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Abstract. In this paper, we shall give a generalization of the Grüss type
inequality and obtain some applications of the Grüss type inequality in terms
of 2-inner product spaces.

1. Introduction

Let X be a linear space of dimension greater than 1 and (·, ·|·) be a real-
valued function on X ×X ×X satisfying the following conditions:

(2I1) (x, x|z) ≥ 0,
(x, x|z) = 0 if and only if x and z are linearly dependent,

(2I2) (x, x|z) = (z, z|x),
(2I3) (x, y|z) = (y, x|z),
(2I4) (αx, y|z) = α(x, y|z) for any real number α,
(2I5) (x + x′, y|z) = (x, y|z) + (x′, y|z).

(., .|.) is called a 2-inner product and (X, (·, ·|·)) is called a 2-inner product
space (or a 2-pre-Hilbert space) ([3]).

Some basic properties of the 2-inner product (·, ·|·) are as follows ([3], [4]):
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(1) For all x, y, z ∈ X,

|(x, y|z)| ≤
√

(x, x|z)
√

(y, y|z).

(2) For all x, y ∈ X, (x, y|y) = 0.
(3) If (X, (·, ·)) is an inner product space, then the 2-inner product (·, ·|·)

is defined on X by

(x, y|z) =
∣

∣

∣

∣

(x|y) (x|z)
(y|z) (z|z)

∣

∣

∣

∣

= (x|y)‖z‖2 − (x|z)(y|z)

for all x, y, z ∈ X.

Under the same assumptions over X, the real-valued function ‖·, ·‖ on
X ×X satisfying the following conditions:

(2N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(2N2) ‖x, y‖ = ‖y, x‖,
(2N3) ‖αx, y‖ = |α|‖x, y‖ for all real number α,
(2N4) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.
‖·, ·‖ is called a 2-norm on X and (X, ‖·, ·‖) is called a linear 2-normed

space ([7]).
Note that it is easy to show that the 2-norm ‖·, ·‖ is non-negative and,

for all x, y ∈ X and real numbers α, ‖x, y + αx‖ = ‖x, y‖.
For any non-zero x1, x2, ..., xn in X, let V (x1, x2, ..., xn) denote the sub-

space of X generated by x1, x2, ..., xn. Whenever the notation V (x1, x2, ..., xn)
is used, by it will understood x1, x2, ..., xn to be linearly independent.

Note that, on any 2-inner product space (X, (·, ·|·)), ‖x, y‖ =
√

(x, x|y)
defines a 2-norm for which we have

(x, y|z) =
1
4
(‖x + y, z‖2 − ‖x− y, z‖2),(1.1)

‖x + y, z‖2 + ‖x− y, z‖2 = 2(‖x, z‖2 + ‖y, z‖2)(1.2)

for all x, y, z ∈ X. On the other hand, if (X, ‖·, ·‖) is a linear 2-normed space
in which the condition (1.2) is satisfied for all x, y, z ∈ X, then we can define
a 2-inner product (·, ·|·) on X by the condition (1.1).
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For a 2-inner product space (X, (·, ·|·)), Cauchy-Schwarz’s inequality

(1.3) |(x, y|z)| ≤ (x, x|z)1/2(y, y|z)1/2 = ‖x, z‖‖y, z‖,

a 2-dimensional analogue of Cauchy-Schwarz’s inequality, holds.
For further details on 2-inner product spaces and linear 2-normed spaces,

refer to the papers ([2]-[5], [9], [10]).

Y. J. Cho et al. ([1]), S. S. Dragomir et al. ([6]) studied the inequalities
of 2-inner product spaces and obtained some related results.

In this paper, we shall give a generalization of the Grüss type inequality
and obtain some applications of the Grüss type inequality in terms of 2-inner
product spaces.

2. The Main Results

In 1935, G. Grüss proved the integral inequality

∣

∣

∣

∣

1
b− a

∫ a

b
f(x)g(x)dx− 1

b− a

∫ a

b
f(x)dx · 1

b− a

∫ a

b
g(x)dx

∣

∣

∣

∣

≤ 1
4
(M −m)(N − n)

if f and g are two integrable functions on [a,b] satisfying the condition:

m ≤ f(x) ≤ M, n ≤ g(x) ≤ N

for all x ∈ [a, b]([8]).

In this section, we shall give a generalization of the Grüss type inequality
in terms of 2-inner product spaces.

Theorem 2.1. Let (X, (·, ·|·)) be a 2-inner product space and x, y, z, e ∈
X with ‖e, z‖ = 1 and z /∈ V (x, e, y). If m, n,M,N are real numbers such
that

(2.1) (Me− x, x−me|z) ≥ 0, (Ne− y, y − ne|z) ≥ 0,
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then we have the inequality

(2.2) |(x, y|z)− (x, e|z)(e, y|z)| ≤ 1
4
|M −m||N − n|.

Proof. Note that

(x, y|z)− (x, e|z)(e, y|z) = (x− (x, e|z)e, y − (e, y|z)e|z).

By the Cauchy-Schwarz’s inequality (1.3),

(2.3)

|(x− (x, e|z)e, y − (e, y|z)e|z)|2

≤ ‖x− (x, e|z)e, z‖2‖y − (e, y|z)e, z‖2

= (‖x, z‖2 − |(x, e|z)|2)(‖y, z‖2 − |(e, y|z)|2).

On the other hand, we have

(2.4) (M−(x, e|z))((x, e|z)−m)−(Me−x, x−me|z) = ‖x, z‖2−|(x, e|z)|2

and

(2.5) (N − (e, y|z))((e, y|z)−n)− (Ne− y, y−ne|z) = ‖y, z‖2− |(e, y|z)|2.

Since (Me− x, x−me|z) ≥ 0, (Ne− y, y − ne|z) ≥ 0, we have

(2.6) (M − (x, e|z))((x, e|z)−m) ≥ ‖x, z‖2 − |(x, e|z)|2

and

(2.7) (N − (e, y|z))((e, y|z)− n) ≥ ‖y, z‖2 − |(e, y|z)|2.

Also, by the inequality 4ab ≤ (a + b)2 for a, b ∈ R, we have

(2.8) (M − (x, e|z))((x, e|z)−m) ≤ 1
4
(M −m)2
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and, similarly,

(2.9) (N − (e, y|z))((e, y|z)− n) ≤ 1
4
(N − n)2.

Thus, using (2.3)∼(2.9), we have the inequality

|(x, y|z)− (x, e|z)(e, y|z)|2 ≤ 1
16
|M −m|2|N − n|2

and so we have the desired inequality (2.2). This completes the proof.

The mapping (·, ·|·)p : Rn → R given by

(x, y|z)p =
1
2

n
∑

i,j=1

pipj(xizj − xjzi)(yizj − yjzi),

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn) ∈ Rn

and p = (p1, p2, . . . , pn) > 0, that is, pi > 0 for all i = 1, 2, . . . , n, is
obviously a 2-inner product on Rn generating the 2-norm on Rn

‖x, y‖p =
[

1
2

n
∑

i,j=1

pipj(xizj − xjzi)2
]1/2

.

Propsition 2.2. Let (Rn, (·, ·|·)p) be a 2-inner product space and x, y, z, e ∈
Rn such that ‖e, z‖ = 1 and z /∈ V (x, y, e). If m,n, M, N are real numbers
such that

(Me− x, x−me|z)p ≥ 0, (Ne− y, y − ne|z)p ≥ 0,

then we have the inequality
∣

∣

∣

∣

1
2

n
∑

i,j=1

pipj(xizj − xjzi)(yizj − yjzi)

−
(

1
2

n
∑

i,j=1

pipj(xizj − xjzi)(eizj − ejzi)
)

×
(

1
2

n
∑

i,j=1

pipj(eizj − ejzi)(yizj − yjzi)
)∣

∣

∣

∣

≤ 1
4
|M −m||N − n|.
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Next, let (·, ·|·) be a 2-inner product and {(·, ·|·)i}i∈N be a sequence of
2-inner products satisfying the following condition:

‖x, z‖2 >
∞
∑

i=1

‖x, z‖2i

for all x, z being linearly independent. Let p ∈ N . Define a mapping

(x, y|z)p = (x, y|z)−
p

∑

i=1

(x, y|z)i,

for x, y, z ∈ X and z /∈ V (x, y). Then the mapping (·, ·|·)p satisfies the
properties:

(1) (x, x|z)p ≥ 0,
(2) (αx + βx′, y|z)p = α(x, y|z)p + β(x′ + y|z)p,
(3) (x, y|z)p + (y, x|z)p,
(4) (x, x|z)p = (z, z|x)p

for every x, x′, y, z ∈ X and α, β ∈ R.

By Theorem 2.1, we have the following:
Proposition 2.3. If there exist real numbers m,n, M, N are real numbers

such that

(Me− x, x−me|z)p ≥ 0, (Ne− y, y − ne|z)p ≥ 0,

then we have

|(x, y|z)p − (x, e|z)p(e, y|z)p| ≤
1
4
|M −m||N − n|.

3. Applications for Isotonic functionals

Let E be a nonempty set, F (E, R) be the real algebra of all real-valued
functions defined on E and L be a subalgebra of F (E,R). A functional A
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is said to be isotonic if f ≥ g, that is, f(t) ≥ g(t) for every t ∈ E, implies
A(f) ≥ A(g) for all f, g ∈ L. A functional A is said to be normalized on L
if 1∈ L, that is, 1(t) = 1 for all t ∈ E implies A(1) = 1.

For some inequalities involving linear isotonic functionals is given in [8].

Suppose that fgh2, fh2, gh2 ∈ L for all f, g ∈ L. For a isotonic linear
functional A : L → R, we define a functional (·, ·|·)A : L× L× L → R by

(f, g|h)A = A(fgh2)

for every f, g, h ∈ L. Then we have the following properties:

(1) (f, f |h)A = A(f2h2) ≥ 0,
(2) (αf + βf ′, g|h)A = α(f, g|h)A + β(f ′, g|h)A,
(3) (f, g|h)A = (g, f |h)A,
(4) (f, f |h)A = (h, h|f)A.

for every f, f ′, g, h ∈ L and α, β ∈ R.

Theorem 3.1. Let L be as above, fgh2, fh2, gh2, f, g, e, h ∈ L with
‖e, h‖ = 1 and h /∈ V (f, g, e). If m,n,M, N are real numbers such that

(3.1) m ≤ f ≤ M, n ≤ g ≤ N

and A : L → R is an isotonic linear functional, then we have the following
inequality

|A(fgh2)−A(fh2)A(gh2)| ≤ 1
4
(M −m)(N − n).

Proof. Choose e=1. Then since ‖e, h‖ = 1, (e, e|h)A = 1, A(e2h2) =
A(h2) = 1 and we have

(Me− f, f −me|h)A = A((M − f)(f −m)h2) ≥ 0

and
(Ne− g, g − ne|h)A = A((N − g)(g − n)h2) ≥ 0.
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Applying Theorem 2.1 for (·, ·|·)A, we have

|(f, g|h)A − (f, e|h)(e, g|h)A| ≤
1
4
(M −m)(N − n).

This completes the proof.

Corollary 3.2. Let fg, f, g, e, h ∈ L. Suppose 1 ∈ L and A : L → R is
a normalized isotonic linear functional. If m,n, M, N satisfy (3.1), then we
have the following inequality

|A(fg)−A(f)A(g)| ≤ 1
4
(M −m)(N − n).

Let L2
[a,b] be a real Hilbert space of square integrable mapping on [a, b],

that is,
b
∫

a
|f2|dm < ∞ if f ∈ L2

[a,b]. Define a mapping (·, ·|·) : L2
[a,b]×L2

[a,b]×

L2
[a,b] → R by

(f, g|l)

=
1
2

∫ b

a

∫ b

a
(f(x)l(y)− f(y)l(x))(g(x)l(y)− g(y)l(x))dm(x)dm(y).

Then (·, ·|·) is a 2-inner product on L2
[a,b] generating the 2-norm

‖f, l‖ =
(

1
2

∫ b

a

∫ b

a
(f(x)l(y)− f(y)l(x))2dm(x)dm(y)

)1/2

.

Proposition 3.3. Let (L2
[a,b], (·, ·|·) be a 2-inner product space and

f, g, e, h ∈ L2
[a,b] with ‖e, h‖ = 1 and h /∈ V (f, g, e). There exist real numbers

m,n, M, N such that

m ≤ f ≤ M, n ≤ g ≤ N.
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Then we have the inequality
∣

∣

∣

∣

∫ b

a

∫ b

a
(f(x)h(y)− f(y)h(x))(g(x)h(y)− g(y)h(x))dm(x)dm(y)

−
[∫ b

a

∫ b

a
(f(x)h(y)− f(y)h(x))(h(y)− h(x))dm(x)dm(y)

]

×
[∫ b

a

∫ b

a
(h(y)− h(x))(g(x)h(y)− g(y)h(x))dm(x)dm(y)

]∣

∣

∣

∣

≤ 1
4
|M −m||N − n|.

Proof. By Theorem 3.1, applied to

A(f, g|h) = A(fgh2) =
∫ b

a

∫ b

a
det(f, h) det(g, h)dm(x)dm(y),

where

det(f, h) =
∣

∣

∣

∣

f(x) f(y)
h(x) h(y)

∣

∣

∣

∣

,

the result follows.
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