ON SOME GRÜSS TYPE INEQUALITY IN 2-INNER PRODUCT SPACES AND APPLICATIONS

S.S. KIM, S.S. DRAGOMIR, A. WHITE AND Y.J. CHO

ABSTRACT. In this paper, we shall give a generalization of the Grüss type inequality and obtain some applications of the Grüss type inequality in terms of 2-inner product spaces.

1. Introduction

Let X be a linear space of dimension greater than 1 and $(\cdot, \cdot|\cdot)$ be a realvalued function on $X \times X \times X$ satisfying the following conditions:

 $\begin{array}{l} (2\mathrm{I}_1) \ (x,x|z) \geq 0, \\ (x,x|z) = 0 \ \text{if and only if } x \ \text{and } z \ \text{are linearly dependent}, \\ (2\mathrm{I}_2) \ (x,x|z) = (z,z|x), \\ (2\mathrm{I}_3) \ (x,y|z) = (y,x|z), \\ (2\mathrm{I}_4) \ (\alpha x,y|z) = \alpha(x,y|z) \ \text{for any real number } \alpha, \\ (2\mathrm{I}_5) \ (x+x',y|z) = (x,y|z) + (x',y|z). \\ (.,.|.) \ \text{is called a 2-inner product and $(X,(\cdot,\cdot|\cdot))$ is called a 2-inner product} \end{array}$

(.,.].) is called a *z*-inner product and $(X, (\cdot, \cdot|\cdot))$ is called a *z*-inner product space (or a *2*-pre-Hilbert space) ([3]).

Some basic properties of the 2-inner product $(\cdot, \cdot | \cdot)$ are as follows ([3], [4]):

Typeset by \mathcal{AMS} -TEX

1

¹⁹⁹¹ AMS Subject Classification Code: 26D15, 26D99.

Key words and Phrases : Grüss type inequality, 2-inner product, Isotonic functional.

(1) For all $x, y, z \in X$,

$$|(x,y|z)| \le \sqrt{(x,x|z)}\sqrt{(y,y|z)}$$

(2) For all $x, y \in X$, (x, y|y) = 0.

(3) If $(X, (\cdot, \cdot))$ is an inner product space, then the 2-inner product $(\cdot, \cdot|\cdot)$ is defined on X by

$$(x,y|z) = \begin{vmatrix} (x|y) & (x|z) \\ (y|z) & (z|z) \end{vmatrix} = (x|y) ||z||^2 - (x|z)(y|z)$$

for all $x, y, z \in X$.

Under the same assumptions over X, the real-valued function $\|\cdot, \cdot\|$ on $X \times X$ satisfying the following conditions:

- $(2N_1) ||x, y|| = 0$ if and only if x and y are linearly dependent,
- $(2N_2) ||x,y|| = ||y,x||,$
- (2N₃) $\|\alpha x, y\| = |\alpha| \|x, y\|$ for all real number α ,
- $(2N_4) ||x, y + z|| \le ||x, y|| + ||x, z||.$

 $\|\cdot,\cdot\|$ is called a 2-norm on X and $(X,\|\cdot,\cdot\|)$ is called a *linear 2-normed* space ([7]).

Note that it is easy to show that the 2-norm $\|\cdot, \cdot\|$ is non-negative and, for all $x, y \in X$ and real numbers α , $\|x, y + \alpha x\| = \|x, y\|$.

For any non-zero $x_1, x_2, ..., x_n$ in X, let $V(x_1, x_2, ..., x_n)$ denote the subspace of X generated by $x_1, x_2, ..., x_n$. Whenever the notation $V(x_1, x_2, ..., x_n)$ is used, by it will understood $x_1, x_2, ..., x_n$ to be linearly independent.

Note that, on any 2-inner product space $(X, (\cdot, \cdot | \cdot)), ||x, y|| = \sqrt{(x, x | y)}$ defines a 2-norm for which we have

(1.1)
$$(x,y|z) = \frac{1}{4}(||x+y,z||^2 - ||x-y,z||^2),$$

(1.2)
$$||x+y,z||^2 + ||x-y,z||^2 = 2(||x,z||^2 + ||y,z||^2)$$

for all $x, y, z \in X$. On the other hand, if $(X, \|\cdot, \cdot\|)$ is a linear 2-normed space in which the condition (1.2) is satisfied for all $x, y, z \in X$, then we can define a 2-inner product $(\cdot, \cdot|\cdot)$ on X by the condition (1.1). For a 2-inner product space $(X, (\cdot, \cdot | \cdot))$, Cauchy-Schwarz's inequality

(1.3)
$$|(x,y|z)| \le (x,x|z)^{1/2} (y,y|z)^{1/2} = ||x,z|| ||y,z||,$$

a 2-dimensional analogue of Cauchy-Schwarz's inequality, holds.

For further details on 2-inner product spaces and linear 2-normed spaces, refer to the papers ([2]-[5], [9], [10]).

Y. J. Cho et al. ([1]), S. S. Dragomir et al. ([6]) studied the inequalities of 2-inner product spaces and obtained some related results.

In this paper, we shall give a generalization of the Grüss type inequality and obtain some applications of the Grüss type inequality in terms of 2-inner product spaces.

2. The Main Results

In 1935, G. Grüss proved the integral inequality

$$\begin{aligned} \left| \frac{1}{b-a} \int_b^a f(x)g(x)dx - \frac{1}{b-a} \int_b^a f(x)dx \cdot \frac{1}{b-a} \int_b^a g(x)dx \right| \\ &\leq \frac{1}{4} (M-m)(N-n) \end{aligned}$$

if f and g are two integrable functions on [a,b] satisfying the condition:

$$m \le f(x) \le M, \quad n \le g(x) \le N$$

for all $x \in [a, b]([8])$.

In this section, we shall give a generalization of the Grüss type inequality in terms of 2-inner product spaces.

Theorem 2.1. Let $(X, (\cdot, \cdot | \cdot))$ be a 2-inner product space and $x, y, z, e \in X$ with ||e, z|| = 1 and $z \notin V(x, e, y)$. If m, n, M, N are real numbers such that

(2.1)
$$(Me - x, x - me|z) \ge 0, \quad (Ne - y, y - ne|z) \ge 0,$$

then we have the inequality

(2.2)
$$|(x,y|z) - (x,e|z)(e,y|z)| \le \frac{1}{4}|M-m||N-n|.$$

Proof. Note that

$$(x, y|z) - (x, e|z)(e, y|z) = (x - (x, e|z)e, y - (e, y|z)e|z).$$

By the Cauchy-Schwarz's inequality (1.3),

(2.3)
$$|(x - (x, e|z)e, y - (e, y|z)e|z)|^{2} \leq ||x - (x, e|z)e, z||^{2}||y - (e, y|z)e, z||^{2} = (||x, z||^{2} - |(x, e|z)|^{2})(||y, z||^{2} - |(e, y|z)|^{2}).$$

On the other hand, we have

$$(2.4) \quad (M - (x, e|z))((x, e|z) - m) - (Me - x, x - me|z) = ||x, z||^2 - |(x, e|z)|^2$$

and

$$(2.5) \ (N - (e, y|z))((e, y|z) - n) - (Ne - y, y - ne|z) = ||y, z||^2 - |(e, y|z)|^2.$$

Since $(Me - x, x - me|z) \ge 0, (Ne - y, y - ne|z) \ge 0$, we have

(2.6)
$$(M - (x, e|z))((x, e|z) - m) \ge ||x, z||^2 - |(x, e|z)|^2$$

and

(2.7)
$$(N - (e, y|z))((e, y|z) - n) \ge ||y, z||^2 - |(e, y|z)|^2.$$

Also, by the inequality $4ab \leq (a+b)^2$ for $a, b \in \mathbb{R}$, we have

(2.8)
$$(M - (x, e|z))((x, e|z) - m) \le \frac{1}{4}(M - m)^2$$

and, similarly,

(2.9)
$$(N - (e, y|z))((e, y|z) - n) \le \frac{1}{4}(N - n)^2.$$

Thus, using $(2.3) \sim (2.9)$, we have the inequality

$$|(x,y|z) - (x,e|z)(e,y|z)|^2 \le \frac{1}{16}|M-m|^2|N-n|^2$$

and so we have the desired inequality (2.2). This completes the proof.

The mapping $(\cdot, \cdot | \cdot)_{\overline{p}} : \mathbb{R}^n \to \mathbb{R}$ given by

$$(\overline{x},\overline{y}|\overline{z})_{\overline{p}} = \frac{1}{2} \sum_{i,j=1}^{n} p_i p_j (x_i z_j - x_j z_i) (y_i z_j - y_j z_i),$$

where $\overline{x} = (x_1, x_2, \dots, x_n), \ \overline{y} = (y_1, y_2, \dots, y_n), \ \overline{z} = (z_1, z_2, \dots, z_n) \in \mathbb{R}^n$ and $\overline{p} = (p_1, p_2, \dots, p_n) > \overline{0}$, that is, $p_i > 0$ for all $i = 1, 2, \dots, n$, is obviously a 2-inner product on \mathbb{R}^n generating the 2-norm on \mathbb{R}^n

$$\|\overline{x},\overline{y}\|_{\overline{p}} = \left[\frac{1}{2}\sum_{i,j=1}^{n} p_i p_j (x_i z_j - x_j z_i)^2\right]^{1/2}.$$

Propsition 2.2. Let $(\mathbb{R}^n, (\cdot, \cdot | \cdot)_{\overline{p}})$ be a 2-inner product space and $\overline{x}, \overline{y}, \overline{z}, \overline{e} \in \mathbb{R}^n$ such that $\|\overline{e}, \overline{z}\| = 1$ and $\overline{z} \notin V(\overline{x}, \overline{y}, \overline{e})$. If m, n, M, N are real numbers such that

 $(M\overline{e} - \overline{x}, \overline{x} - m\overline{e}|\overline{z})_{\overline{p}} \ge 0, \quad (N\overline{e} - \overline{y}, \overline{y} - n\overline{e}|\overline{z})_{\overline{p}} \ge 0,$

then we have the inequality

$$\left| \frac{1}{2} \sum_{i,j=1}^{n} p_i p_j (x_i z_j - x_j z_i) (y_i z_j - y_j z_i) - \left(\frac{1}{2} \sum_{i,j=1}^{n} p_i p_j (x_i z_j - x_j z_i) (e_i z_j - e_j z_i) \right) \times \left(\frac{1}{2} \sum_{i,j=1}^{n} p_i p_j (e_i z_j - e_j z_i) (y_i z_j - y_j z_i) \right) \right|$$

$$\leq \frac{1}{4} |M - m| |N - n|.$$

Next, let $(\cdot, \cdot | \cdot)$ be a 2-inner product and $\{(\cdot, \cdot | \cdot)_i\}_{i \in N}$ be a sequence of 2-inner products satisfying the following condition:

$$\|x,z\|^2 > \sum_{i=1}^{\infty} \|x,z\|_i^2$$

for all x, z being linearly independent. Let $p \in N$. Define a mapping

$$(x, y|z)_p = (x, y|z) - \sum_{i=1}^p (x, y|z)_i,$$

for $x, y, z \in X$ and $z \notin V(x, y)$. Then the mapping $(\cdot, \cdot | \cdot)_p$ satisfies the properties:

 $\begin{array}{ll} (1) & (x, x | z)_p \geq 0, \\ (2) & (\alpha x + \beta x', y | z)_p = \alpha (x, y | z)_p + \beta (x' + y | z)_p, \\ (3) & (x, y | z)_p + (y, x | z)_p, \\ (4) & (x, x | z)_p = (z, z | x)_p \end{array}$

for every $x, x', y, z \in X$ and $\alpha, \beta \in R$.

By Theorem 2.1, we have the following:

Proposition 2.3. If there exist real numbers m, n, M, N are real numbers such that

$$(Me - x, x - me|z)_p \ge 0, \quad (Ne - y, y - ne|z)_p \ge 0,$$

then we have

$$|(x,y|z)_p - (x,e|z)_p(e,y|z)_p| \le \frac{1}{4}|M-m||N-n|.$$

3. Applications for Isotonic functionals

Let E be a nonempty set, F(E, R) be the real algebra of all real-valued functions defined on E and L be a subalgebra of F(E, R). A functional A is said to be *isotonic* if $f \ge g$, that is, $f(t) \ge g(t)$ for every $t \in E$, implies $A(f) \ge A(g)$ for all $f, g \in L$. A functional A is said to be *normalized* on L if $\mathbf{1} \in L$, that is, $\mathbf{1}(t) = 1$ for all $t \in E$ implies $A(\mathbf{1}) = 1$.

For some inequalities involving linear isotonic functionals is given in [8].

Suppose that $fgh^2, fh^2, gh^2 \in L$ for all $f, g \in L$. For a isotonic linear functional $A: L \to R$, we define a functional $(\cdot, \cdot|\cdot)_A: L \times L \times L \to R$ by

$$(f,g|h)_A = A(fgh^2)$$

for every $f, g, h \in L$. Then we have the following properties:

 $\begin{array}{ll} (1) & (f,f|h)_A = A(f^2h^2) \geq 0, \\ (2) & (\alpha f + \beta f',g|h)_A = \alpha(f,g|h)_A + \beta(f',g|h)_A, \\ (3) & (f,g|h)_A = (g,f|h)_A, \\ (4) & (f,f|h)_A = (h,h|f)_A. \end{array}$

for every $f, f', g, h \in L$ and $\alpha, \beta \in R$.

Theorem 3.1. Let L be as above, $fgh^2, fh^2, gh^2, f, g, e, h \in L$ with ||e,h|| = 1 and $h \notin V(f,g,e)$. If m, n, M, N are real numbers such that

$$(3.1) m \le f \le M, n \le g \le N$$

and $A: L \to R$ is an isotonic linear functional, then we have the following inequality

$$|A(fgh^{2}) - A(fh^{2})A(gh^{2})| \le \frac{1}{4}(M - m)(N - n).$$

Proof. Choose e=1. Then since ||e,h|| = 1, $(e,e|h)_A = 1$, $A(e^2h^2) = A(h^2) = 1$ and we have

$$(Me - f, f - me|h)_A = A((M - f)(f - m)h^2) \ge 0$$

and

$$(Ne - g, g - ne|h)_A = A((N - g)(g - n)h^2) \ge 0.$$

Applying Theorem 2.1 for $(\cdot, \cdot|\cdot)_A$, we have

$$|(f,g|h)_A - (f,e|h)(e,g|h)_A| \le \frac{1}{4}(M-m)(N-n).$$

This completes the proof.

Corollary 3.2. Let $fg, f, g, e, h \in L$. Suppose $\mathbf{1} \in L$ and $A : L \to R$ is a normalized isotonic linear functional. If m, n, M, N satisfy (3.1), then we have the following inequality

$$|A(fg) - A(f)A(g)| \le \frac{1}{4}(M-m)(N-n).$$

Let $L^2_{[a,b]}$ be a real Hilbert space of square integrable mapping on [a,b], that is, $\int_a^b |f^2| dm < \infty$ if $f \in L^2_{[a,b]}$. Define a mapping $(\cdot, \cdot|\cdot) : L^2_{[a,b]} \times L^2_{[a,b]} \times L^2_{[a,b]} \to R$ by

$$(f,g|l) = \frac{1}{2} \int_{a}^{b} \int_{a}^{b} (f(x)l(y) - f(y)l(x))(g(x)l(y) - g(y)l(x))dm(x)dm(y).$$

Then $(\cdot, \cdot | \cdot)$ is a 2-inner product on $L^2_{[a,b]}$ generating the 2-norm

$$||f,l|| = \left(\frac{1}{2}\int_{a}^{b}\int_{a}^{b}(f(x)l(y) - f(y)l(x))^{2}dm(x)dm(y)\right)^{1/2}.$$

Proposition 3.3. Let $(L^2_{[a,b]}, (\cdot, \cdot|\cdot))$ be a 2-inner product space and $f, g, e, h \in L^2_{[a,b]}$ with ||e, h|| = 1 and $h \notin V(f, g, e)$. There exist real numbers m, n, M, N such that

$$m \le f \le M, \quad n \le g \le N.$$

Then we have the inequality

$$\begin{split} \left| \int_{a}^{b} \int_{a}^{b} (f(x)h(y) - f(y)h(x))(g(x)h(y) - g(y)h(x))dm(x)dm(y) \right. \\ \left. - \left[\int_{a}^{b} \int_{a}^{b} (f(x)h(y) - f(y)h(x))(h(y) - h(x))dm(x)dm(y) \right] \right. \\ \left. \times \left[\int_{a}^{b} \int_{a}^{b} (h(y) - h(x))(g(x)h(y) - g(y)h(x))dm(x)dm(y) \right] \right. \\ \left. \le \frac{1}{4} |M - m| |N - n|. \end{split}$$

Proof. By Theorem 3.1, applied to

$$A(f,g|h) = A(fgh^2) = \int_a^b \int_a^b \det(f,h) \det(g,h) dm(x) dm(y),$$

where

$$\det(f,h) = \begin{vmatrix} f(x) & f(y) \\ h(x) & h(y) \end{vmatrix},$$

the result follows.

References

- Y. J. Cho, S. S. Dragomir, A. White and S. S. Kim, Some inequalities in 2-inner product spaces, Demonstratio Math., 32(1999), 485-493.
- [2] Y. J. Cho and S. S. Kim, Gâteaux derivatives and 2-inner product spaces, Glasnik Mat. 27(1992), 271-282.
- [3] C. Dimininnie, S. Gähler and A. White, 2-inner product spaces, Demonstratio Math., 6(1973), 525-536.
- [4] C. Dimininnie, S. Gähler and A. White, 2-inner product spaces II, Demonstratio Math., 10(1977), 169-188.
- [5] C. Dimininie and A. White, 2-inner product spaces and Gâuteaux partial derivatives, Comment. Math. Univ. Carolinae 16(1975), 115-119.
- [6] S. S. Dragomir, Y. J. Cho and S. S. Kim, Superadditivity and monotonicity of 2-norms generated by inner products and related results, Soochow J. Math. 24(1)(1998), 13-32.

S.S. KIM, S.S. DRAGOMIR, A. WHITE AND Y.J. CHO

- [7] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28(1965), 1-43.
- [8] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, Norwell, MA, 1993.
- [9] A. White, Y. J. Cho and S. S. Kim, *Heron's formula in inner product spaces*, Demonstratio Math., 31(1998), 97-102.
- [10] A. White, Y. J. Cho and S. S. Kim, Characterizations of 2-inner product spaces, Math. Japon. 47(1998), 239-244.

S. S. KIM

School of Communications and Informatics Victoria Unniversity of Techology Melbourne City, MC 8001 Australia e-mail:kim@sci.vu.edu.au

Department of Mathematics Dongeui University Pusan 614-714, KOREA e-mail:sskim@hyomin.dongeui.ac.kr

S. S. DRAGOMIR School of Communications and Informatics Victoria Unniversity of Techology Melbourne City, MC 8001 Australia e-mail:sever@matilda.vu.edu.au

A. WHITEDepartment of MathematicsSt. Bonaventure UniversitySt. Bonaventure, NY 14778, U.S.A.e-mail:awhite@sbu.edu

Y. J. CHO Department of Mathematics Gyeongsang National University Chinju 660-701, KOREA e-mail:yjcho@nongae.gsnu.ac.kr

10