
2k-INNER PRODUCTS AND 2k-RIEMANNIAN METRICS
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Abstract. The notion of 2k-inner product is introduced as a generalization of
usual inner product and Q-inner product([4]-[8]). As a consequence, is defined
the notion of 2k-normed space and some properties, e.g. uniformly convexity,
Gâteaux differentiability and Riesz propriety of the dual, are given. Also, the
notion of 2k-Riemannian metric is introduced.

1. Introduction

In the last decade, the second author gave (see [4] – [9]) an extension of the usual
notion of inner product, namely the quaternionic inner product, or, for short, the
Q-inner product. Some of the properties of an inner product and of the associated
norm, such as:

(i) uniform convexity,
(ii) Gâteaux differentiability,
(iii) equivalence of Birkhoff orthogonality with the inner product orthogonality,
(iv) the Riesz form of linear continuous functionals

were reobtained in this new framework.
The present paper is devoted to a generalization of both the classical inner

product and the Q-inner product. In the first section we introduce the concept of
2k-inner products and prove the properties (i)-(ii) above. Also, it is proved that a
2k-inner product space is a smooth space of (BD)-type in the sense of Dragomir,
and two remarkable identities, equivalent with the parallelogram identity, are given.
The following two sections deal with the properties (iii) and (iv) and some results
related to projections are obtained. The paper concludes with a generalization of
Riemannian metrics, namely 2k-Riemannian metrics.

2. Main Properties of 2k-Inner Products

Let X be a real linear space and k 6= 0 a natural number. As usual, we shall
denote X2k = X × . . .×X

︸ ︷︷ ︸

.
2k times

We introduce the following new concept:

Definition 1. A mapping (·, . . . , ·) : X2k → R is said to be a 2k-inner product if:
(i) (α1x1 + α2x2, x3, . . . , x2k+1) = α1 (x1, x3, . . . , x2k+1)+α2 (x2, x3, . . . , x2k+1),

α1, α2 ∈ R;
(ii)

(

xσ(1), . . . , xσ(2k)
)

= (x1, . . . , x2k), σ ∈ S2k, where S2n denotes the set of
all permutations of the indices {1, . . . , 2k};

(iii) (x, . . . , x) > 0 if x 6= 0;
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(iv) Cauchy-Buniakowski-Schwarz’s inequality (CBS for short)

|(x1, . . . , x2k)|2k ≤
2k
∏

i=1

(xi, . . . , xi)

with equality if and only if x1, . . . , x2k are linear dependent.

The pair (X, (·, . . . , ·)) is called 2k-inner product space. Let us remark that our
notion is different from the n-inner product of Misiak ([10]).

For k = 1 we have the usual notion of inner product and for k = 2 we obtain the
notion of Q-inner product from [4]-[8]. Also, it follows that

(0, x2, . . . , x2k) = 0 and (αx1, . . . , αx2k) = α2k (x1, . . . , x2k) .

Example 1. 1.

I) X = Rn, (x1, . . . , x2k) =
n
∑

i=1

(

2k
∏

j=1
xi

j

)

if xj =
(

x1
j , . . . , xn

j

)

II) Let (Ω,A, µ) be a measure space consisting of a set Ω, a σ-algebra A of subsets
of Ω, and a countably additive and positive measure µ on A with µ (Ω) < ∞.
Then on X = L2k (Ω,A, µ) we have the 2k-inner product

(x1, . . . , x2k) =
∫

Ω

2k
∏

i=1

xi (t) dµ (t) .

A remarkable class of 2k-inner products is provided by:

Proposition 1. An usual inner product (·, ·) on X gives rise to a 2k-inner product
on X for every k.

Proof. By induction after k. Let us suppose that the given inner product yields the
2k-inner product (·, . . . , ·)2k. Then:

(x1, . . . , x2k+2)2k+2

: =
1

2k + 1
[(x1, x2) (x3, . . . , x2k+2)2k + (x1, x3) (x2, x4, . . . , x2k+2)2k + . . .

+(x1, x2k+2) (x3, . . . , x2k+1)2k]

is a (2k + 2)-inner product.

In the following we call simple the above type of 2k-inner products.

Example 2. 1.
(i) For k = 2 ([6, p. 76], [8, p. 20]) we have the following 4-inner product:

(x1, x2, x3, x4)4 =
1
3

[(x1, x2) (x3, x4) + (x1, x3) (x2, x4) + (x1, x4) (x2, x3)]

(ii) For k = 3 we have the 6-inner product

(x1, . . . , x6)6

=
1
15
{(x1, x2) [(x3, x4) (x5, x6) + (x3, x5) (x4, x6) + (x3, x6) (x4, x5)]

+ (x1, x3) [(x2, x4) (x5, x6) + (x2, x5) (x4, x6) + (x2, x6) (x4, x5)]

+ (x1, x4) [(x2, x3) (x5, x6) + (x2, x5) (x3, x6) + (x2, x6) (x3, x5)]

+ (x1, x5) [(x2, x3) (x4, x6) + (x2, x4) (x3, x6) + (x2, x6) (x3, x4)]

+ (x1, x6) [(x2, x3) (x4, x5) + (x2, x4) (x3, x5) + (x2, x5) (x3, x4)]}.
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(iii) In the general case we have (2k−1)!! = 1 ·3 · ... · (2k−1) terms. So, for k = 4
we have 7!! = 3 · 5 · 7 = 105 terms.

The previous proposition leads to the definition of orthogonal basis. Let us
suppose that X has dimension n and let B = {ei}1≤i≤n be a basis for X. For
k = 1 as usual B is said to be orthogonal if (ei, ej) = δij and for k > 1 we define
recurrently using the relation from the proof of Proposition 1. For example, B is
orthogonal for a Q-inner product if:

(ei1 , ei2 , ei3 , ei4) =
1
3

(δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3) .

Then, for i 6= j, we have (ei, ei, ej , ej) = 1
3 and (ei, ei, ei, ej) = 0.

A first property is:

Proposition 2. If (·, . . . , ·) is a 2k-inner product then ‖ · ‖2k : X → R+, ‖x‖2k =
(x, . . . , x)

1
2k is a norm on X for which the following generalization of parallelogram

identity holds:

‖x + y‖2k
2k + ‖x− y‖2k

2k = 2
k

∑

i=0

(

2k
2 (k − i)

)(

x, . . . , x
︸ ︷︷ ︸

, y, . . . , y
︸ ︷︷ ︸

)

.

2i times 2(k−i) times

Proof. By definition of the 2k−norm, we get

‖x + y‖2k
2k =

2k
∑

i=0

(

2k
i

)





x, . . . , x
︸ ︷︷ ︸

i times

, y, . . . , y
︸ ︷︷ ︸

2k−i times





 .

However,
(

x, . . . , x
︸ ︷︷ ︸

, y, . . . , y
︸ ︷︷ ︸

)

i times 2k−i times

≤ ‖x‖i
2k‖y‖2k−i

2k

and then

‖x + y‖2k
2k ≤

2k
∑

i=0

(

2k
i

)

‖x‖i
2k‖y‖2k−i

2k = (‖x‖2k + ‖y‖2k)2k

which gives the triangle inequality. The relations:

‖x‖2k ≥ 0, ‖x‖2k = 0 ⇔ x = 0

and ‖λx‖2k =| λ | ‖x‖2k, λ a real number, immediately follow. The parallelogram
identity is obvious.

Remark 1. 1.
(i) For Example 1 part I, we have

‖x‖2k =

(

n
∑

i=1

(

xi)2k

) 1
2k

if x =
(

xi
)

1≤i≤n.
(ii) CBS has the form

| (x1, . . . , x2k) | ≤
2k
∏

i=1

‖xi‖2k.
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(iii) If (·, . . . , ·)2k is a simple 2k-inner product with the inner product (·, ·) as gen-
erator then ‖ · ‖2k is exactly the norm ‖ · ‖ of (·, ·). Also, we have

(x, . . . , x, y)2k = ‖x‖2(k−1)
2k (x, y) ,

a relation important for orthogonality theory, see Remark 1 part (ii) of Section
3.

The previous result leads to:

Definition 2. A real normed space is said to be a 2k-normed space if its norm is
defined by a 2k-inner product.

An important property of 2k−normed spaces is provided by:

Theorem 1. A 2k-normed space is uniformly convex.

Proof. Let 0 < ε < 2 and x, y ∈ X with ‖x‖2k ≤ 1, ‖y‖2k ≤ 1 and ‖x − y‖2k ≥ ε.
Applying the parallelogram identity and the CBS inequality, we have that

‖x + y‖2k
2k ≤ 2

k
∑

i=0

(

2k
2 (k − i)

)

‖x‖2i
2k‖y‖

2(k−i)
2k − ‖x− y‖2k

2k

≤ 22k − ε2k = 22k
[

1−
(ε

2

)2k
]

and then
∥

∥

∥

∥

x + y
2

∥

∥

∥

∥

≤ 1−

[

1−
(

1−
( ε

2

)2k
) 1

2k
]

.

Putting

δ (ε) = 1−
(

1−
(ε

2

)2k
) 1

2k

we have δ (ε) > 0, which gives the desired result.

Another remarkable result of this section is:

Theorem 2. The norm of a 2k-normed space is Gâteaux differentiable with:

τ (x, y) := (‖ · ‖′2k) (x) (y) =
(x, . . . , x, y)
‖x‖2k−1

2k

, x 6= 0.

Proof. Let x, y ∈ X, x 6= 0 and t 6= 0 a real number. Since

1
t

(

‖x + ty‖2k
2k − ‖x‖2k

2k

)

=
1
t

2k−1
∑

i=0

(

2k
i

)(

x, . . . , x
︸ ︷︷ ︸

, ty, . . . , ty
︸ ︷︷ ︸

)

i times 2k−i times

,

we have

lim
t→0

1
t

(

‖x + y‖2k
2k − ‖x‖2k

2k

)

= 2k (x, . . . , x, y) .

Also, from:

1
t

(‖x + ty‖2k − ‖x‖2k) =
1
t
· ‖x + ty‖2k

2k − ‖x‖2k
2k

(

‖x + ty‖k
2k + ‖x‖k

2k

)
k
∑

i=1
‖x + ty‖k−i

2k ‖x‖i−1
2k
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we get:

lim
t→0

1
t

(‖x + ty‖2k − ‖x‖2k) =
2k (x, . . . , x, y)
2‖x‖k

2kk‖x‖k−1
2k

,

which is the required relation.

Let us recall, following [9], the following notions:

Definition 3. 1.
(i) On a normed linear space (X, ‖ · ‖) the semi-inner-product (·, ·)T : X ×X →

R,

(x, y)T := lim
t↓0

1
2t

(

‖y + tx‖2 − ‖y‖2
)

is called semi-inner-product in the Tapia sense.
(ii) A smooth normed space is called of (D)-type if there exists:

(x, y)
′

T := lim
t→0

1
t

[(x, y + tx)T − (x, y)T ]

and a space of (D)-type is called of (BD)-type if there exists a real number
k so that (x, y)

′

T ≤ k2‖y‖2. The least number k is called the boundedness
modulus.

The following result is known.

Proposition 3. ([9, p. 1]) A normed linear space is smooth if and only if (·, ·)T is
linear in the first variable.

A straightforward computation for the 2k−normed spaces gives:

Proposition 4. A 2k-normed space is smooth since

(x, y)T =
(y, . . . , y, x)

‖y‖2(k−1)
2k

.

Also, a 2k-normed space is of (BD)-type with boundedness modulus 1 because
(x, y)

′

T = ‖y‖22k.

We finish this section with two identities in a 2k-inner space. A simple calculation
gives the equivalences:

a2 + c2 = 2b2 ⇐⇒ 1
b + c

+
1

a + b
=

2
a + c

a2 + c2 = 2b2 ⇐⇒ a
b + c

+
c

a + b
=

2b
a + c

.

Using the above parallelogram identity let

a = ‖x + y‖k
2k, c = ‖x− y‖k

2k and

b =







k
∑

i=0

(

2k
2 (k − i)

)





x, . . . , x
︸ ︷︷ ︸

2i times

, y, . . . , y
︸ ︷︷ ︸

2(k−i) times













1
2
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to obtain:
1

‖x− y‖k
2k +







k
∑

i=0

( 2k
2(k−i)

)





x, . . . , x
︸ ︷︷ ︸

2i times

, y, . . . , y
︸ ︷︷ ︸

2(k−i) times













1
2

+
1

‖x + y‖k
2k +







k
∑

i=0

( 2k
2(k−i)

)





x, . . . , x
︸ ︷︷ ︸

2i times

, y, . . . , y
︸ ︷︷ ︸

2(k−i) times













1
2

=
2

‖x + y‖k
2k + ‖x− y‖k

2k

and
‖x + y‖k

2k

‖x− y‖k
2k +







k
∑

i=0

( 2k
2(k−i)

)





x, . . . , x
︸ ︷︷ ︸

2i times

, y, . . . , y
︸ ︷︷ ︸

2(k−i) times













1
2

+
‖x− y‖k

2k

‖x + y‖k
2k +







k
∑

i=0

( 2k
2(k−i)

)





x, . . . , x
︸ ︷︷ ︸

2i times

, y, . . . , y
︸ ︷︷ ︸

2(k−i) times













1
2

=

2







k
∑

i=0

( 2k
2(k−i)

)





x, . . . , x
︸ ︷︷ ︸

2i times

, y, . . . , y
︸ ︷︷ ︸

2(k−i) times













1
2

‖x + y‖k
2k + ‖x− y‖k

2k
.

3. 2k-Orthogonality

We shall begin with:

Definition 4. If x, y ∈ (X, (·, . . . , ·)) then x is said to be 2k-orthogonal to y if
(x, . . . , x, y) = 0 and we denote this fact by x ⊥2k y.

Remark 2. 1.
(i) Obviously, x ⊥2k x ⇒ x = 0.
(ii) From Remark 1 part (iii), it follows that for a simple 2k-inner product gen-

erated by (·, ·) we have x ⊥2k y ⇔ x ⊥2 y.

Let us recall that on a normed space (X, ‖·‖), x is called Birkhoff orthogonal to
y if ‖x + λy‖ ≥ ‖x‖ for all real λ and denote this fact by x ⊥B y. The following
characterization of Birkhoff orthogonality is due by R. C. James:

Proposition 5. ([11, p. 92]) x ⊥B y ⇔ τ− (x, y) ≤ 0 ≤ τ+ (x, y) where:

τ− (x, y) := lim
t↓0

1
t

(‖x + ty‖ − ‖x‖) , τ+ (x, y) := lim
t↑0

1
t

(‖x + ty‖ − ‖x‖) .

The following lemma is useful:
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Lemma 1. If (X, (·, . . . , ·)) is a 2k-inner product space then the 2k-orthogonality
is equivalent with Birkhoff orthogonality.

Proof. If x ⊥B y then applying Proposition 5 it results that

0 ≤ τ− (x, y) ≤ 0 ≤ τ+ (x, y)

which implies

τ (x, y) = τ− (x, y) = τ+ (x, y) = 0

and then x ⊥2k y. Conversely, if x ⊥2k y and x 6= 0 then

τ− (x, y) = τ+ (x, y) =
(x, . . . , x, y)
‖x‖2k−1

2k

= 0

and applying Proposition 5 we have the conclusion.

This result has an important consequence. Thus, applying Ex. 24 from [3, V. 66]
it results that x ⊥2k y is equivalent with y ⊥2k x if and only if ‖·‖2k is generated by
an usual inner product. For example, this is the case of simple 2k-inner products,
see Remark 1 part (iii) or Remark 1 part (ii).

Definition 5. Given a subset Y ⊂ (X, (·, . . . , ·)) , the set Y ⊥2k = {z ∈ X; z ⊥2k y
for all y ∈ Y } is called the 2k-orthogonal complement of Y .

Remark that Y ∩ Y ⊥2k = {0} and if λ ∈ R and z ∈ Y ⊥2k then λz ∈ Y ⊥2k

showing that Y ⊥2k is a linear subspace. However, from Proposition 4 X is smooth
and applying Ex. 26 from [3, V. 66] it results that Y ⊥2k is a linear subspace.

The following orthogonal decomposition theorem holds.

Proposition 6. Let Y be a closed linear subspace in a complete 2k-inner product
space (X, (·, . . . , ·)). Then, for x ∈ X there exists a unique y ∈ Y and z ∈ Y ⊥2k

such that x = y + z.

Proof. Existence. From uniform convexity it follows that X is reflexive ( [11, p.
368]), and thus there exists a projection of x on Y , i.e., an element y ∈ Y such that

‖x− y‖2k ≤ ‖x− y
′
‖2k

for all y′ ∈ Y . Denoting z = x− y we have the required relation.
Now, we prove that z ∈ Y ⊥2k . For y′ ∈ Y we have

‖z + λy′‖2k = ‖x− (y − λy′) ‖2k ≥ ‖x− y‖2k = ‖z‖2k

for all real λ and then z ⊥B y′. Applying Lemma 1 we obtain z ∈ Y ⊥2k .
Unicity. The above y is in PY (x), where PY (x) denotes the set of best approx-

imation elements in Y referring to x. Since X is uniformly convex it results that
X is strictly convex and then PY (x) contains a unique element ( [11, p. 110]).

In the following we obtain some results in the spirit of [10], which appear as a
counterpart of the above results.

Let a ∈ X\{0} and denote by X (a) the linear subspace generated by a. Let us
consider the mapping

pra : X → X, pra (x) :=
(a, . . . , a, x)
||a||2k

2k
a.

It follows that:



8 M. CRÂŞMĂREANU AND S.S. DRAGOMIR

Proposition 7. 1.
(i) pra is independent of the choice of a in X (a) i.e. for λ ∈ R we have

prλa = pra.
(ii) pra is a projection onto X (a).
(iii) For arbitrary x ∈ X, a is 2k-orthogonal to x− prax and

‖pra (x) ‖2k ≤ ‖x‖2k.

Proof. The proof is as follows.
(i) We observe that

prλa (x) =
(λa, . . . , λa, x)

‖λa‖2k
2k

λa =
λ2k (a, . . . , a, x)

λ2k‖a‖2k
2k

a = pra (x) .

(ii) We note that pra is onto because pra (a) = a. Obviously, pra is linear and:

pra (pra (x)) =
(a, . . . , a, pra (x))

‖a‖2k
2k

a =
(a, . . . , a) (a, . . . , a, x)

‖a‖4k
2k

a = pra (x) .

(iii) We remark that

(a, . . . , a, x− pra (x)) = (a, . . . , a, x)− (a, . . . , a, pra (x))

= (a, . . . , a, x)− (a, . . . , a) (a, . . . , a, x)
‖a‖2k

2k
= 0

and

‖pra (x) ‖2k =
| (a, . . . , a, x) |‖a‖2k

‖a‖2k
2k

=
| (a, . . . , a, x) |
‖a‖2k−1

2k

≤
‖a‖2k−1

2k ‖x‖2k

‖a‖2k−1
2k

= ‖x‖2k,

and the proposition is proved.

4. The Riesz Property

Let us denote by X∗ the usual dual of X, that is, the space of linear continuous
functionals f : X → R. Fix an element y ∈ X and consider the functional f : X →
R, f (x) := (x, y, . . . , y). It follows that f ∈ X∗ with

|f (x) | ≤ ‖x‖2k‖y‖2k−1
2k for all x ∈ X,

hence

‖f‖ ≤ ‖y‖2k−1
2k .

Also,

‖f‖‖y‖2k ≥ f (y) = ‖y‖2k
2k,

so that

‖f‖ = ‖y‖2k−1
2k .

Conversely, we shall show that any f ∈ X∗ has the above form if X is complete,
obtaining the following generalization of the Riesz representation theorem:

Theorem 3. If (X, (·, . . . , ·)) is a complete 2k-inner product space and f ∈ X∗

then there exists an element y ∈ X such that f (x) = (x, y, . . . , y) for all x ∈ X
and ‖f‖ = ‖y‖2k−1

2k .
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Proof. If f = 0 then y = 0. If f 6= 0 let x0 ∈ X with f (x0) 6= 0. Applying the
Proposition 6 for x0 and Y = Ker (f) which is a closed linear subspace of X, there
is a unique y0 ∈ Ker (f) and a unique z0 ∈ Ker (f)⊥2k such that x0 = y0 + z0. It
results that z0 /∈ Ker (f).

Let λ ∈ R with

λ2k−1 =
f (x0)
‖z0‖2k

2k

and y = λz0. Because f (x) z0 − f (z0)x ∈ Ker (f) for all x ∈ X we have

z0 ⊥2k (f (x) z0 − f (z0)x) ,

that is,

(f (x) z0 − f (z0)x, z0, . . . , z0) = 0

which implies

f (x) =
f (z0)
‖z0‖2k

2k
(x, z0, . . . , z0) = λ2k−1 (x, z0, . . . , z0)

= (x, λz0, . . . , λz0) = (x, y, . . . , y)

for all x ∈ X.

Finally, we shall prove the theorem of unicity for the representation element.

Theorem 4. Let (X, (·, . . . , ·)) be a complete 2k-inner product space and f ∈
X∗ \ {0}. Then there exists an unique u ∈ X with ‖u‖2k = 1 such that f (x) =
‖f‖ (x, u, . . . , u) for all x ∈ X.

Proof. Existence. As above, there exists a z0 ∈ Ker (f)⊥2k \ {0} such that

f (x) =
f (z0)
‖z0‖2k

(

x,
z0

‖z0‖2k
, . . . ,

z0

‖z0‖2k

)

for all x ∈ X and

‖f‖ =
f (z0)
‖z0‖2k

.

With

λ =
(

f (z0)
|f (z0) |

)1/2k−1

we get

f (x) = ‖f‖ f (z0)
|f (z0) |

(

x,
z0

‖z0‖2k
, . . . ,

z0

‖z0‖2k

)

= ‖f‖λ2k−1
(

x,
z0

‖z0‖2k
, . . . ,

z0

‖z0‖2k

)

= ‖f‖ (x, u, . . . , u) ,

where u = λz0
‖z0‖2k

. Obviously ‖u‖2k = 1.
Unicity. We have f (u) = ‖f‖. Since (X, (, )) is strictly convex and u satisfy the

last relations, by the Krein theorem ([11, p. 110]), it follows that u is unique.
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5. 2k-Riemannian manifolds

Let M be a smooth, n-dimensional manifold, C∞ (M) the ring of smooth real
functions on M and X (M) the Lie algebra of vector fields on M .

Definition 6. We say that M is endowed with a 2k-Riemannian metric if every
tangent space TxM is endowed with a 2k-inner product gx : (TxM)2k → R. The
pair

(

M, g = (gx)x∈M

)

is said to be a 2k-Riemannian manifold.

Obviously, for k = 1 we obtain the usual notion of Riemannian metric. For k = 2
we prefer to say 4-Riemannian manifold because there already exists the notion of
the quaternionic manifold ([1]).

The above definition get a symmetric (0, 2k)-tensor field g : (X (M))2k →
C∞ (M) :

g (X1, . . . , X2k) (x) = gx (X1 (x) , . . . , X2k (x)) ,

X1, ..., X2k ∈ X (M) , x ∈ M.

In a local chart
(

xi
)

1≤i≤n this tensor field has the components

gi1...i2k := g
(

∂
∂xi1

, . . . ,
∂

∂xi2k

)

.

Unfortunately, the main tool in the geometry of usual Riemannian metrics,
namely the Levi-Civita connection, does not seem to admit a “mot-à-mot” extension
for the general case k ≥ 2.

Definition 7. A symmetric linear connection ∇ =
(

Γi
jm = Γi

mj

)

we called the
Levi-Civita connection of g if the covariant derivative of g with respect to ∇ vanish:

gi1...i2k|a = 0, 1 ≤ i1, . . . , i2k, a ≤ n,

where:

gi1...i2k|a :=
∂gi1...i2k

∂xa − Γj
ai1gji2...i2k − . . .− Γj

ai2k
gi1...i2k−1j .

Denoting

gi1...i2k ,a =
∂gi1...i2k

∂xa ,

let us try the usual Christoffel process:

gi1...i2k ,i2k+1 = Γj
i2k+1i1gji2...i2k + . . . + Γj

i2k+1i2k
gi1...i2k−1j

gi2...i2k+1,i1 = Γj
i1i2gji3...i2k+1 + . . . + Γj

i1i2k+1
gi2...i2kj

................................

gi2k+1...i2k−1 ,i2k = Γj
i2ki2k+1

gji1...i2k−1 + . . . + Γj
i2ki2k−1

gi2k+1...i2k−2j .

At this stage, we do not know of any method to find Γ.
Let us treat in detail the case k = 2:

gi1i2i3i4,i5 = Γj
i5i1gji2i3i4 + Γj

i5i2gi1ji3i4 + Γj
i5i3gi1i2ji4 + Γj

i5i4gi1i2i3j

gi2i3i4i5,i1 = Γj
i1i2gji3i4i5 + Γj

i1i3gi2ji4i5 + Γj
i1i4gi2i3ji5 + Γj

i1i5gi2i3i4j

gi3i4i5i1,i2 = Γj
i2i3gji4i5i1 + Γj

i2i4gi3ji5i1 + Γj
i2i5gi3i4ji1 + Γj

i2i1gi3i4i5j

gi4i5i1i2,i3 = Γj
i3i4gji5i1i2 + Γj

i3i5gi4ji1i2 + Γj
i3i1gi4i5ji2 + Γj

i3i2gi4i5i1j

gi5i1i2i3,i4 = Γj
i4i5gji1i2i3 + Γj

i4i1gi5ji2i3 + Γj
i4i2gi5i1ji3 + Γj

i4i3gi5i1i2j .
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Subtracting the last two relations from the sum of first three we obtain:

Γj
i1i2gji3i4i5 + Γj

i5i1gji2i3i4 + Γj
i5i2gji1i3i4 − Γj

i3i4gji1i2i5

=
1
2

(gi1i2i3i4,i5 + gi2i3i4i5,i1 + gi3i4i5i1,i2 − gi4i5i1i2,i3 − gi5i1i2i3,i4) .

Let us recall that another method to find the Christoffel coefficients is to compute
the Euler-Lagrange equations :

Ea (L) :=
∂L
∂xa −

d
dt

(

∂L
∂ya

)

for the kinetic energy L : TM = (xa, ya) → R:

L (x, y) :=
1
2
‖y‖2 =

1
2
gij (x) yiyj

because:

giaEa (L) = ẍi + Γi
jmẋj ẋm,

where
(

gab
)

is the inverse of (gab).
In the general case, for:

L =
1
2
‖y‖22k =

1
2

(y, . . . , y)
1
k =

1
2

(

gi1...i2k (x) yi1 . . . yi2k
) 1

k

we have:
∂L
∂xa =

1
2k

(g...y...)
1
k−1 gi1...i2k,ayi1 . . . yi2k

∂L
∂ya = (g...y...)

1
k−1 gai2...i2kyi2 . . . yi2k

and then:

Ea (L) =
1
2k

(g...y...)
1
k−1 gi1...i2k,ayi1 ...yi2k − d

dt

[

(g...y...)
1
k−1 gai2...i2kyi2 ...yi2k

]

.

Therefore, in the expression of Ea (L) the second derivative does not appear
separately.

However, if the 2k-Riemannian metric g is generated, via Proposition 1, by a
classical Riemannian metric gcl, then the Levi-Civita connection of gcl is Levi-
Civita for g. For example, if k = 4:

gi1i2i3i4|a

=
1
3
(gcl

i1i2|agcl
i3i4 + gcl

i1i2g
cl
i3i4|a + gcl

i1i3|agcl
i2i4 + gcl

i1i3g
cl
i2i4|a + gcl

i1i4|agcl
i2i3 + gcl

i1i4g
cl
i2i3|a)

and then, if gcl
ij|a = 0 it follows that gi1i2i3i4|a = 0.
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