 , we get:

|b− a| ≤ 2c(b− a), i.e. c ≥ 1
2
.
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Remark 5. If u is Lipschitz continuous function, i.e.

|u(x)− u(y)| ≤ L|x− y| for any x, y ∈ [a, b], ( and some L > 0),

the inequality (2.2) becomes:
∣

∣

∣

∣

∣

∫ b

a
f(t)du(t)− [(u(b)− u(x))f(b) + (u(x)− u(a))f(a)]

∣

∣

∣

∣

∣

(2.5)

≤ L ·
[

1
2
(b− a) +

∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

]

·
b

∨

a

(f) ≤ L(b− a)
b

∨

a

(f).

Corollary 9. If f is of bounded variation on [a, b] and u is absolutely continuous
with u′ ∈ L∞[a, b] then instead of L in (2.5) we can put

||u′||∞ = ess sup
t∈[a,b]

|u′(t)|.

Corollary 10. If g : [a, b] → R is Riemann integrable on [a, b] and if we choose
u(t) =

∫ t
a g(s)ds, then

∣

∣

∣

∣

∣

∫ b

a
f(t)g(t)dt− f(b)

∫ b

x
g(s)ds− f(a)

∫ x

a
g(s)ds

∣

∣

∣

∣

∣

(2.6)

≤ ‖g‖∞

[

1
2
(b− a) +

∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

] b
∨

a

(f) ≤ ‖g‖∞ (b− a)
b

∨

a

(f).

Remark 6. If in (2.6) we choose x = a+b
2 , we get the best inequality in the class,

i.e.,
∣

∣

∣

∣

∣

∫ b

a
f(t)g(t)dt− f(b)

∫ b

a+b
2

g(s)ds− f(a)
∫ a+b

2

a
g(s)ds

∣

∣

∣

∣

∣

(2.7)

≤ 1
2
‖g‖∞ (b− a)

b
∨

a

(f).

3. Approximating Riemann-Stieltjes Integral

Let In : a = x0 < x1 < · · · < xn−1 < xn = b a division of [a, b]. Denote
hi := xi+1 − xi, and ν(In) = sup

i=0,n−1
hi then construct the sums

S(f, u, In, ξ) =
n−1
∑

i=0

[u(xi+1)− u(ξi)]f(xi+1) +
n−1
∑

i=0

[u(ξi)− u(xi)]f(xi),(3.1)

where ξi ∈ [xi, xi+1], i = 0, n− 1 and ξ = (ξ0, ξ1, · · · ξn−1).
We can state the following theorem concerning the approximation of Riemann-

Stieltjes integral:

Theorem 6. Let f, u be as in Theorem 5 and In, ξ as defined above. Then:
∫ b

a
f(t)du(t) = S(f, u, In, ξ) + R(f, u, In, ξ)(3.2)
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when S(f, u, In, ξ) is defined by (3.1) and the remainder R(f, u, In, ξ) satisfies the
estimate:

|R(f, u, In, ξ)| ≤ H ·

[

1
2
ν(In) + sup

i=0,n−1

∣

∣

∣

∣

ξi −
xi + xi+1

2

∣

∣

∣

∣

]r b
∨

a

(f)(3.3)

≤ H · νr(In)
b

∨

a

(f).

Proof. We apply (2.2) on [xi, xi+1] to get:
∣

∣

∣

∣

∫ xi+1

xi

f(t)du(t)− [u(xi+1)− u(ξi)]f(xi+1)− [u(ξi)− u(xi)]f(xi)
∣

∣

∣

∣

≤ H ·
[

1
2
hi +

∣

∣

∣

∣

ξi −
xi + xi+1

2

∣

∣

∣

∣

]r xi+1
∨

xi

(f) ≤ H · hr
i

xi+1
∨

xi

(f).

Summing on i from 0 to n−1, and using the generalised triangle inequality we get:
∣

∣

∣

∣

∣

∫ b

a
f(t)du(t)− S(f, u, In, ξ)

∣

∣

∣

∣

∣

≤ H ·
n−1
∑

i=0

[

1
2
hi +

∣

∣

∣

∣

ξi −
xi + xi+1

2

∣

∣

∣

∣

]r

·
xi+1
∨

xi

(f)

≤ H sup
i=0,n−1

[

1
2
hi +

∣

∣

∣

∣

ξ − xi + xi+1

2

∣

∣

∣

∣

]r b
∨

a

(f)

≤ H

[

1
2
ν(In) + sup

i=0,n−1

∣

∣

∣

∣

ξi −
xi + xi+1

2

∣

∣

∣

∣

]r b
∨

a

(f)

≤ Hνr(In)
b

∨

a

(f),

and the theorem is proved.

Remark 7. It is obvious that if ν(In) → 0 then (3.2) provides an approximation
for the Riemann-Stieltjes integral

∫ b
a f(t)du(t).

Corollary 11. If we consider the sum

SM (f, u, In)

=
n−1
∑

i=0

[

u(xi+1)− u
(

xi + xi+1

2

)]

f(xi+1) +
n−1
∑

i=0

[

u
(

xi + xi+1

2

)

− u(xi)
]

f(xi)

then:
∫ b

a
f(t)du(t) = SM (f, u, In) + RM (f, u, In)(3.4)

and the remainder RM (f, u, In) satisfies the estimate

|RM (f, u, In)| ≤ 1
2r Hνr(In)

b
∨

a

(f).(3.5)
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The following corollary in approximating the integral
∫ b

a f(t)g(t)dt holds.

Corollary 12. If f, g are as in Corollary 10, then
∫ b

a
f(t)g(t)dt = P (f, g, In, ξ) + RP (f, g, In, ξ)

where

P (f, g, In, ξ) =
n−1
∑

i=0

f(xi+1)
∫ xi+1

ξi

g(s)ds +
n−1
∑

i=0

f(xi)
∫ ξi

xi

g(s)ds.

and the remainder RP (f, g, In, ξ) satisfies the estimate:

|RP (f, g, In, ξ)| ≤ ‖g‖∞

[

1
2
ν(In) + sup

i=0,n−1

∣

∣

∣

∣

ξi −
xi + xi+1

2

∣

∣

∣

∣

]

b
∨

a

(f)

≤ ‖g‖∞ ν(In)
b

∨

a

(f).

Remark 8. If in the above corollary we choose ξi = xi+xi+1
2

(

i = 0, n− 1
)

then
we get the best formula in the class, i.e.,

PM (f, g, In, ξ) =
n−1
∑

i=0

f(xi+1)
∫ xi+1

xi+xi+1
2

g(s)ds +
n−1
∑

i=0

f(xi)
∫

xi+xi+1
2

xi

g(s)ds

and

RPM (f, g, In, ξ) ≤ 1
2
‖g‖∞ ν(In)

b
∨

a

(f).

4. Application for Special Means

Consider the means:

1. Arithmetic mean

A(a, b) :=
a + b

2
; a, b ≥ 0;

2. Geometric mean

G(a, b) :=
√

ab; a, b ≥ 0;

3. Harmonic mean

H(a, b) :=
2

1
a + 1

b

; a, b > 0;

4. Logarithmic mean

L(a, b) :=











b− a
ln b− ln a

; a, b > 0, a = b

a, a = b.
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5. Identric mean

I(a, b) :=















1
e

(

bb

aa

)
1

b−a

; a, b > 0, a = b

a, a = b.

6. p- Logarithmic mean

Lp(a, b) :=















[

bp+1 − ap+1

(p + 1)(b− a)

]
1
p

; a, b > 0, a = b

a, a = b.

, p ∈ R \ {−1, 0}.

It is well known that Lp(a, b) is monotically increasing as a function of p 7→
Lp(a, b) denoting that L−1 = L and L0 = I.

In Section 2 we proved the following inequality:
∣

∣

∣

∣

∣

∣

∫ b

a
f(t)g(t)dt− f(b)

b
∫

x

g(s)ds− f(a)

x
∫

a

g(s)ds

∣

∣

∣

∣

∣

∣

≤ ‖g‖∞

[

1
2
(b− a) +

∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

] b
∨

a

(f) ≤ ‖g‖∞ (b− a)
b

∨

a

(f).

We can use this inequality in the sequel for different selections of f and g.

1. If we choose: f(x) = xp and g(x) = xq, x ∈ [a, b], a, b > 0 we get the
inequalities:

|(b− a)Lp+q
p+q(a, b)− bp(b− x)Lq

q(x, b)− ap(x− a)Lq
q(a, x)|

≤ bqp(b− a)2Lp−1
p−1(a, b)

for any q > 0 and

|(b− a)Lp+q
p+q(a, b)− bp(b− x)Lq

q(x, b)− ap(x− a)Lq
q(a, x)|

≤ aqp(b− a)2Lp−1
p−1(a, b)

for any q < 0, q 6= −1. Particularly, for x = A(a, b) we obtain:
∣

∣2Lp+q
p+q(a, b)− bpLq

q(A(a, b), b)− apLq
q(a,A(a, b))

∣

∣

≤ bqp(b− a)Lp−1
p−1(a, b)

for any q > 0, respectively,
∣

∣2Lp+q
p+q(a, b)− bpLq

q(A(a, b), b)− apLq
q(a,A(a, b))

∣

∣

≤ aqp(b− a)Lp−1
p−1(a, b)

for any q < 0, q 6= −1.
2. If we choose: f(x) = xp and g(x) = 1

x , x ∈ [a, b], a, b > 0 we get the inequality:
∣

∣

∣(b− a)Lp−1
p−1(a, b)− bp(b− x)L−1

−1(x, b)− ap(x− a)L−1
−1(a, x)

∣

∣

∣

≤ p
a
(b− a)2Lp−1

p−1(a, b).
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Particularly, for x = A(a, b) we obtain:
∣

∣

∣2Lp−1
p−1(a, b)− bpL−1

−1(A(a, b), b)− apL−1
−1(a,A(a, b))

∣

∣

∣ ≤
p
a
(b− a)Lp−1

p−1(a, b).

3. If we choose: f(x) = xp and g(x) = ln x, x ∈ [a, b], a, b > 0 we get the
inequality:

∣

∣

∣

∣

b− a
p + 1

[(p ln b + ln b− 1)Lp
p(a, b) + ap+1L−1

−1(a, b)]

−bp(b− x) ln(L0(x, b))− ap(x− a) ln(L0(a, x))
∣

∣

≤ p(b− a)2(ln b)Lp−1
p−1(a, b).

Particularly, for x = A(a, b) we obtain:
∣

∣

∣

∣

2
p + 1

[(p ln b + ln b− 1)Lp
p(a, b) + ap+1L−1

−1(a, b)]

−bp ln(L0(A(a, b), b))− ap ln(L0(a,A(a, b))
∣

∣

∣

∣

≤ p(b− a) ln bLp−1
p−1(a, b).

4. If we choose: f(x) = 1
x and g(x) = xq, x ∈ [a, b], a, b > 0 we get the inequali-

ties:

∣

∣

∣G2(a, b)(b− a)Lq−1
q−1(a, b)− a(b− x)Lq

q(x, b)− b(x− a)Lq
q(a, x)

∣

∣

∣ ≤ (b− a)2bq

for any q > 0 and

∣

∣

∣G2(a, b)(b− a)Lq−1
q−1(a, b)− a(b− x)Lq

q(x, b)− b(x− a)Lq
q(a, x)

∣

∣

∣ ≤ (b− a)2aq

for any q < 0, q 6= −1.
Particularly, for x = A(a, b) we obtain:

∣

∣

∣2G2(a, b)Lq−1
q−1(a, b)− aLq

q(A(a, b), b)− bLq
q(a, A(a, b))

∣

∣

∣ ≤ (b− a)bq

for any q > 0, respectively:
∣

∣

∣2G2(a, b)Lq−1
q−1(a, b)− aLq

q(A(a, b), b)− bLq
q(a,A(a, b))

∣

∣

∣ ≤ (b− a)aq

for any q < 0, q 6= −1.
5. If we choose: f(x) = 1

x and g(x) = 1
x we get the inequality:

∣

∣b− a− a(b− x)L−1
−1(x, b)− b(x− a)L−1

−1(a, x)
∣

∣ ≤ (b− a)2

a
.

Particularly, for x = A(a, b) we obtain:

∣

∣2− aL−1
−1(A(a, b), b)− bL−1

−1(a, A(a, b))
∣

∣ ≤ b− a
a

.
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6. If we choose: f(x) = 1
x and g(x) = ln x we get the inequality:

∣

∣

∣

∣

G2(a, b) · b− a
2

· ln(G2(a, b)) · L−1
−1(a, b)− a(b− x) ln(L0(x, b))

−b(x− a) ln (L0(a, x))
∣

∣

∣

∣

≤ (b− a)2 ln b.

Particularly, for x = A(a, b) we obtain:
∣

∣G2(a, b) ln(G2(a, b))L−1
−1(a, b)− a ln(L0(a,A(a, b))

∣

∣ ≤ (b− a) ln b

7. If we choose: f(x) = ln x and g(x) = xq we get the inequalities:
∣

∣

∣

∣

b− a
q + 1

[(q ln b + ln b− 1)Lq
q(a, b) + aq+1L−1

−1(a, b)]

−(ln b)(b− x)Lq
q(x, b)− (ln a)(a− x)Lq

q(a, x)
∣

∣

∣

∣

≤ (b− a)2bqL−1
−1(a, b) for any q > 0,

and
∣

∣

∣

∣

b− a
q + 1

[(q ln b + ln b− 1)Lq
q(a, b) + aq+1L−1

−1(a, b)]

−(ln b)(b− x)Lq
q(x, b)− (ln a)(a− x)Lq

q(a, x)
∣

∣

∣

∣

≤ (b− a)2aqL−1
−1(a, b) for any q < 0, q 6= −1.

Particularly, for x = A(a, b) we obtain:
∣

∣

∣

∣

2
q + 1

[(q ln b + ln b− 1)Lq
q(a, b) + aq+1L−1

−1(a, b)]

− ln bLq
q(A(a, b), b)− ln aLq

q(a,A(a, b))
∣

∣

∣

∣

≤ (b− a)bqL−1
−1(a, b) for any q > 0,

respectively:
∣

∣

∣

∣

2
q + 1

[(q ln b + ln b− 1)Lq
q(a, b) + aq+1L−1

−1(a, b)]

− ln bLq
q(A(a, b), b)− ln aLq

q(a,A(a, b))
∣

∣

∣

∣

≤ (b− a)aqL−1
−1(a, b) for any q < 0, q 6= −1.

8. If we choose: f(x) = ln x and g(x) = 1
x we get the inequality:

∣

∣

∣

∣

b− a
2

ln G2(a, b)L−1
−1(a, b)− (b− x) ln bL−1

−1(x, b)− (a− x) ln aL−1
−1(a, x)

∣

∣

∣

∣

≤ (b− a)2

a
L−1
−1(a, b).
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Particularly, for x = A(a, b) we obtain:
∣

∣ln G2(a, b)L−1
−1(a, b)− ln bL−1

−1(A(a, b), b)− ln aL−1
−1(a,A(a, b))

∣

∣

≤ b− a
a

L−1
−1(a, b).

9. If we choose: f(x) = ln x and g(x) = ln x we get the inequality:
∣

∣

∣

∣

b− a
G2(a, b)

[b(ln aabb − 2) ln(L0(a, b)) + b ln aabb − ln2 bb]

−(b− x) ln b ln(L0(x, b))− (x− a) ln a ln(L0(a, x))
∣

∣

∣

∣

≤ (b− a)2 ln bL−1
−1(a, b).

Particularly, for x = A(a, b) we obtain:
∣

∣

∣

∣

2
G2(a, b)

[b(ln aabb − 2)− ln(L0(a, b)) + b ln aabb − (ln bb)2]

− ln a ln(L0(a,A(a, b))
∣

∣

∣

∣

≤ (b− a) ln bL−1
−1(a, b).
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