ON SOME GRÜSS TYPE INEQUALITY IN 2-INNER PRODUCT SPACES AND APPLICATIONS

S.S. Kim, S.S. Dragomir, A. White and Y.J. Сho

Abstract

In this paper, we shall give a generalization of the Grüss type inequality and obtain some applications of the Grüss type inequality in terms of 2-inner product spaces.

1. Introduction

Let X be a linear space of dimension greater than 1 and $(\cdot, \cdot \mid \cdot)$ be a realvalued function on $X \times X \times X$ satisfying the following conditions:
$\left(2 \mathrm{I}_{1}\right)(x, x \mid z) \geq 0$, $(x, x \mid z)=0$ if and only if x and z are linearly dependent,
$\left(2 \mathrm{I}_{2}\right)(x, x \mid z)=(z, z \mid x)$,
$\left(2 \mathrm{I}_{3}\right)(x, y \mid z)=(y, x \mid z)$,
$\left(2 \mathrm{I}_{4}\right)(\alpha x, y \mid z)=\alpha(x, y \mid z)$ for any real number α, $\left(2 \mathrm{I}_{5}\right)\left(x+x^{\prime}, y \mid z\right)=(x, y \mid z)+\left(x^{\prime}, y \mid z\right)$.
(., .|.) is called a 2-inner product and $(X,(\cdot, \cdot \mid \cdot))$ is called a 2-inner product space (or a 2-pre-Hilbert space) ([3]).

Some basic properties of the 2-inner product $(\cdot, \cdot \mid \cdot)$ are as follows ([3], [4]):

1991 AMS Subject Classification Code : 26D15, 26D99.
Key words and Phrases: Grüss type inequality, 2-inner product, Isotonic functional.
(1) For all $x, y, z \in X$,

$$
|(x, y \mid z)| \leq \sqrt{(x, x \mid z)} \sqrt{(y, y \mid z)}
$$

(2) For all $x, y \in X,(x, y \mid y)=0$.
(3) If $(X,(\cdot, \cdot))$ is an inner product space, then the 2-inner product $(\cdot, \cdot \mid \cdot)$ is defined on X by

$$
(x, y \mid z)=\left|\begin{array}{cc}
(x \mid y) & (x \mid z) \\
(y \mid z) & (z \mid z)
\end{array}\right|=(x \mid y)\|z\|^{2}-(x \mid z)(y \mid z)
$$

for all $x, y, z \in X$.
Under the same assumptions over X, the real-valued function $\|\cdot, \cdot\|$ on $X \times X$ satisfying the following conditions:
$\left(2 \mathrm{~N}_{1}\right)\|x, y\|=0$ if and only if x and y are linearly dependent,
$\left(2 \mathrm{~N}_{2}\right)\|x, y\|=\|y, x\|$,
$\left(2 \mathrm{~N}_{3}\right)\|\alpha x, y\|=|\alpha|\|x, y\|$ for all real number α,
$\left(2 \mathrm{~N}_{4}\right)\|x, y+z\| \leq\|x, y\|+\|x, z\|$.
$\|\cdot, \cdot\|$ is called a 2-norm on X and $(X,\|\cdot, \cdot\|)$ is called a linear 2-normed space ([7]).

Note that it is easy to show that the 2-norm $\|\cdot, \cdot\|$ is non-negative and, for all $x, y \in X$ and real numbers $\alpha,\|x, y+\alpha x\|=\|x, y\|$.

For any non-zero $x_{1}, x_{2}, \ldots, x_{n}$ in X, let $V\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote the subspace of X generated by $x_{1}, x_{2}, \ldots, x_{n}$. Whenever the notation $V\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is used, by it will understood $x_{1}, x_{2}, \ldots, x_{n}$ to be linearly independent.

Note that, on any 2 -inner product space $(X,(\cdot, \cdot \mid \cdot)),\|x, y\|=\sqrt{(x, x \mid y)}$ defines a 2 -norm for which we have

$$
\begin{align*}
(x, y \mid z) & =\frac{1}{4}\left(\|x+y, z\|^{2}-\|x-y, z\|^{2}\right) \tag{1.1}\\
\|x+y, z\|^{2} & +\|x-y, z\|^{2}=2\left(\|x, z\|^{2}+\|y, z\|^{2}\right) \tag{1.2}
\end{align*}
$$

for all $x, y, z \in X$. On the other hand, if $(X,\|\cdot, \cdot\|)$ is a linear 2-normed space in which the condition (1.2) is satisfied for all $x, y, z \in X$, then we can define a 2 -inner product $(\cdot, \cdot \mid \cdot)$ on X by the condition (1.1).

For a 2-inner product space $(X,(\cdot, \cdot \mid \cdot))$, Cauchy-Schwarz's inequality

$$
\begin{equation*}
|(x, y \mid z)| \leq(x, x \mid z)^{1 / 2}(y, y \mid z)^{1 / 2}=\|x, z\|\|y, z\| \tag{1.3}
\end{equation*}
$$

a 2-dimensional analogue of Cauchy-Schwarz's inequality, holds.
For further details on 2-inner product spaces and linear 2-normed spaces, refer to the papers ([2]-[5], [9], [10]).
Y. J. Cho et al. ([1]), S. S. Dragomir et al. ([6]) studied the inequalities of 2-inner product spaces and obtained some related results.

In this paper, we shall give a generalization of the Grüss type inequality and obtain some applications of the Grüss type inequality in terms of 2-inner product spaces.

2. The Main Results

In 1935, G. Grüss proved the integral inequality

$$
\begin{aligned}
& \left|\frac{1}{b-a} \int_{b}^{a} f(x) g(x) d x-\frac{1}{b-a} \int_{b}^{a} f(x) d x \cdot \frac{1}{b-a} \int_{b}^{a} g(x) d x\right| \\
& \quad \leq \frac{1}{4}(M-m)(N-n)
\end{aligned}
$$

if f and g are two integrable functions on $[\mathrm{a}, \mathrm{b}]$ satisfying the condition:

$$
m \leq f(x) \leq M, \quad n \leq g(x) \leq N
$$

for all $x \in[a, b]([8])$.
In this section, we shall give a generalization of the Grüss type inequality in terms of 2-inner product spaces.

Theorem 2.1. Let $(X,(\cdot, \cdot \mid \cdot))$ be a 2-inner product space and $x, y, z, e \in$ X with $\|e, z\|=1$ and $z \notin V(x, e, y)$. If m, n, M, N are real numbers such that

$$
\begin{equation*}
(M e-x, x-m e \mid z) \geq 0, \quad(N e-y, y-n e \mid z) \geq 0 \tag{2.1}
\end{equation*}
$$

then we have the inequality

$$
\begin{equation*}
|(x, y \mid z)-(x, e \mid z)(e, y \mid z)| \leq \frac{1}{4}|M-m||N-n| \tag{2.2}
\end{equation*}
$$

Proof. Note that

$$
(x, y \mid z)-(x, e \mid z)(e, y \mid z)=(x-(x, e \mid z) e, y-(e, y \mid z) e \mid z)
$$

By the Cauchy-Schwarz's inequality (1.3),

$$
\begin{align*}
& |(x-(x, e \mid z) e, y-(e, y \mid z) e \mid z)|^{2} \\
& \leq\|x-(x, e \mid z) e, z\|^{2}\|y-(e, y \mid z) e, z\|^{2} \tag{2.3}\\
& =\left(\|x, z\|^{2}-|(x, e \mid z)|^{2}\right)\left(\|y, z\|^{2}-|(e, y \mid z)|^{2}\right)
\end{align*}
$$

On the other hand, we have
(2.4) $(M-(x, e \mid z))((x, e \mid z)-m)-(M e-x, x-m e \mid z)=\|x, z\|^{2}-|(x, e \mid z)|^{2}$
and
(2.5) $(N-(e, y \mid z))((e, y \mid z)-n)-(N e-y, y-n e \mid z)=\|y, z\|^{2}-|(e, y \mid z)|^{2}$.

Since $(M e-x, x-m e \mid z) \geq 0,(N e-y, y-n e \mid z) \geq 0$, we have

$$
\begin{equation*}
(M-(x, e \mid z))((x, e \mid z)-m) \geq\|x, z\|^{2}-|(x, e \mid z)|^{2} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(N-(e, y \mid z))((e, y \mid z)-n) \geq\|y, z\|^{2}-|(e, y \mid z)|^{2} \tag{2.7}
\end{equation*}
$$

Also, by the inequality $4 a b \leq(a+b)^{2}$ for $a, b \in R$, we have

$$
\begin{equation*}
(M-(x, e \mid z))((x, e \mid z)-m) \leq \frac{1}{4}(M-m)^{2} \tag{2.8}
\end{equation*}
$$

and, similarly,

$$
\begin{equation*}
(N-(e, y \mid z))((e, y \mid z)-n) \leq \frac{1}{4}(N-n)^{2} . \tag{2.9}
\end{equation*}
$$

Thus, using (2.3) $\sim(2.9)$, we have the inequality

$$
|(x, y \mid z)-(x, e \mid z)(e, y \mid z)|^{2} \leq \frac{1}{16}|M-m|^{2}|N-n|^{2}
$$

and so we have the desired inequality (2.2). This completes the proof.
The mapping $(\cdot, \cdot \mid \cdot)_{\bar{p}}: R^{n} \rightarrow R$ given by

$$
(\bar{x}, \bar{y} \mid \bar{z})_{\bar{p}}=\frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j}\left(x_{i} z_{j}-x_{j} z_{i}\right)\left(y_{i} z_{j}-y_{j} z_{i}\right)
$$

where $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \bar{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right), \bar{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in R^{n}$ and $\bar{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)>\overline{0}$, that is, $p_{i}>0$ for all $i=1,2, \ldots, n$, is obviously a 2 -inner product on R^{n} generating the 2 -norm on R^{n}

$$
\|\bar{x}, \bar{y}\|_{\bar{p}}=\left[\frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j}\left(x_{i} z_{j}-x_{j} z_{i}\right)^{2}\right]^{1 / 2}
$$

Propsition 2.2. Let $\left(R^{n},(\cdot, \cdot \mid \cdot)_{\bar{p}}\right)$ be a 2 -inner product space and $\bar{x}, \bar{y}, \bar{z}, \bar{e} \in$ R^{n} such that $\|\bar{e}, \bar{z}\|=1$ and $\bar{z} \notin V(\bar{x}, \bar{y}, \bar{e})$. If m, n, M, N are real numbers such that

$$
(M \bar{e}-\bar{x}, \bar{x}-m \bar{e} \mid \bar{z})_{\bar{p}} \geq 0, \quad(N \bar{e}-\bar{y}, \bar{y}-n \bar{e} \mid \bar{z})_{\bar{p}} \geq 0
$$

then we have the inequality

$$
\begin{aligned}
& \left\lvert\, \frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j}\left(x_{i} z_{j}-x_{j} z_{i}\right)\left(y_{i} z_{j}-y_{j} z_{i}\right)\right. \\
& \quad-\left(\frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j}\left(x_{i} z_{j}-x_{j} z_{i}\right)\left(e_{i} z_{j}-e_{j} z_{i}\right)\right) \\
& \left.\quad \times\left(\frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j}\left(e_{i} z_{j}-e_{j} z_{i}\right)\left(y_{i} z_{j}-y_{j} z_{i}\right)\right) \right\rvert\, \\
& \quad \leq \frac{1}{4}|M-m||N-n|
\end{aligned}
$$

Next, let $(\cdot, \cdot \mid \cdot)$ be a 2 -inner product and $\left\{(\cdot, \cdot \mid \cdot)_{i}\right\}_{i \in N}$ be a sequence of 2-inner products satisfying the following condition:

$$
\|x, z\|^{2}>\sum_{i=1}^{\infty}\|x, z\|_{i}^{2}
$$

for all x, z being linearly independent. Let $p \in N$. Define a mapping

$$
(x, y \mid z)_{p}=(x, y \mid z)-\sum_{i=1}^{p}(x, y \mid z)_{i}
$$

for $x, y, z \in X$ and $z \notin V(x, y)$. Then the mapping $(\cdot, \cdot \mid \cdot)_{p}$ satisfies the properties:
(1) $(x, x \mid z)_{p} \geq 0$,
(2) $\left(\alpha x+\beta x^{\prime}, y \mid z\right)_{p}=\alpha(x, y \mid z)_{p}+\beta\left(x^{\prime}+y \mid z\right)_{p}$,
(3) $(x, y \mid z)_{p}+(y, x \mid z)_{p}$,
(4) $(x, x \mid z)_{p}=(z, z \mid x)_{p}$
for every $x, x^{\prime}, y, z \in X$ and $\alpha, \beta \in R$.
By Theorem 2.1, we have the following:
Proposition 2.3. If there exist real numbers m, n, M, N are real numbers such that

$$
(M e-x, x-m e \mid z)_{p} \geq 0, \quad(N e-y, y-n e \mid z)_{p} \geq 0
$$

then we have

$$
\left|(x, y \mid z)_{p}-(x, e \mid z)_{p}(e, y \mid z)_{p}\right| \leq \frac{1}{4}|M-m||N-n|
$$

3. Applications for Isotonic functionals

Let E be a nonempty set, $F(E, R)$ be the real algebra of all real-valued functions defined on E and L be a subalgebra of $F(E, R)$. A functional A
is said to be isotonic if $f \geq g$, that is, $f(t) \geq g(t)$ for every $t \in E$, implies $A(f) \geq A(g)$ for all $f, g \in L$. A functional A is said to be normalized on L if $\mathbf{1} \in L$, that is, $\mathbf{1}(t)=1$ for all $t \in E$ implies $A(\mathbf{1})=1$.

For some inequalities involving linear isotonic functionals is given in [8].
Suppose that $f g h^{2}, f h^{2}, g h^{2} \in L$ for all $f, g \in L$. For a isotonic linear functional $A: L \rightarrow R$, we define a functional $(\cdot, \cdot \mid \cdot)_{A}: L \times L \times L \rightarrow R$ by

$$
(f, g \mid h)_{A}=A\left(f g h^{2}\right)
$$

for every $f, g, h \in L$. Then we have the following properties:
(1) $(f, f \mid h)_{A}=A\left(f^{2} h^{2}\right) \geq 0$,
(2) $\left(\alpha f+\beta f^{\prime}, g \mid h\right)_{A}=\alpha(f, g \mid h)_{A}+\beta\left(f^{\prime}, g \mid h\right)_{A}$,
(3) $(f, g \mid h)_{A}=(g, f \mid h)_{A}$,
(4) $(f, f \mid h)_{A}=(h, h \mid f)_{A}$.
for every $f, f^{\prime}, g, h \in L$ and $\alpha, \beta \in R$.
Theorem 3.1. Let L be as above, $f g h^{2}, f h^{2}, g h^{2}, f, g, e, h \in L$ with $\|e, h\|=1$ and $h \notin V(f, g, e)$. If m, n, M, N are real numbers such that

$$
\begin{equation*}
m \leq f \leq M, \quad n \leq g \leq N \tag{3.1}
\end{equation*}
$$

and $A: L \rightarrow R$ is an isotonic linear functional, then we have the following inequality

$$
\left|A\left(f g h^{2}\right)-A\left(f h^{2}\right) A\left(g h^{2}\right)\right| \leq \frac{1}{4}(M-m)(N-n)
$$

Proof. Choose $e=1$. Then since $\|e, h\|=1,(e, e \mid h)_{A}=1, A\left(e^{2} h^{2}\right)=$ $A\left(h^{2}\right)=1$ and we have

$$
(M e-f, f-m e \mid h)_{A}=A\left((M-f)(f-m) h^{2}\right) \geq 0
$$

and

$$
(N e-g, g-n e \mid h)_{A}=A\left((N-g)(g-n) h^{2}\right) \geq 0 .
$$

Applying Theorem 2.1 for $(\cdot, \cdot \mid \cdot)_{A}$, we have

$$
\left|(f, g \mid h)_{A}-(f, e \mid h)(e, g \mid h)_{A}\right| \leq \frac{1}{4}(M-m)(N-n) .
$$

This completes the proof.
Corollary 3.2. Let $f g, f, g, e, h \in L$. Suppose $1 \in L$ and $A: L \rightarrow R$ is a normalized isotonic linear functional. If m, n, M, N satisfy (3.1), then we have the following inequality

$$
|A(f g)-A(f) A(g)| \leq \frac{1}{4}(M-m)(N-n)
$$

Let $L_{[a, b]}^{2}$ be a real Hilbert space of square integrable mapping on $[a, b]$, that is, $\int_{a}^{b}\left|f^{2}\right| d m<\infty$ if $f \in L_{[a, b]}^{2}$. Define a mapping $(\cdot, \cdot \mid \cdot): L_{[a, b]}^{2} \times L_{[a, b]}^{2} \times$ $L_{[a, b]}^{2} \rightarrow R$ by

$$
\begin{aligned}
& (f, g \mid l) \\
= & \frac{1}{2} \int_{a}^{b} \int_{a}^{b}(f(x) l(y)-f(y) l(x))(g(x) l(y)-g(y) l(x)) d m(x) d m(y) .
\end{aligned}
$$

Then $(\cdot, \cdot \mid \cdot)$ is a 2-inner product on $L_{[a, b]}^{2}$ generating the 2-norm

$$
\|f, l\|=\left(\frac{1}{2} \int_{a}^{b} \int_{a}^{b}(f(x) l(y)-f(y) l(x))^{2} d m(x) d m(y)\right)^{1 / 2}
$$

Proposition 3.3. Let $\left(L_{[a, b]}^{2},(\cdot, \cdot \mid \cdot)\right.$ be a 2-inner product space and $f, g, e, h \in L_{[a, b]}^{2}$ with $\|e, h\|=1$ and $h \notin V(f, g, e)$. There exist real numbers m, n, M, N such that

$$
m \leq f \leq M, \quad n \leq g \leq N
$$

Then we have the inequality

$$
\begin{aligned}
& \mid \int_{a}^{b} \int_{a}^{b}(f(x) h(y)-f(y) h(x))(g(x) h(y)-g(y) h(x)) d m(x) d m(y) \\
& \quad-\left[\int_{a}^{b} \int_{a}^{b}(f(x) h(y)-f(y) h(x))(h(y)-h(x)) d m(x) d m(y)\right] \\
& \quad \times\left[\int_{a}^{b} \int_{a}^{b}(h(y)-h(x))(g(x) h(y)-g(y) h(x)) d m(x) d m(y)\right] \mid \\
& \leq \frac{1}{4}|M-m||N-n|
\end{aligned}
$$

Proof. By Theorem 3.1, applied to

$$
A(f, g \mid h)=A\left(f g h^{2}\right)=\int_{a}^{b} \int_{a}^{b} \operatorname{det}(f, h) \operatorname{det}(g, h) d m(x) d m(y)
$$

where

$$
\operatorname{det}(f, h)=\left|\begin{array}{ll}
f(x) & f(y) \\
h(x) & h(y)
\end{array}\right|
$$

the result follows.

References

[1] Y. J. Cho, S. S. Dragomir, A. White and S. S. Kim, Some inequalities in 2-inner product spaces, Demonstratio Math., 32(1999), 485-493.
[2] Y. J. Cho and S. S. Kim, Gâteaux derivatives and 2-inner product spaces, Glasnik Mat. 27(1992), 271-282.
[3] C. Dimininnie, S. Gähler and A. White, 2-inner product spaces, Demonstratio Math., 6(1973), 525-536.
[4] C. Dimininnie, S. Gähler and A. White, 2-inner product spaces II, Demonstratio Math., 10(1977), 169-188.
[5] C. Dimininie and A. White, 2-inner product spaces and Gâuteaux partial derivatives, Comment. Math. Univ. Carolinae 16(1975), 115-119.
[6] S. S. Dragomir, Y. J. Cho and S. S. Kim, Superadditivity and monotonicity of 2-norms generated by inner products and related results, Soochow J. Math. 24(1)(1998), 13-32.
[7] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28(1965), 1-43.
[8] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, Norwell, MA, 1993.
[9] A. White, Y. J. Cho and S. S. Kim, Heron's formula in inner product spaces, Demonstratio Math., 31(1998), 97-102.
[10] A. White, Y. J. Cho and S. S. Kim, Characterizations of 2-inner product spaces, Math. Japon. 47(1998), 239-244.
S. S. KIM

School of Communications and Informatics
Victoria Unniversity of Techology
Melbourne City, MC 8001 Australia
e-mail:kim@sci.vu.edu.au
Department of Mathematics
Dongeui University
Pusan 614-714, KOREA
e-mail:sskim@hyomin.dongeui.ac.kr
S. S. DRAGOMIR

School of Communications and Informatics
Victoria Unniversity of Techology
Melbourne City, MC 8001 Australia
e-mail:sever@matilda.vu.edu.au
A. WHITE

Department of Mathematics
St. Bonaventure University
St. Bonaventure, NY 14778, U.S.A.
e-mail:awhite@sbu.edu
Y. J. CHO

Department of Mathematics
Gyeongsang National University
Chinju 660-701, KOREA
e-mail:yjcho@nongae.gsnu.ac.kr

